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Abstract 
A generation of bare lepton masses alternative to Higgs-like mechanisms is 
proposed. It can be used in a combination with the latter ones in attempt to 
explain why the coupling strengths to Higgs field span a wide range. The 
proposed mechanism also allows defining neutrino masses alternatively to the 
Dirac or Majorana types, since the effective bare masses of leptons are possi-
ble to generate without scalar terms in electroweak Lagrangians and motion 
equations. The proposed extension is fully compatible with standard methods 
of calculating radiative corrections and scattering amplitudes, since the left- 
and right-handed parts of EW Lagrangian do not change. 
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1. Introduction 

In the electroweak theory, the fermion masses are generated by coupling to sca-
lar fields. The question regarding lepton masses is effectively replaced by the 
question of why a given lepton type has a specific Yukawa coupling strength to 
the Higgs field [1]. 

Since the Higgs couplings of leptons vary by twelve orders of magnitude, the 
question is whether some other mechanisms of mass generation exist. The idea 
of radiative fermion masses was recently reviewed in [2]. In such models, the 
heaviest fermions still receive their mass by coupling to the Higgs at tree level. 
Lighter fermions, however, acquire their masses in higher-order loops with vir-
tual heavy particles. Taking into account that amplitudes of high-order loops are 
severely suppressed, this mechanism might potentially explain the vastness of 
mass spectrum. In any way, nearly all of numerous mechanisms of lepton mass 
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generation, proposed in the literature, rely on coupling to scalar fields, even in 
the multidimensional extensions of SM [3]. Is it possible to introduce an alterna-
tive (and complementary) way of generating masses which would not contradict 
the well established results? Even if the Higgs is the key and proven part of the 
mainstream theory, it does not mean that there is no additional mechanism that 
can contribute into the masses of lightest leptons, which are many orders of 
magnitudes lighter than the Higgs. It is still the very active research area where 
different modifications of the original Higgs mechanism are proposed and in-
vestigated, see examples of recent works [4]-[9]. Analogously, we propose the 
consistent extension to the conventional theory, without contradicting the ex-
isting, well proven results. 

The biggest challenge for an alternative mechanism is how to introduce mass 
scales into field equations in a covariant and non-controversial way, similar to 
the Higgs mechanism. In the latter one, the mass terms are scalar, thus they 
must be of Dirac or Majorana type with their own sets of challenges [10] [11] 
[12] [13]. The framework that is proposed in this study allows generating effec-
tive masses without scalar terms. Hence it avoids the necessity of choosing be-
tween the Dirac and Majorana models of massive neutrinos. It might potentially 
open new possibilities in search for new physics beyond SM, in addition to what 
is already been actively discussed, see selected examples in [14]-[20]. 

1.1. Relation to Higgs and Symmetry Breaking 

It is important to clarify the relation of proposed mechanism to the Higgs and 
the symmetry breaking that leads to the mass generation in the conventional 
approach. The relevant terms of electroweak Lagrangian are given as 

( ) ,ew L L R L L L
l

i f eAµ µ
µ µψ γ ψ λ χ ψ ψ ψ γ ψ= ∂ − + − +∑         (1) 

where Lψ  and Rψ  are left- and right-handed leptons, f is the coupling 
strength to Higgs field χ  which vacuum value is λ , and Aµ  is the electro-
magnetic (EM) field. The shown terms are the kinetic energy of left-handed lep-
ton field Lψ , the lepton-Higgs interaction term, and the lepton-EM interaction 
one correspondingly. The dots represent the corresponding terms for right- 
handed states, neutrinos, charged and neutral bosons, and Higgs. They are not 
shown explicitly in (1), since their roles remain unchanged in the proposed ap-
proach. 

The second term in (1), which includes the right-handed states of leptons, 
breaks the SU2 symmetry of electroweak Lagrangian. As a result of this symme-
try breaking and the chosen Higgs vacuum state, particles (leptons, electroweak 
bosons Wµ , Zµ , and quarks) all acquire masses while photons remain massless. 
Next, taking into account the radiative corrections into the self-energy, the effec-
tive mass of a lepton lm  can be given as 

,rad
l H Am m m= + +                       (2) 

where Hm f λ=  is the mass due to Higgs coupling and rad
Am  is the contribu-
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tion into lepton self-energy by virtual photons which are represented by field 
Aµ . The dots represent radiative corrections generated by interactions with oth-

er types of virtual particles. We are still squarely within the conventional 
framework in which the techniques for evaluating these radiative corrections are 
well established however complicated they might be, especially in the case of ha-
dronic vacuum polarization. 

How can an additional effective mass appear in the equations of motion 
without violating the translation invariance and Lorentz covariance? Though we 
elaborate more on this in subsection 3, briefly it can be outlined as follows. Let 
us assume that the potential Aµ  has three parts 

,ext selfA A Aµ µ µ µχ= + ∂ +                      (3) 

where χ  is an arbitrary scalar function (gauge), extAµ  is an external field while 
selfAµ  is the field of free-moving charged particle. In the rest frame, it would be 

given by the Coulomb or Uehling potential ( )rφ  which is the former one 
modified by the vacuum polarization around bare charges. We will consider on-
ly free-moving charges in this work, for which case extAµ  is zero. Even after the 
renormalization, the part ( )~selfA rµ φ  remains infinite at the location of bare 
charge ( 0r → ) while the contributions of virtual photons into the self-energy 
(which depend on the regularization scale) are captured by the radiative correc-
tions. 

This infinite value of static potential ( )~ 0selfA rµ φ →  at the location of bare 
charge is largely ignored in the conventional field theory, at least in regard to 
particle masses, even if it has been frequently speculated in the classical case that 
it should be connected to masses of charged particles (the electromagnetic origin 
of mass). In this work, we develop the phenomenological approach within which 
a more fundamental theory of electroweak interactions can be applied to predict 
experimental results. We then assume that such a theory would lead to finite 
values of electroweak potentials ( 0A , 0Z , and 0W ) at location of bare charge. 
In the approximation of free-propagating plane waves that we use here, they are 
just a set of numbers, with no space-time dependence. We will not speculate 
here what form such a theory might have; all we need for our phenomenological 
approach to proceed is the assumption that finite values of four electroweak po-
tentials at bare charge origin exist. 

Next, if we are allowed to assume that the electroweak potentials of free- 
moving leptons, including the EM one ( )~ 0selfA rµ φ →  for example, are finite 
at charge origin, we can derive several non-trivial relations between masses of 
charged leptons and their neutrinos by using the conventional electroweak La-
grangian. Since the terms that describe the lepton-Higgs coupling and lep-
ton-EM interaction enter the Lagrangian independently of each other, their con-
tributions into the effective mass are also additive, in which case, the mass Equa-
tion (2) changes as 

,rad fin
l H A Am m m m′ = + + +                     (4) 
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here the first and second terms in (4) keeps its original meaning as in (2). The 
third term gives the additional mass due to the finite self-potential selfAµ  which 
is not describable by the Maxwell physics. This is the key detail, since otherwise 
one would be able to immediately object to (4) by pointing that the term rad

Am  
already describes the contributions due to the electromagnetic field. However, 
the conventional theory calculates radiative corrections by using the propagators 
which are solutions of Maxwell or Klein-Gordon equations which do not lead to 
finite values of potentials at charge origin. Therefore, assuming that such poten-
tials are finite at 0r →  necessarily imply the deviation from the Maxwell and 
Klein-Gordon physics (quantized or not). 

Since the contributions in (4) due to Higgs and finite self-potentials are addi-
tive, the proposed mechanism is truly complementary to the Higgs one. It is 
possible that the proposed mechanism determines masses of lightest leptons 
(that are much smaller than Higgs) which would make the Higgs couplings for 
heavier leptons constrained to a much narrow range. Assuming then that masses 
of lightest leptons are described by the proposed mechanism, we are able to 
show that the charged lepton mass 0~em A  is mostly given by the interaction 
with its EM field (but it is still not a purely electromagnetic one!) while the mass 

0~m Zν  of its corresponding neutrino is determined by the interaction with 
its neutral potential. Remarkably, the seesaw-like relation 2

0~em m Wν  be-
tween the masses of particles from the same EW iso-doublet also follows natu-
rally from the applied framework. Hence, while the coupling strengths for a 
charged lepton and its neutrino are not connected in any way in the Higgs-based 
model, they are naturally connected by the seesaw relation in our approach. 
Seesaw-like relations with neutrinos have been discussed before, see for example 
[21], in the framework of gauged family unification. An application of the pro-
posed phenomenological model which would allow inferring additional infor-
mation regarding the electroweak potentials of free-moving particles could also 
shed more light on possible deviation from the conventional theory to help ad-
dress the known challenges with existing infinities. 

1.2. Approach and New Representation 

The purpose of this manuscript is not to offer a complete or even a substantial 
partial solution of lepton mass problem, like a reduction in number of free pa-
rameters in SM (couplings to Higgs field, for example). It would be an unrealis-
tic expectation at this stage. Instead, our goals are much more modest. We at-
tempt to expose a potential gateway from which a consistent extension of con-
ventional EW theory, which does not contradict with any of well proven expe-
rimental support and theory constructs, can be found. 

For this purpose, we found that a new representation which combines two 
Weyl spinors, one for a left-handed charged lepton and one for its neutrino, 
helps to get results easier. Both our and Dirac representations are reducible, 
since they include two Weyl spinors each. Out of three Weyl spinors per lepton 
family, the Dirac one combines both electron spinors into one quantity, while we 
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combine two SU2 spinors into one quantity ψ , exactly as the iso-doublet 
( ), LL νψ ψ=  does. The only difference is we removed the trivial zeros from L; 

hence our construct ψ  is as artificial as the iso-doublet L itself. In any way, 
these alternative combinations are equivalent to one another if proper mapping 
and corresponding representation-dependent operators are used. 

We have been inspired to come up with this new representation by two 
sources. Specifically, quoting the first source ([22], p. 704), “Since the left- and 
right-handed fermions live in different representations of the fundamental gauge 
group, it is often useful to think of these components as distinct particles, which 
are mixed by the fermion mass terms”. Similarly, modeling neutrinos as Majo-
rana particles and quoting [10], “If lepton number is not conserved, one can 
treat the left-handed neutrino and right-handed antineutrino as two different 
helicity states of one particle, and combine them to make a massive spin 1/2 par-
ticle”. However, if the lepton number is not conserved, then the neutrino and 
antineutrino cannot be viewed as two different states of one particle [10]. Taking 
into account these ideas and extending them, we combine both left-handed elec-
tron and its right-handed antineutrino into our ψ , since they live in the 
iso-SU2 gauge representations (L and L ), as opposite to their corresponding 
particles with opposite chiralities which live in iso-singlets. From this angle, two 
very different particles from the electroweak iso-doublets L and L , both 
left-handed electron and its right-handed antineutrino, must be somewhat 
“closer” to one another, than left- and right-handed electrons to one another1. 
This work intends to clarify what such a “closeness” might mean from the phys-
ical point of view. The practical benefit is also that this new representation 
helped us to yield results easier. 

A massive particle must have both left- and right-handed components [10], as 
can be seen by considering its behavior under general boosts and rotations. Spe-
cifically, the Dirac plane wave has the left- and right-handed components of 
equal magnitude in the rest frame, see for example, (3.49) from [22]. Such a state 
does not have any left-right asymmetry per se, opposite to what we see in the 
EW interactions (nearly 100% chirally polarized). The mass of such a particle is 
a scalar m that is introduced into the Lagrangian by hand (or by using the Higgs 
field in a certain vacuum state). 

In our proposal, a massive state also has both left- and right-handed compo-
nents. However, the left-right asymmetry is incorporated into the state descrip-
tion: a massive charged lepton has a large left-handed component and very small 
right-handed one. In return, an antilepton has a large right-handed component 
and very small left-handed one. To avoid any issues with the behavior under 
boosts and rotations, such states must be fully spin-polarized in their respective 
rest frames, see (41) for a general boost and its specific version (42) for the boost 
in z-direction. As we showed, we can then obtain several scalars, which are in-

 

 

1The second relevant quote from [[22], p. 704] says that “The solution of this problem will reinforce 
the idea that the left- and right-handed fermion fields are fundamentally independent entities, mixed 
to form massive fermions by some subsidiary process.” 
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terpreted as contributions into masses, for free-moving leptons from the EW 
currents for such states and finite self-potentials, without invoking the Higgs 
mechanism. 

Concluding the introduction, the outlined task is performed in two steps. 
First, we re-write the conventional left-handed part of EW formalism of massless 
leptons into an alternative, but fully equivalent, formalism by switching to the 
bispinor representation that combines two SU2 spinors of one lepton family. We 
show that no features of conventional EW model related to iso-doublets is lost. 
Second, we discuss a new way of introducing masses into the phenomenological 
model without invoking the Higgs mechanism. In this study, we focus only on 
the lepton sector. However, the proposed method is really a gateway to con-
structing a broader framework which can be applied to quarks and bosons; 
possible extensions of this model will be reviewed in a future paper. The exten-
sion to quarks is straightforward but lengthier while the boson sector requires 
some additional assumptions; this is the reason they will not be covered here. 
We use the chiral representation of gamma matrices in this paper. The termi-
nology and notations follow [23] and [22]. The amount of literature on this topic 
is immense and will not be reviewed here; however, we would like to highlight 
several recent reviews ([24], p. 285) [25] [26] and references therein. 

2. Compact EW Formalism 
2.1. Lagrangian and Equations of Motion 

In this subsection, we briefly state the conventional definitions which will be 
used later on. 

The lepton-boson part of EW Lagrangian without right-handed particle states 
is given by 

( ) ( ) ( )cos 2 ,
2cos2 2

L
int e n e

g gJ W J W eAJ J J Zθ
θ+ + − −= + − + −      (5) 

where the four currents are defined as 

2 , ,

2 , .
L e L L

L n

J J

J J

µ µ
ν

µ µ
ν ν ν

ψ γ ψ ψ γ ψ

ψ γ ψ ψ γ ψ
+

−

= =

= =
                 (6) 

Since the electromagnetic current L
e emJ J=  in this work is always given by its 

left-handed part, we simplified its notation by dropping the superscript L. The 
first three currents couple only to their corresponding potentials, meaning that 
there seems to be one-to-one correspondence between three EW currents and 
three EW potentials. The Z-field however couples to both nJ  and eJ  with 
different but comparable strength ( cos 2 0.5θ ≈  where θ  is the mixing angle). 
Two bispinors2, that are used in (6), are given by 

, ,
0 0

L L
L

u v
νψ ψ

   
= =   
   

                     (7) 

 

 

2Alternatively, a Dirac bispinor ψ  is called by a four-component Dirac spinor ([27], p. 6). 
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They correspond to both massless charged lepton and neutrino that are de-
scribed by two Weyl spinors Lu  and Lv  respectively. 

The covariant derivative for the massless left-handed doublet L of electron 
and its neutrino is 

,
2 2 2

i
i

i i gD L g YB igt L g B i W Lµ µ µ µ µ µ µσ   ′ ′= ∂ − − = ∂ + −   
   



W       (8) 

where the corresponding weak charge 1 2t =  and hypercharge 1Y = − . Ex-
panding now the doublet L, we obtain 

3 1 2

1 2 3

3

3

2
2

2

2 2 .
2

2 2

L L
L L

L

L L L

i g B W W iWgD i
i W iW Wg B

i gg B i W Wgi
i g Wg B i W

µ ν µ ν
ν νµ µ µ

µ
µ µ µ

µ µ

µ ν µ ν µ ν
µ

µ ν
µ µ µ

ψ ψψ ψ
ψ ψψ ψ

ψ ψ ψ ψ

ψψ ψ ψ

+

−

 ′∂ +   −   
= −       + −     ′∂ + 
 
 ′∂ + −   

 = − 
    ′∂ + + 

 

    (9) 

where the last term mixes the electron and neutrino contributions. Using the 
orthogonal combinations of two neutral bosons 3Wµ  and Bµ , the covariant de-
rivatives are re-cast as 

( )

( )

3

3

=
2 2

= ,
2 cos 2

2 2
cos 22 .

2 cos 2

L

L

L L L

L L

i gD g B gW i W

i g gZ i W

i gD g B gW i W

i g geA Z i W

µ ν µ ν µ µ ν µ

µ ν µ ν µ

µ µ µ µ µ ν

µ µ µ µ ν

ψ ψ ψ ψ

ψ ψ ψ
θ

ψ ψ ψ ψ

θψ ψ ψ
θ

+

+

−

−

′∂ + − −

∂ − −

′= ∂ + + −

 = ∂ + + −  

        (10) 

Therefore, two equations of motion are given by 

0,
2cos 2

cos 2 0,
2cos 2

L

L L

g giD i Z W

g giD i eA Z W

ν ν

ν

ψ ψ ψ
θ

θψ ψ ψ
θ

+

−

 / = ∂/ + / + =/ 
 
 // = ∂/ − − / + =/ 
 

          (11) 

where we see again that the neutrino is not influenced by the EM potential while 
the EM term for electrons has the correct sign of electric charge. 

2.2. Redundancy 

A single lepton family is described with two Dirac bispinors in the Lagrangian 
(5) and the equations of motion (11). However, since the Lagrangian ( )L

int  
includes only left-handed electrons Lψ , two complex-valued components per 
charged lepton are all that is really needed here. Now taking into account that 
massless neutrinos are also described by two-component spinor Lv  

, ,
0 0

L L
L L L

u v
P Pνψ ψ ψ ψ

   ′= = = =   
   

              (12) 
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two general bispinors ψ  and ψ ′  have twice more degrees of freedom than 
what is really required in the conventional approach to describe the left-handed 
part of one lepton generation. Here, ( )5

/ 1 2L RP γ= ±  are two chiral projectors. 
The use of Dirac bispinors in describing neutrinos is mostly for convenience 
([28], p. 114), though the accommodation of neutrino nonzero mass might 
change it; we ignore this complication for now. The most economical way is to 
directly use two-component spinors ( ),L Lu v  for all lepton types, see examples 
in [27] and [29]. We will consider however an alternative approach. 

Having used only the left-handed part in LPψ  to describe a charged lepton, 
we are left with two extra degrees of freedom in ψ  which otherwise would be 
associated with the right-handed charged lepton. Instead of introducing the 
second bispinor νψ , can we use these extra degrees of freedom in ψ  to de-
scribe neutrinos? Specifically, we would like to connect the neutrino wave func-
tion νψ  with a properly transformed bottom component of ψ  

, ,
0

L R
R

R

u u
U P

u νψ ψ ψ
′   

= = =   
  

                (13) 

where U is some transformation operator, and Ru  is the lower part of bispinor 
ψ . 

It is important to clarify the following. No new physics which might stem 
from such an association is implied at this point. Instead, we focus on achieving 
the mathematical equivalency with the conventional left-handed part of EW 
theory while removing any redundancy from its description. Effectively, we 
search for a way to package two parts of EW iso-doublet into the single quantity 
ψ  which will be the direct sum of spinors Lu  and Lv  transformed in some 
way. The equivalency stems from the fact that such a procedure is fully reversible 
and is one-to-one. 

Examples of transformations that swap left- and right-handed states are well 
known ([22], p. 44). The Dirac bispinor representation is reducible that is clearly 
seen in the chiral gamma basis where the Lorentz generators are 22 block-diagonal. 
A general matrix U which swaps chirality states must then be of purely off- 
diagonal form in the chiral basis 

5

0
~ ,

0
X

U
Y

µ

µ

γ

γ γ

  →  
  

                  (14) 

where X and Y are some 22 matrices. There are eight basis matrices ( )5,µ µγ γ γ  
that are purely off-diagonal in the chiral basis. Since we are dealing with chiral 
states only and the matrix 5γ  is absorbed by chiral projectors 

5
/ / ,R L R LP Pγ = ±                        (15) 

we need to consider only µγ  matrices. Therefore, a chirality-swapping trans-
formation can be taken in the following form 

*
/ / / ,R L L R L RU cµ

µψ ψ γ ψ′ = =                    (16) 

where cµ  are some constant coefficients, and the complex conjugation might 
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be also added. It is actually required, since the bottom spinor is associated with 
antiparticles which are right-handed. 

The charge conjugation transformation has exactly this form ([28], p. 96) 

( ) ( )2 * .C x i xψ γ ψ=                       (17) 

Checking it out, we see that the neutrino spinor is obtained from ψ  as 
* *

22
*

2

~ ~ ,
0

L R LC
L L L

R L

u i u v
P P i P

u i uν

σ
ψ ψ γ

σ

    
= =      −     

          (18) 

if *
2L Rv i uσ=  is associated with the transformed right-handed part of bispinor 

ψ . The conventional iso-doublet L is then replaced with the following bispinor 

*
2

,L

L L

u
L

i v
νψ ψ

ψ σ
  

= ↔ =   
   

                (19) 

where both of them have the equal number of nontrivial components. This re-
presentation is reversible and one-to-one, if the zero entries in L are ignored. 
Accordingly, all four EW currents (6) are unambiguously recovered as 

( )
( )

( )

*

2 ,

2 ,

1 ,
2
1 ,
2

C
L

C
L

e L L L

R

J

J

J k s P

J k s P

µ µ
ν

µ µ
ν

µ µ µ µ

µ µ µ µ
ν ν ν

ψ γ ψ ψ γ ψ

ψ γ ψ ψ γ ψ

ψ γ ψ ψγ ψ

ψ γ ψ ψγ ψ

+

−

= =

= =

= = − =

= = + =

              (20) 

where the bilinears kµ µψγ ψ=  and 5sµ µψγ γ ψ=  are defined as usual. The 
conventional EW currents on the left side are equal to the currents on the right 
side identically, component-by-component. The electromagnetic and neutral cur-
rents are given as left- and right-handed parts of total current kµ  respectively if 
the representation (19) is used. 

Transformations: The key support for the compact formalism we develop 
here comes from the way such a combined quantity ψ  transforms between iner-
tial frames. The boost and rotation transformations are given by block-diagonal 
matrices S in the chiral representation of gammas 

0
,

0
L

R

s
S

s
 

=  
 

                        (21) 

which means that shifting from one inertial frame to another does not mix the 
left-handed electron states with right-handed antineutrino ones 

0
.

0
LL

R R

s ese e
s s

ψ
ν ν ν
′      ′ = = =      ′      

               (22) 

This property is critical to avoid non-sensible results in the proposed frame-
work. 

New representation: A word of caution should be shared. We have defined 
here the new representation ψ  which corresponds to the left-handed EW 
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iso-doublet L. A problem might arise if one tries to apply the conventional oper-
ators, let us pick the charge conjugation operator C for example, which is typi-
cally defined in the Dirac representation, to our construct ψ  which is defined 
in the different representation. Since any specific expression of C is representa-
tion-dependent, such a definition must be used in a representation it is defined 
for. It should not be a problem, if one consistently uses the representation- 
dependent operators in their corresponding representations, since physical re-
sults must be representation-independent. Effectively, we have exploited the 
freedom in choosing a representation that is more convenient for the given task. 

The standard definition C can still be applied to the chiral projections LPψ  
where ψ  is defined in the new representation. The projection LPψ  is the 
left-handed electron, which turns into the state with opposite charge upon ap-
plying the conventionally defined C. Since our representation is one-to-one with 
two Weyl spinors, nothing is lost by combining two spinors into one ψ . The 
electron and neutrino Weyl spinors can always be extracted from our ψ  at any 
stage of calculations, and the standard charge conjugation operator can be ap-
plied to them individually. The price to pay for using our representation is that 
definitions for some operators now might look more cumbersome and include 
chiral projectors. However, there is always an identical mapping to the standard 
representation. It includes two Weyl spinors from our ψ  (left handed-electron 
and neutrino for SU2 iso-doublet), and one right-handed electron (SU2 iso- 
singlet) per one lepton family. We did not consider the latter ones in our ap-
proach which however does not conflict with right-handed electrons if terms 
with them are added to the Lagrangian. 

Both our and Dirac representations are reducible, since they include two Weyl 
spinors each. Out of three Weyl spinors per lepton family, the Dirac one com-
bines both electron spinors into one quantity, while we combine two SU2 spi-
nors into one quantity, exactly as the iso-doublet ( ), LL νψ ψ=  does. The only 
difference is we removed the trivial zeros from L; hence this construct ψ  is as 
artificial as the iso-doublet L itself. In any way, these alternative combinations 
are equivalent to one another if proper mapping and corresponding representa-
tion-dependent operators are used. 

We have been inspired to come up with this new representation by the two 
sources ([22], p. 704) and [10], as it is discussed in the introduction in detail. It 
motivated us to combine both left-handed electron and its neutrino into our ψ , 
since they live in the same iso-SU2 gauge representation. The benefit is that this 
new representation helped us to yield results easier. 

Summarizing, the iso-doublet ( ), LL νψ ψ=  is replaced with the fully 
equivalent bispinor ( )*

2,L Lu i vψ σ=  which is the direct sum of left-handed 

Lu  and right-handed *
2 Li vσ  spinors respectively. At this point, no new 

physics has been introduced, even if the association of transformed left- 
handed neutrino with right-handed part of ψ  is suggestive. Simply, we com-
pressed the left-handed iso-doublet L, half of which elements are zeros any-
way, into the bispinor ψ  which does not have trivial entries. In doing so, 
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nothing major has been lost or gained yet. Though, we might have gained in 
efficiency of describing the EW left-handed states by eliminating the redun-
dant entries in iso-doublet L. 

2.3. Equation of Motion and Current Conservation 

Can two conventional equations of motion (11) be written as an evolution equa-
tion for the single bispinor ψ ? Remember that in both Equation (11), only the 
left-handed parts νψ  and Lψ  participate. 

Substituting the definition (18) into the first equation in (11), we obtain 

( )2 * 0.
2cos 2L L

g gi Z P i W Pγ ψ ψ
θ

+ ∂/ + / + =/ 
 

             (23) 

Next, we complex conjugate it and multiply with 2iγ  

( ) ( ) ( ) ( ) ( )

( )

* * * * *2 2 * 2 *

2 2 2 *

2 *

2cos 2

2cos 2

.
2cos 2

L L

L L

R R

g gi i Z P i i W P

g gi Z i P i W i P

g gi Z P W P i

µ µ µ
µ µ µ

µ µ µ
µ µ µ

µ µ µ
µ µ µ

γ γ γ γ ψ γ γ ψ
θ

γ γ γ γ ψ γ γ ψ
θ

γ γ ψ γ γ ψ
θ

−

−

−

 − ∂ + +  
 = ∂ − −  
 = ∂ − −  

 (24) 

Two motion equations are then given as 

( ) ( )

( ) ( ) ( )

0,
2cos 2

cos 2 0.
2cos 2

C
R R R

C
L L L L

g gi P Z P W P

g gi P eA P Z P W P

ψ ψ ψ
θ

θψ ψ ψ ψ
θ

−

−

∂/ − / − =/

/∂/ − − / + =/
       (25) 

Now, two motion equations are re-written for the left- and right-handed parts 
of single bispinor ψ . We see that these two parts evolve differently under the 
EW forces, as expected. Let us next try to get rid of chiral projections of deriva-
tives to obtain a single motion equation for ψ . 

For this purpose, we add the above equations together to obtain 

( ) 5

2
5

cos 2
2cos 2

sin 0.
2cos cos 2

C
L R L

C
L

g gi eAP Z P P W

g g gi Z eA Z P W

ψ ψ θ ψ γ ψ
θ

θψ ψ ψ γ ψ
θ θ

−

−

/∂/ − − / + − /

 
/= ∂/ − / − − / − =/ 

 

     (26) 

The last term makes this equation fundamentally different from the Dirac one. 
The neutral boson fields Aµ  and Zµ  can be seen as influencing the particle 
momentum and spin which is similar to the regular Dirac equation, since they 
do not mix the upper and lower spinors. The last term which includes Cψ  and 
charged EW bosons couples the left- and right-handed spinors. It is quite similar 
to the conventional mass term in this regard. Its role will be discussed in more 
detail in the next section. 

What happens if we subtract one equation from another instead of adding 
them together? We obtain then from (25) 
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( )

( )

( )

5

5 5 5 5

5 5

2
5 5

cos 2
2cos 2

cos 2
2cos 2

cos 2
2cos 2

sin
2cos cos 2

C
L R L

C
L R L

C
L R L

C
L

g gi eAP Z P P W

g gi eAP Z P P W

g gi eAP Z P P W

g g gi Z eA Z P W

γ ψ ψ θ ψ ψ
θ

γ ψ γ ψ γ θ ψ γ ψ
θ

γ ψ ψ θ ψ γ ψ
θ

θγ ψ ψ ψ γ ψ
θ θ

−

−

−

−

/∂/ + − / − − /

 /= − ∂/ + − / − − /  
 = − ∂/ + + / + + /  

 
/= − ∂/ + / + − / + / 

 
0,

 
= 

  

  (27) 

which is identical to (26) since 5γ  is non-singular. 
The equation (26) for ψ  can be obtained from (25) in yet another way. 

Moving the chiral projectors in all terms to the left, we obtain 

0,
2cos 2

cos 2 0.
2cos 2

C
L

C
R

g gP i Z W

g gP i eA Z W

ψ ψ ψ
θ

θψ ψ ψ ψ
θ

−

−

 ∂/ − / − =/ 
 
 /∂/ − − / + =/ 
 

           (28) 

Now taking into account the orthogonality of chiral projectors, we can make 
the round brackets identical 

[ ] [ ]

[ ] [ ]

cos 2 0,
2cos 2

cos 2 0.
2cos 2

C
L R L R L R

C
R R L R L R

gZ gP i eP A P P P P W

gZ gP i eP A P P P P W

ψψ ψ θ ψ
θ
ψψ ψ θ ψ
θ

−

−

/ /∂/ − − + − − =/ 
 

/ /∂/ − − + − − =/ 
 

   (29) 

Hence, the neutrino equation is obtained by the left projection of common 
equation while the electron one is obtained with the right projection. It does not 
contradict with the previous statement that the electrons and neutrinos are the 
left- and right-handed projections of ψ  respectively. In all terms of both mo-
tion Equation (29), the wave function is protected with µγ  from the left side; 
the projectors are flipped if moved across µγ . This consideration is helpful to 
avoid a possible confusion. 

Current conservation: Remarkably, the Equation (26) satisfies the current 
conservation in exactly the same way as the regular Dirac equation does. Taking 
(26) and its conjugate version followed by multiplication with ψ  and ψ  re-
spectively 

( )

( )

2
5

2
5

sin 0,
2cos cos 2

sin 0,
2cos cos 2

C
L

C
R

g g gi Z eA Z P W

g g gi Z P eA Z W

µ
µ

µ µ

θψγ ψ ψ ψ ψ ψ ψ γ ψ
θ θ

θψ γ ψ ψ ψ ψ ψ ψ γ ψ
θ θ

−

+

 
/∂ − / − − / − =/ 

 
 
/∂ + / + − / + =/ 

 

  (30) 

and then adding them together, we obtain 

( ) ( ) ( )5 5 0.
2

C Cgi W W iµ µ µ µ
µ µ µ µψγ ψ ψγ γ ψ ψγ γ ψ ψγ ψ− +∂ − − = ∂ =     (31) 

The only difference with the Dirac case is that we had to use the following 
identities 
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5 5 0,C C
R LP Pµ µ µ µγ γ ψγ γ ψ ψ γ γ ψ= = =           (32) 

which are universal in the sense that they do not depend on the representation of 
gammas, the EW potentials, and are valid for an arbitrary bispinor ψ . There-
fore, the current conservation strictly follows from the motion Equation (26) 
without any additional constraints or assumptions. 

Summary: We have showed that the left-handed part of EW theory, which is 
defined by using two two-component spinors ~L Lu ψ  and ~Lv νψ , can be 
re-written by using the single four-component bispinor ( ),L Ru uψ = , if we as-
sign *

2L Rv i uσ= . Two conventional equations of motion (11) are then translated 
into the single Equation (26) which is convenient to give in the following form 

5cos 2 0.
2cos 2cos 2

C
R L

g g gi Z eA Z Wθψ ψ ψ γ ψ
θ θ

− /∂/ − / − + / − =/ 
 

      (33) 

It is fully equivalent to the left-handed part of conventional EW formalism for 
leptons. This single equation describes the evolution of both electron and neu-
trino spinors. Its left-handed chiral projection gives the equation of motion for 
transformed neutrino spinor *

2 Li vσ , while the right-handed projection describes 
the evolution of electron spinor Lu . 

3. Generation of Lepton Bare Masses 

Having rewritten the conventional description of left-handed EW part, we are 
ready to consider how a bare lepton mass can be introduced into the formalism 
we develop here. It is important to clarify that at best it could only be viewed as a 
potential extension to the conventional theory. At the same time, it is fully com-
patible with the latter one, since the EW Lagrangian and lepton currents remain 
effectively the same. Hence, the additions to self-energy that are originated by 
radiative corrections can still be considered by standard techniques. 

3.1. Approach 

How can effective masses appear in the equations of motion without violating 
the translation invariance and Lorentz covariance? 

A typical gauge-invariant combination of terms in an equation of motion for 
fermion ψ  is given by 

i e Aµ µ
µ µγ ψ γ ψ∂ − −                      (34) 

where only one gauge potential Aµ  is shown; the dots represent other 
gauge-dependent potentials if they are relevant. Let us assume that the potential 
Aµ  has three parts 

,ext selfA A Aµ µ µ µχ= + ∂ +                     (35) 

where χ  is an arbitrary scalar function (gauge), extAµ  is an external field while 
selfAµ  is the field of free-moving charged particle. In the rest frame, it would be 

given by the Coulomb or Uehling potential ( )rφ  which is the former one 
modified by the vacuum polarization around bare charges. We will consider on-
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ly free-moving charges in this work, for which case extAµ  is zero. Even after the 
renormalization, the part ( )~selfA rµ φ  remains infinite at the location of bare 
charge ( 0r → ) while the contributions of virtual photons into the self-energy 
(which depend on the regularization scale) are captured by the radiative correc-
tions. 

This infinite value of static potential ( )~ 0selfA rµ φ →  at the location of bare 
charge is largely ignored in the conventional field theory, at least in regard to par-
ticle masses. It has always been assumed, classically or quantum-mechanically, that 
some part of electron mass (self-energy) is of electromagnetic nature. The QFT 
directly evaluates higher-loop corrections to the electron self-energy which are 
originated by virtual photons. As it was explained in the introduction, see (4), 
the effective lepton mass can be given as 

,rad fin
l H A Am m m m′ = + + +                    (36) 

here the first term is due to the Higgs mechanism while the second term gives 
the conventional radiative correction into the lepton self-energy. For all practical 
purposes, the second term is too small to explain the empirically observed 
masses at a reasonable regularization energy scale; hence the Higgs mechanism 
is invoked. For the review of unsuccessful attempts to explain masses by purely 
radiative corrections, see [2]. The third term in (36) will be explained shortly. 

The conventional radiative corrections which lead to rad
Am  in (36) are calcu-

lated by using the propagators which are solutions of Maxwell or Klein-Gordon 
equations. However, they also result in infinite values of potentials at charge ori-
gin. Let us now assume that some more fundamental theory of electroweak inte-
ractions, beyond the SM, would lead to finite values of electroweak potentials at 
charge origin. We will then show within our phenomenological approach that it 
will also lead to the additional contributions into the lepton masses which are 
given by the third term fin

Am  in (36). 
In the approximation of free-propagating plane waves that we use here, fi-

nite values of electroweak potentials ( 0A , 0Z , and 0W ) at location of bare 
charge are just a set of numbers, with no space-time dependence. We will not 
speculate here what form a more fundamental theory (with less infinities) 
might have; all we need for our phenomenological approach to proceed is the 
assumption that finite values of four electroweak potentials at bare charge 
origin exist. 

To emphasize again, the third term in (36) gives the additional mass due to 
the finite self-potential selfAµ  which is not describable by the Maxwell physics. 
This is the key detail, since otherwise one would be able to immediately object to 
(36) by pointing that the term rad

Am  already describes the contributions due to 
the electromagnetic field. Therefore, the assumption that the electroweak poten-
tials are finite at charge origin, which differs from the conventional theory, nec-
essarily leads to new contributions into the lepton masses, as we will show be-
low. 

Next, consider a free-motion without external fields which is described as 
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( ) 0,
self

selfself

S

i eA
ψ

ψ ψ/∂ − − =



                   (37) 

here selfAµ  is not yet known self potential, or the potential of free-moving 
charge. The goal is to find whether the inclusion of terms selfS  can be done in a 
consistent way. The key point is the following assumption. We will not assume 
that the self-action field selfAµ  obeys the Maxwell equations which source term 
is proportional to the regular current j eµ µψγ ψ= ; here ψ  is the regular Dirac 
bispinor. These two vector quantities are expected to be closely related to each 
other in any way. However, even if we know the fields of point charges at a dis-
tance with certainty, there is no clear evidence that the self-potential selfAµ  in 
the close vicinity of its source is a solution of Maxwell equation; ditto for other 
EW self-fields. The guiding principle here is the consistency and avoidance of 
conflicts with the well-established formalism. 

It would be impossible to generate masses in a consistent way with having on-
ly one gauge potential Aµ . However, the EW theory with four gauge potentials 
provides a sufficiently advanced framework for obtaining non-trivial results, as 
we will see below. We also do not expect that it would be possible to reduce the 
self-interaction selfS  to some kind of Dirac or Majorana mass terms, since it 
will create well-known challenges. For example, a Dirac mass term requires 
right-handed states that do not interact with the charged EW fields (enabling the 
scalar mass term seems to be their only role in theory), while a Majorana term 
does not conserve either lepton number or charge. Specifically, we will show that 
for free-moving leptons ( ) e ipxxψ ψ −= , the evolution equation reduces to a sys-
tem of algebraic equations for components of ψ  

0 0self selfi S p Sψ ψ ψ ψ∂/ − = → − =/               (38) 

where the operator selfS  is not a scalar one. The mass eigenvalue is then ob-
tained by squaring the momentum vector: 2p p mµ

µ = . The proposed mechan-
ism can be used as a complement to the Higgs one to address the question why 
Higgs coupling constants span such a wide range. 

The outlined task is different from the known approaches, either the Di-
rac-Maxwell system or self-energy evaluations in the QFT. The latter one is the 
standard step which requires multi-loop calculations followed by renormaliza-
tion. It is well known that fermion masses run for this reason; hence different 
values are given at different energy scales. For example, the standard procedure 
takes into account multiple acts of emission and re-absorption of virtual photons 
which however are assumed to propagate as solutions of Maxwell equation. In-
stead, we do not assume that selfAµ  obeys the Maxwell equation; effectively, we 
attempt to evaluate the self-induced mass in the zero order by relaxing require-
ments that are not strictly proven. Then, the mass value can be refined in next 
orders by standard QFT procedures to take into account the residual self-energy 
as the radiation correction. Clearly, it is the hypothesis that must be proven by 
obtaining consistent results. 
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3.2. Lepton States 

Right-handed leptons are required in conventional Lagrangians to introduce 
scalar mass terms (and for anomaly cancellations which also require contribu-
tions from corresponding quarks [30]). It is truly remarkable that right-handed 
states of particles and left-handed ones of antiparticles do not interact with 
charged EW bosons. 

The following questions can be raised. Even if two left-handed leptons from 
the same lepton family are combined into iso-doublets, physically they propa-
gate as separate and distinct particles, per the conventional view. In the compact 
EW formalism, we propose here, the iso-doublets are replaced with single bispi-
nors which left- and right-handed parts are associated with charged leptons and 
corresponding antineutrinos respectively. Could this association reveal more 
physical content than what is required for the mathematical equivalency with the 
conventional theory? 

More specifically, could a real massive lepton be viewed as some superposition 
of its left-(large) and right-(small) handed parts? We have already showed in 
subsection 2.3 that the current which is originated by this combined quantity ψ  
is conserved absolutely, so there should not be any concern related to charge 
conservation. 

It can straightforwardly be shown that a free-moving lepton cannot be simply 
given as a combination of left-handed and right-handed states without addition-
al refinements (to be discussed later). Assume otherwise and consider, for exam-
ple, a free-moving electron as the following combination 

0
,

0em mν

χ
ψ δ

ξ
   

= +   
   

                   (39) 

where em  and mν  are electron and neutrino masses respectively, χ  and ξ  
are two arbitrary spinors, and δ  is some small parameter. The linear composi-
tion (39) is given in the rest frame of both electron and antineutrino. It assumes 
that a hypothetical electron, which is described by (39), is left-handed at rest 
with an infinitesimally small amount of right-handed antineutrino component. 
Saying otherwise, the state (39) is predominantly left-handed and negatively 
charged at rest. Boosting it in the z-direction, we obtain 

2 2

2 2

e e 0
= ,

0 e e 0

ed u

u d

mP P

mP P

η η

η η
ν

χ
ψ

δ ξ

−

−

  +  ′     + 

         (40) 

where ( )/ 31 2u dP σ= ±  are the spin z-projection projectors. Now, with the 

upper spinor in spin-down state 
0
1

χ
 

=  
 

, the upper component remains  

dominant if the rapidity η →∞  independently of the neutrino spin orienta-
tion. However, if both upper and lower components are spin-up, then the 
left-handed charged component will become smaller than the right-handed neu-
tral one at sufficiently high rapidity. Since the spin projection can also be 
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changed by rotations, this behavior of free-moving leptons, if they are given by 
combinations like (40), is not acceptable. Should then free moving leptons be 
always given by Weyl-like bispinors in the proposed framework? In such a re-
stricted case, the compact framework we develop is strictly equivalent to the 
conventional case. 

To answer this question, let us consider a general boost ( )S Λ  in the chiral 
representation of gammas. We do not need to consider rotations, since they do 
not change magnitudes of both (dotted and undotted) spinors. The bispinor ψ  
changes under the boost with rapidity η  in direction m  as 

( )

( )

( )

( )

( )

1 1 3 2 1 2 2

2 2 3 1 1 1 2

1 1 3 2 1 2 2

2 2 3 1 1 1 2

cosh sinh 0
2 2

0 cosh sinh
2 2

cosh sinh
2 2

cosh sinh
2 2

cosh sinh
2 2

cosh sinh
2 2

S

m m i m

m m i m

m m i m

m m i m

η η
χ χ

ψ
ξ η η ξ

η ηχ χ χ χ

η ηχ χ χ χ

η ηξ ξ ξ ξ

η ηξ ξ ξ ξ

 − ⋅    ′ = Λ =     
    + ⋅ 
 

 − + −

 + − −

= 
 + + −


− + +






m

m

σ

σ

.










 
 



   (41) 

This representation is given in the frame where the bispinor components are 
given by iχ  and iξ  respectively. We must find certain spinor polarizations 
that do not change the chirality of ψ  under boosts. Let us assume that in the 
given frame both 2 1 0χ ξ= =  which turns (41) into 

1 3

2 3

cosh sinh
2 2

0
,

0

cosh sinh
2 2

m

m

η ηχ

ψ

η ηξ

  −  
  

 
′ =  

 
   −     

                 (42) 

where we also set 1 2 0m m= = . It is then immediately clear that such a bispinor 
will not change its degree of chirality (the ratio of magnitudes of the upper spi-
nor to the bottom one) independently of either rapidity or boost direction. 
While the expression (42) is given for the boost in z-direction, the fact that mag-
nitudes of boosted upper and bottom spinors will not change relative to one 
another under a general boost can be easily from (41). Saying otherwise, if a bis-
pinor is given by such a form in one frame and it is pre-dominantly left- or 
right-handed ( 1 2χ ξ  or 1 2χ ξ ), it will not change its chirality polari-
zation under boosts or rotations. Ditto for the case 1 2 0χ ξ= = . 

The split of any bispinor (it is equivalent to the iso-doublet EW in our repre-
sentation) into these two configurations of spinor components is given by the 
rank-two projectors ( )0 31 2S γ γ± = ±  which filter spinor states in the chiral 
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representation as 

1

1

2

1
2

2

2 1

0
0

,
0

0

z zs sS S

χ
χ

ψ ψ ψ ψ
ξ

ξ

=− − =+ +

  
  
  = = = =
  
  

   

           (43) 

Therefore, the pure lepton states lψ  are obtained by applying the spin pro-
jector to the iso-doublet ψ  

.l Sψ ψ±=                          (44) 

Depending on which spinor component is dominant, it could be associated 
with a charged lepton or its corresponding antineutrino. 

Summarizing, a free-propagating lepton in the proposed framework could be 
given as the fully spin- and predominantly chirality-polarized state of the EW 
iso-doublet in some chosen frame; it is convenient to choose the rest frame for 
such a purpose to stay consistent with the conventional way of particle classifica-
tion. 

Currents at rest: If a bispinor ψ  is given by the forms (43) at rest, the four 
EW currents (20) that can be obtained from single ψ  are evaluated as 

( )

( ) ( )

( )
( )

2

* *
2

2 2

2 2

2 2 ,

2 2 ,

,

,

C
L

C
L

e L L L

R

J i V

J i V

J P V

J P V

µ µ
ν

µ µ
ν

µ µ

µ µ
ν ν ν

ψ γ ψ ψ γ ψ χσ ξ

ψ γ ψ ψ γ ψ χσ ξ

ψ γ ψ ψγ ψ ξ χ

ψ γ ψ ψγ ψ ξ χ

+

−

= = =

= = =

= = = +

= = = −

            (45) 

where ( )1,0,0, 1V µ = −  is the light-like vector. Hence, all four EW currents that 
are generated by a single free lepton ψ  are parallel and light-like. This consid-
eration is important for two reasons at least. 

First, the four-momentum of massive lepton at rest is given as  
( )0 ,0,0,0p pµ = . Therefore, a free lepton in our framework at rest ends up with 

only two independent four-vectors: the energy momentum pµ  and the spin 
vector ( )30,0,0,s sµ =  which can be obtained as a linear combination of pµ  
with any current from (45). Keep in mind however that by choosing forms (43) 
we chose the rest frame with spin directed along z-axis. No any other indepen-
dent and non-null vectors can be obtained in this case. It is in the full agreement 
with observations that massive fermions at rest possess only energy-momentum 
and spin. If the EW currents in (45) would be pointing in different directions, more 
independent and non-null vectors can be obtained for a free lepton which would 
lead to the clear contradiction with the conventional theory and experiment. 

Second, it places certain restrictions on possible forms of self-induced poten-
tials selfA , selfZ , or selfW± . As we have mentioned already, see the introduction 
and subsection 3.1, we do not assume that the EW potentials of free-moving 
leptons at charge origins are describable by the Maxwell or Klein-Gordon equa-
tions. Instead, we assume that in the framework of free-propagating plane waves, 
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these self-potentials are either proportional to particle momentum pµ  or par-
ticle spin sµ , or some combination of these two vectors. Therefore, self-induced 
potentials, let us pick selfZµ , could be given as 

( )0 3,0,0, ,selfZ Z Zµ =                      (46) 

under the requirement that 0 3Z Z≠ . Keep in mind again that by choosing 
forms (43) we chose the rest frame with spin directed along z-axis.3 For example, 
the electromagnetic potential Aµ  of electron at rest is traditionally given as 
( )0 ,0,0,0A  where 0A  is the electric potential; it might still have a small 3A  
component which is related to electron spin or induced magnetic field. The sim-
ilar consideration applies to both selfZ  and selfW± . 

3.3. EW Plane Waves 

Assuming that self-action fields selfA , selfZ , and selfW±  are originated and car-
ried by a free-moving lepton, the corresponding motion Equation (33) can be 
given as 

( )2 5cos 2 0,
2cos 2cos 2

self self self ipx self C
R L

g g gp Z eA Z e W xθψ ψ ψ γ ψ
θ θ −

 − / − + / − =//  
 

(47) 

where the plane wave ansatz ( ) e ipxxψ ψ −=  was used; here pµ  is the phase 
momentum to be found. The last term is explicitly phase-dependent while all 
other terms are phase-independent. 

For consistency, we must request that the phase factor is canceled out in the 
combination ( )2e ipx selfW x− . We cannot eliminate it by gauge-transforming three 
other gauge potentials, since then an extra term will be generated by the deriva-
tive. It is the clear indication that the phases of charged self-fields ( )selfW x±  
must be correlated with the phases of corresponding charged currents (45) 
which are also phase-dependent. It must be ( )J x+  in the case of ( )selfW x− , 
since then its phase dependence offsets the phase factor in (47) 

( ) ( ) ( ) 2e .C ipx C

J

J x x xµ µψ γ ψ ψ γ ψ
+

−
+ = =



              (48) 

For the purposes of this study, we do not need to specify a functional depen-
dence between the self-potentials ( )selfW x±  and corresponding charged cur-
rents ( )J x



. All is needed are the phase correlation between the charged po-
tentials and charged currents, and the form (46) that defines the self-potentials 
in the chosen rest frame. A quick comment: after canceling the phase depen-
dence (x-dependence in this case), the potential W−  is assumed to be space-
time-independent in the manipulations below. 

Expectations: As we discussed at the end of section 2.3, the Equations (26) or 
(47) is defined for the quantity ( )*

2,L Lu i vψ σ= . Remember that its two chiral 
projections ( ),0L LP uψ =  and ( )*

20,R LP i vψ σ=  correspond to conventional 
left-handed charged lepton and its antineutrino respectively. If we accept that 

 

 

3Having filtered spin states as in (43) once, we can move into any other inertial frame by boosts and 
rotations. 
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these chiral projections can propagate independently of each other, we end up 
with exactly the conventional case, with no new physics. It is straightforward to 
demonstrate that (26) or (47) describes the motion of two parts of EW iso- 
doublet in the exact correspondence with the conventional case. 

Instead, we can accept the view that two parts of EW iso-doublet might not be 
always separable in which case the iso-doublet (which is represented by ψ  in 
our framework) propagates as a whole entity, with both nonzero upper and low-
er spinors. However, to match the reality, it must then have two modes: neutri-
no-like and charged lepton-like. In solving the plane wave Equation (47), two 
types of solutions are distinguished by having either 2 0p =  or 2 2p m=  re-
spectively for the first and second modes. 

For the second (massive) mode, both upper and lower spinors in ( ),ψ χ ξ=  
must be nonzero and have the form (43) at rest. The mass or inertia is generated 
by the lepton-boson interaction terms that are included into (47). The key ex-
pectation is that the magnitude of upper spinor is much larger than the magni-
tude of lower one ( χ ξ ). For the neutrino-like mode, with zero or near zero 
masses, we expect that χ ξ . The corresponding eigenvalue for 2p  must 
either be zero or be near zero. Our framework can easily accommodate nonzero 
neutrino masses, as it will be shown below. 

3.4. Solutions 

The Equation (47) is the system of algebraic linear equations for components of 
ψ . Finding a general solution is quite a daunting task, since it depends on four 
real four-vector coefficients. Compare it with the conventional Dirac case of 
plane waves for which the general form depends only on pµ  and a unit spinor. 
We will start with finding solutions in the rest frame first. 

Having eliminated the phase factor from (47) for the plane wave motion, it is 
convenient to introduce the following notations 

5 0,C
R LM p c b dψ ψ ψ ψ γ ψ/ /= − − − =//                (49) 

where the vector coefficients are defined as 

,
2cos

cos 2 ,
2cos

,
2

self

self self

self

gc Z

gb eA Z

gd W

µ µ

µ µ µ

µ

θ
θ
θ

−

=

= +

=

                   (50) 

here both cµ  and bµ  are real while dµ  is complex-valued. Since the self-induced 
potentials are viewed as unknown, the four-vectors cµ , bµ , and dµ  are un-
known as well. Our goal is to check how they must be restricted to obtain lepton 
masses and physically acceptable solutions. 

If the charged boson field 0W− = , then the Equation (49) splits into two 
Weyl-like equations which are similar to the conventional ones (except that pµ  
is replaced by p bµ µ−  and p cµ µ−  for left- and right-handed parts of ψ  
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respectively). It is the last term in (49) that makes the problem nontrivial. To see 
the connection between two parts of ( ),ψ χ ξ= , let us re-write the main equa-
tion in the spinor representation 

( )
( )

0,

0,

C

C

p c d

p b d

σξ σ χ

σ χ σξ

 − + =


− + =
                   (51) 

where d d µ µσ σ= , d d µ
µσ σ= , µσ  are four Pauli matrices, and the conju-

gate spinors are defined as 
* *

2 2, .C Ci iχ σ χ ξ σ ξ= =                    (52) 

In the regular Dirac equation, it is the mass term that couples two spinors. In 
the extended Equation (49), it is the term with charged boson field W− . 

Rest frame: The rest frame is defined by setting 0=
p  and choosing one of 

two spin-polarized forms (43) for ψ . By selecting 1 2zs = +  for now, we set 

2 1 0χ ξ= = . The system of linear equations for two remaining components 1χ  
and 2ξ  splits into two subsystems. The first one depends only on components 

1 2c , 1 2b , and 1 2d  of vector coefficients; it does not include 0p  at all. In the 
rest frame with the spin projection aligned along the z-axis, the self-induced po-
tentials (thus the coefficients cµ , bµ , and dµ ) are expected to have the very 
specific form (46). Therefore, the first subsystem turns zero in such a rest frame. 
Instead, the second subsystem is nontrivial and has the following determinant 

( )( ) 2
0 0 3 0 0 3 0 0 3det ,M b b p c c p d d= + − + − + +          (53) 

where 0M  is the matrix M evaluated in the rest frame. This expression is valid 
for both spin projections or both spinor forms (43). The eigenvalues depend on-
ly on the time- and z-components of self-induced potentials, see the discussion 
in subsection 3.2. Two values of 0p  are given as 

( )2 2
0 0 3 0 3 0 3 0 3 0 32 4 .p b b c c b b c c d d= + + + ± + − − − +        (54) 

One eigenvalue turns zero ( 1 0m = ) if 

( )( ) 2
0 3 0 3 0 3 ,b b c c d d+ + = − +                  (55) 

in which case the second eigenvalue becomes 

2 0 3 0 3.m b b c c= + + +                      (56) 

We will deal with small neutrino masses shortly; the constraint (55) is satisfied 
only approximately in such a case. 

One can immediately see the seesaw-like relation in (55) which makes one ei-
genvalue large if we force the second one to be small. First however, we have to 
show how these eigenvalues can be associated with effective masses of freely- 
propagating leptons. In any way, the relation (55) naturally appears within the 
proposed formalism. One should not be overly concerned with the explicitly 
non-covariant form of expressions (53)-(56). They are derived from the equation 
det 0M =  which is Lorentz-invariant; ditto for its roots. Having evaluated them 
in one inertial frame (the rest one, for example), the invariant eigenvalues are 
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the same for all other inertial frames. 
The solutions for both eigenvalues are given as 

1 1

1 1 2 2

* *0 3 0 3
1 1

0 3 0 3

0 0
, ,0 0N N

d d d d
c c b b

χ χ

ψ ψ

χ χ

   
   
   
   = =
   

+ +   −   + +   

          (57) 

where the normalization constants 1 2N  are not specified yet. Following our 
previous discussion, we expect that the magnitude of upper spinor must be 
much smaller (larger) than the magnitude of lower spinor for the neutrino-like 
(charged lepton-like) mode. If we request that 

0 3 0 3 0 3 ,c c d d b b+ + +                   (58) 

then the first and second solutions can be associated with the neutrino-like and 
charged lepton-like states respectively. Since the second eigenvalue which is as-
sociated with electron mass is positive, it immediately follows that 

0 3 0 30, 0.b b c c+ > + <                     (59) 

Remembering the definitions (50) and speaking in relative terms, one can say 
the following about the self-potentials selfA  and selfZ . The combination of 
components ( 0 3A A+ ) is large positive, while ( 0 3Z Z+ ) is small negative. 

To introduce a nonzero neutrino mass, we have to expand the square root in 
(54) over two small parameters ( ) ( )0 3 0 3c c b b+ +  and ( )0 3 0 3d d b b+ +  
which leads to 

( )

( )

2
0 3

1 0 3
0 3

2
0 3

2 0 3
0 3

,

.

d d
m c c

b b

d d
m b b

b b

+
= + + +

+

+
= + − +

+









                 (60) 

Therefore, the neutrino mass ( 1m ) is determined by the self-induced poten-
tials selfZ  and selfW− , as expected. The electromagnetic self-potential selfA  is 
the largest one among all four EW fields. Using the definitions (50) and assum-
ing that the time components are much larger than the z-ones in the rest frame 
under consideration, the above expressions are rewritten as 

2
0

0
0

2
0

0 0
0

,
2cos 4sin

cos 2 ,
2cos 4sine

Wg gm Z
A

Wg gm eA Z
A

ν θ θ

θ
θ θ

= +

= + −

              (61) 

where we also dropped the superscript from potentials to reduce clutter. The 
above expressions give the masses for single lepton family by means of the EW 
self-potentials. Two terms in the expressions for mν  are probably close in mag-
nitude, though the second term must be larger than the first one, since 
( )0 3 0c c+ < . The relative smallness of neutrino masses might also come from 
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the fact that two terms in the expression for mν  have signs opposite to each 
other. Instead, the first term in the expression for em  is much larger than the 
last two ones. Even if both neutral Z and charged W self-interactions contribute, 
the electromagnetic self-interaction is still the dominant contribution into em . 

4. Summary 

The Equation (49) does not have a mass term in the conventional sense, however 
the scale of phase momentum (energy-momentum vector pµ ) is clearly set by 
the other vector coefficients 

~ ~ ~ ,self self selfp A Z Wµ µ µ µ                             (62) 

which are present in the main equation. Physically, it means that the mass value 
(its bare value) is determined by the interaction of free-moving lepton with its 
EW self-potentials. The structure of self-interaction terms is given by the regular 
EW terms, however the magnitudes of these self-potentials are free parameters. 

The model we developed here is phenomenological, since it does not predict 
the values of these self-potentials, or why there are three lepton generations for 
which extensions of relevant gauge groups might be required [30]. However, the 
model does show how to define neutrino masses alternatively to the Dirac and 
Majorana models. If one insists on a scalar mass term, then the theory has to 
deal with either the inert right-handed sector or the nonconservation of lepton 
numbers [10] [12]. Instead, the mass in our model is generated by well-known 
lepton-boson interaction terms which however are not scalar. 

The proposed framework can be straightforwardly meshed with Higgs me-
chanisms by simply adding the right-handed Lagrangian part, since the left- 
handed Lagrangian has not been changed. Both mechanisms are truly comple-
mentary to each other. For example, the proposed mechanism can explain the 
bare masses in the lowest part of mass spectrum, while heavier fermion masses 
(which are closer to the Higgs mass) can be determined by the coupling to 
Higgs. It suggests a possible solution of why the coupling to scalar Higgs field 
does not lead to unrealistically high energy densities (which happens if every-
thing couples to Higgs). 

It is also possible to extend the proposed model to higher order SMEFT terms 
by adding new interaction terms to the motion Equation (11). Similarly, the 
model is straightforwardly extendable to the quark sector which will be tackled 
in future work. 

Remarkably, we also managed to derive the analog of the seesaw relation, see 
the expression (55). Since the combination 0 3 ~ eb b m+  and 0 3 ~c c mν+ −  are 
shown to be measures of the electron and neutrino masses respectively, expres-
sion (55) can be re-written as 

2

0~ ,self
em m Wν                        (63) 

where again the z-component of self-induced field W−  is neglected. Therefore, 
the scale of product em mν  is the magnitude of self-induced charged field 
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squared. 
We have not been able to come up with predictions for masses of either 

charged leptons or neutrinos. This situation is very similar to the Higgs mechan-
ism where all couplings are tuned to match experimental data. In our case, if 
certain values of self-induced potentials are postulated for each lepton family, 
the mass values will follow. However, the expressions which are obtained in this 
work give the additional clue regarding what is required to make such a predic-
tion, in principle. Since we managed to derive the seesaw-like relation (63), true 
predictions can be made provided some additional experimental information 
becomes available. For example, let us assume that we would know with certain-
ty that the self-potential 0

selfW  is the same for all lepton families (if the lepton 
universality is applicable here). Then the relation (63) allows obtaining masses of 
all neutrinos (charged leptons) from corresponding masses of charged leptons 
(neutrinos). The inverted order of neutrino masses [31] would also follow as this 
model prediction under the above assumptions. Otherwise, the normal order of 
neutrino masses would follow from (63) if the magnitude of self-induced field 

0
selfW  increases for heavier lepton generations. Any additional information of 

such kind will enable meaningful predictions within the proposed model. 
We managed to derive the seesaw-like relation between the lepton masses and 

self-potentials in the rest frame. However, no values (bare values) of lepton 
masses were possible to find without some additional input. Obtaining the 
second relation, which connects the strength of these potentials with fermion 
field amplitudes will allow finding the lepton masses in the proposed framework. 
Following footsteps of the conventional theory, other next tasks would be to ap-
ply the framework to quarks and bosons. At this point, we do not see any fun-
damental obstacles to extending the proposed model. However, any of these ex-
tensions is a big task in itself that clearly takes us outside the boundaries of this 
manuscript. 
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