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Abstract 

In order to increase robustness of the AERS (Aero-engine Rotor System) and to solve the problem of lacking 
fault samples in fault diagnosis and the difficulty in identifying early weak fault, we proposed a new method 
that it not only can identify the early fault of AERS but also it can do self-recovery monitoring of fault. Our 
method is based on the analysis of the early fault features on AERS, and it combined the SVM (Support 
Vector Machine) with the stochastic resonance theory and the wavelet packet decomposition and fault 
self-recovery. First, we zoom the early fault feature signals by using the stochastic resonance theory. Second, 
we extract the feature vectors of early fault using the multi-resolution analysis of the wavelet packet. Third, 
we input the feature vectors to a fault classifier, which can be used to identify the early fault of AERS and 
carry out self-recovery monitoring of fault. In this paper, features of early fault on AERS, the zoom of early 
fault characteristics, the extraction method of early fault characteristics, the construction of multi-fault clas-
sifier and way of fault self-recovery monitoring are studied. Results show that our method can effectively 
identify the early fault of AERS, especially for identifying of fault with small samples, and it can carry on 
self-recovery monitoring of fault. 

Keywords: AERS, Early Fault, Support Vector Machine, Classification Identification of Fault, Self-Recovery 
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1. Introduction 
 
With the development of the modern aviation industry, 
the safety of aircraft and reliability are more and more 
attracted. The engine is heart of aircraft and AERS is 
central part of engine. If AERS has fault in flight, the 
aircraft would be severely threatened in safety. Because 
the structure of AERS is complex, load is bigger and the 
change of operation conditions is frequency, it will be 
the more difficult in the fault identification. Especially in 
the early failures occurred, if we can catch timely the fault 
information, and can effectively identify it and carry on 
self-recovery monitoring of fault, it will have important 
significance to eradicate or eliminate the potential fault 
caused of an accident. Fault identification on AERS is 
widely studied and many results are obtained [1−3]. At 
present now, effective identification of early fault has 
more difficulty. In particular, obtaining of the early fault 
information is more difficulty, and effectiveness of fault 

identification is not satisfactory. Because operation of 
AERS is in strong noise density, the early fault informa-
tion is very weak and signals are easily flooded in noises, 
satisfactory results are very difficult by general methods. 
Our method can not only fast identify the early fault of 
the AERS but also carry on self-recovery monitory of 
fault. 
 
2. Features of Early Fault on AERS 
 
In the flight, the wear, deformation, corrosion and frac-
ture of structure components and effects of work stress, 
external environment and human factors will lead to 
faults of AERS. The early fault of AERS often shows a 
form in micro-cracks, micro-creeping, micro-corrosion 
and micro-wear. These faults, with the exception of little 
sudden faults, the majority have a development process 
from nothing to fault, minor to general, evolution to fast. 
In this process, the structure of system, properties and 
internal energy will change. We can monitor the early 
faults through catching these fault information in time, 
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and it can be identified and be self-recovery. These early 
faults of AERS have the following features: 

1) Fault signal is very weak. When fault is at early 
stage or just sprouted, the changes of the fault signal is 
very weak in amplitude, phase and time-frequency char-
acteristics, and the little fault characterization is often 
difficult to detect. 

2) Fault signal will be drowned by noise signal. Dur-
ing the flight, the noise signal is usually among the fault 
signal. When the fault signal is very weak and the noise 
signal is very strong, the early fault signal will be 
drowned by noise signal. In order to detect the early fault, 
we must reduce noise or extracted early fault information 
from the noise signal. 

3) Fault signal is often a transient one. The damage 
structure components of aircraft is generated by impact 
loading, and this fault is manifested by transient signal, 
such as expansion of early cracks, is a process from 
gradual to mutation. 

4) Fault occurred in the area of stress concentration. 
When area of stress concentration is acted by strong re-
gional load, the fault of structural part is easy occurrence 
in the creeping. For the ferromagnetic metal part, the 
magnetic memory method can be used for the early fault 
detection and localization [4]. 

5) Fault has volatile. That means sometimes we can 
not find the fault trace in fault condition. But with the 
change of action or time, the system can recover auto-
matically. Volatile fault can be shown by eventuality 
fault, transient fault and interruption fault. 
 
3. Extraction of Early Fault Characreristic 
 
Because the vibration of engine is larger in operation, 
fault characteristics of the AERS will be submerged in 
the strong background noise in the early. In order to ex-
tract characteristics of early fault from being submerged 
signals by noise, we use the stochastic resonance theory 
to zoom characteristic signals of early fault [5]. 

In the failure, the energy of AERS will change in all 
frequency bands and different faults have different ef-
fects to the signal energy in each frequency band. So, we 
can use wavelet packet to decompose the output signal in 
stochastic resonance and select signal energy in the char-
acteristics frequency band as a feature vector. 

If the data length of original signal  is , the 

data length of discrete signals  is reduced to 

 by decomposition of wavelet packet and its en-
ergy can be expressed as: 
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The energy within the each frequency band can be cal-

culated by Equation (1) and the feature vector can be 
constructed by the energy. 
 
4. Classification Identification of Fault 
 
The SVM can do the classification very well in the few 
numbers of fault samples and it can solve the identifica-
tion problems on nonlinear and high-dimensional pattern. 

The fault identification of the AERS belongs to prob-
lem of multi-classification and it needs to construct multi- 
fault classifier. In this paper, we adopt improved classi-
fication algorithm of the “one-to-many”. 

To the classification of K type, way of “one-to-many” 
is need to construct K two classifiers. In this way con-
structing every two classifiers, all n training samples of 
K type should be operated. In the testing and classifica-
tion, the scale of classifiers is larger and speed is slower.  

An improved the “one-to-many” classification algo-
rithm is to construct two classifiers of K, and the training 

sample of m type in the K classifiers is  and other 

types marking is . Established output function 

in M classifiers can be expressed as: 
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The algorithm overcomes defects that “one-on-one” 
approach needs to establish many number classifiers and  
it can control the training samples number in traditional 
“one-to-many”. Its operate speed is fast and effect of fault 
classification is well. 
 
5. Self-Recovery Monitoring of Fault 
 
Fault monitor process of AERS is shown in Figure 1. 

Fault self-recovery database consist of many intelligent 
models. It can carry on self-recovery monitoring based 
on different fault sources and fault characteristics.  

Self-recovery monitoring of fault can be realized by 
smart structure [6], affixing magnetic field [7], regener-
ating materials [8], etc.  

When AERS has fault, the system can not work nor-
mally. Self-recovery model based on the fault compensa-
tion can restore original function of system by means of 
the fault self-recovery compensator. If system equations 
under normal condition are 

)()()( tButAxtx           (3) 

)()( tCxty                        (4) 

Compensator equations are 
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Figure 1. Fault self-recovery monitor process of AERS. 

 
When the sensor module detects the fault information, 

the signals will transmit to self-recovery module and act 
to the controller. Fault of AERS will be restored by smart 
structure. It is based on different fault sources and fault 
feature, and the fault self-recovery tactics is adopted. 

)()()( tEytDztz               (5) 

)()()( tHytFztu               (6) 

The system loop equations depicted in (3) and (4) are 

)()()()( tBFztxBHCAtx          (7) 
6. Experimental Results and Its Analysis 

)()()( tDztECxtz               (8) 

In order to verify the usefulness of the method, we choose 
the four conditions of the AERS. They are normal condi-
tion, early rotor misalignment, early rotor unbalance and 
early rotor crack. These signals are preprocessed and the 
fault features are extracted. Fault is identified by the 
multi-fault classifiers and fault is monitored by self-re-
covery module.  

When fault of component or sub-system occurred dur- 
ing the flight, the loop feedback equations are 

)()()()( tzFBtxCHBAtx ffff         (9) 

)()()( tzDtxCEtz f              (10) 

To make the performance of fault system as close as 
possible to the performance of the original system, we can 
design the appropriate self-recovery compensator  ,D  

HFE ,,  
to achieve the fault self-recovery compensation. 

During flight, when the aircraft cockpit, wings and other 
important components have severe vibration or chatter, 
distributed piezoelectric driver compensator can weaken 
or offset the impact of vibration by vibration control and 
active vibration absorber. 

In the experiment, according to the character of AERS, 
we collected 10 group data by the acceleration sensor. They 
respectively correspond to the over four conditions in the 
1800 rpm. The sampling frequency is 256 Hz and the rota-
tion frequency is 30 Hz. The characteristic frequency of 
fault and its concomitant frequency are shown in Table 1. 

Figure 3 shows the output waveform of the stochastic 
resonance system and its spectrum. The frequency com-
ponent in 30 Hz is obvious in Figure 2. Because the fun-
damental frequency is 30 Hz, the rotor misalignment 
fault is often accompanied by 1x  (30 Hz), 2 x (60 
Hz) and 3x  (90 Hz). 

Self-recovery monitoring based on intelligent structure 
is shown in Figure 2. 
 

 

Controller Self-recovery AERS

Self-recovery model 

Detect module 

 

Table 1. 2x (60Hz) crossed concomitant frequency and 

unbalance. 

Type Misalignment Unbalance Crack 

Characteristic 
frequency 

1x (30Hz), 
2 x (60Hz)

1x (30Hz) 2x (60Hz) 

Concomitant 
frequency 

3 x (90Hz)   4x (120Hz)

Figure 2. Self-recovery monitoring based on smart structure. 
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Figure 3. The output waveform of stochastic resonance sys- 
tem and its spectrum. 

 

 

Figure 4. Energy distribution of rotor misalignment. 

 
Table 2. Test results of stochastic resonance system. 

Fault type 
Misjudgment 

samples 
Diagnosis 
samples 

Diagnosis rate 

Misalignment 1 40 97.5 % 

Unbalance 0 40 100 % 

Crack 2 40 95 % 

 
The energy feature extraction is done by the wavelet 

packet analysis. It is based on the signal waveform of 
stochastic resonance system. Seven-layer wavelet packet 
is resolved in the db3 wavelet and we obtained 64 fre-
quency bands. In order to reduce the amount of computa-
tion, we divide the frequency bands as 6 segments: 0 ~ 
0.4X, 0.4 ~ 0.8X, 0.8 ~ 1.2 X, 1.8 ~ 2.2X, 2.8 ~ 3.2X and 
greater than 3.6X. Thus 64 frequency bands will be 
composed of the 6 groups: 1 ~ 4 bands, 5 ~ 8 bands, 9 ~ 
11 bands, 12 ~ 15 bands, 16 ~ 30 bands and 55 ~ 64 
bands. Energy value of each group is added together and 
they are processed on the normalization. The energy dis-
tribution of rotor misalignment fault will be acquired. It 
is shown in Figure 4. 

 
(a) Waveform before monitoring 

 
(b) Waveform after monitoring 

Figure 5. Frequency domain waveform of rotor misalign-
ment. 

 
Repeated the above process, the energy distribution of 

each condition can be obtained and it is taken as training 
samples of SVM. 

According to the training samples obtained from four 
conditions, we take 40 groups energy distributions from 
each condition as training samples and input to the im-
proved fault classifier of “one-to-many”. We choose 
Gaussian RBF kernel function as a classification function 
and make the parameters 01.0 , punishment factor C 
= 100. The classification results are shown in Table 2. 

We can see that classification results by the stochastic 
resonance system are significantly high than classifica-
tion result by direct wavelet packet feature extraction. 
The classification time of the each testing samples is 
smaller (in 0.05s, 1.8 GHZ computers). Its accuracy is 
higher and speed is quick in early fault identification. 

In order to monitor misalignment, we adopt a principle 
of the electromagnetic effect [9]. The number of mis-
alignment is detected by four acceleration sensors, and 
four electromagnetic sets are controlled by the output 
signal of four sensor. When misalignment occurred, the 
misalignment force F by rotor produced can be adjusted 
by alignment force F’ of electromagnet produced. The 
alignment force F’ is equal to the misalignment force F 
in number and they are contrary in direction. Figure 5 
shows the result of self-recovery monitoring on rotor 
misalignment. 
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We can find out that vibration of rotor is obviously 
reduced in Figure 5(a) and Figure 5(b). Because of the 
misalignment fault of rotor is counteracted by the elec-
tromagnet force, the rotor misalignment is inhibited and 
the normal operation condition is restored well.  
 
7. Conclusions 
 
1) Our method can effectively extract the early fault fea-
ture of the AERS by combination the stochastic reso-
nance with the wavelet packet resolving. Energy eigen-
vectors of constructed by this methods can accurately 
reflect the condition changes of AERS. 

2) Multi-fault classifier based on the SVM has charac-
teristics that its algorithm is simpler, the classification 
effect is well and identification efficiency is higher. It 
particularly suits to the classification identification of 
small sample and self-recovery monitoring of early fault 
on AERS. 

3) The fault diagnosis is aimed at finding failure in 
time and to ensure safe operation of plant. The method of 
fault self-recovery monitoring provides an effective way. 
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