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Abstract 
In this paper, we propose several improved neural networks and training strat-
egy using data augmentation to segment human radius accurately and effi-
ciently. This method can provide pixel-level segmentation accuracy through the 
low-level features of the neural network, and automatically distinguish the clas-
sification of radius. The versatility and applicability can be effectively improved 
by learning and training digital X-ray images obtained from digital X-ray im-
aging systems of different manufacturers. 
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1. Introduction 

In our previous study, a snake model algorithm is used to segment the image for 
computing the mean gray scale value over the region of interest in forearm bone, 
and the bone minerial density (BMD) value of radius located at a specific region 
could be determined by using radiation absorption method [1]. Compared with 
other traditional image segmentation methods, the snake model algorithm has 
the advantage of high accuracy. The digital X-ray images are binarized then the 
initial contours and segmentation can be determined directly by applying the 
snake model method. This method can achieve better segmentation than just di-
rectly applying the snake model method on original images in most cases, but it 
still has some drawbacks: 1) it is easy to fall into a local optimal state, so the al-
gorithm sometime cannot converge correctly, then resulting in segmentation er-
rors, 2) the method lacks a global vision, and cannot automatically identify the 
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ulna and radius classification, and manual intervention is usually required to se-
lect for subsequent segmentation processing; 3) the segmentation contours ob-
tained by binarization could be changed with the selection of different regions of 
interest and different mean gray values; 4) the elastic energy, bending ability, gra-
dient energy and other parameters of the Snake model can only be manually ca-
librated and cannot be learned automatically. Once calibration is done, the ap-
plicability of the algorithm is almost fixed. 

In recent years, neural network-based image segmentation methods have been 
proposed in different application fields [2] [3] [4] [5] [6]. In this paper, several 
improved U-shaped Unet neural network models [3] [7] are used to replace the 
traditional image segmentation methods to automatically identify and segment 
radius in digital X-ray images. These methods can provide pixel-level segmenta-
tion accuracy through the low-level features of the neural network, automatically 
distinguishing between radius and ulna classifications. With less manual inter-
vention, these improved methods can automatically locate to 1/3 of the radius 
recommended by Worldwide Health Organization (WHO) [8], and the mea-
surement results are highly consistent. The versatility and applicability can be 
effectively improved by learning and training on digital X-ray images acquired 
from digital X-ray systems from different manufacturers. 

2. Methods 
2.1. Imaging Processing 

Figure 1 is a flowchart of the algorithm used in this paper. A general digital X-ray 
imaging system was used as an image acquisition platform to acquire projection 
images of human non-dominant forearm bones (including radius and ulna). First, 
each input image is resized to have 512 × 512 pixels, then the image is fed into a 
neural network to identify segmentation. After the trained model and output layer, 
a softmax with 10 categorical feature images is obtained. Each classification 
feature image is marked with an specific serial number. For example, the image 
background is marked as 0, human skin is marked as 1, ulna is marked as 2, ra-
dius is marked as 3, other arm bones are market as 4, carpal bone is market as 
5, and the phalanx is market is 6, aluminum ladder is 7, imitation arm skin is 8, 
and the imitation arm bone is 9. Each classified feature image outputted by the 
neural network is binarized to find the contour of the target object. Here, 
through a specific binarization process, it is determined that each pixel of the 
feature image has a specific classification number. If it is the corresponding 
serial number, fill the pixel at the corresponding position of the feature map 
with 255, otherwise fill with 0, thus constructing an 8 bits depth image (its im-
age size is the same as the original 16 bits image). Each feature image corres-
ponds to a binarized image, so 10 binarized feature maps are created. OpenCV 
contour search algorithm is applied to these binarized maps to find their con-
tours, and finally these contours are recorded in the corresponding data struc-
ture for later use. 
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Figure 1. The main process of the algorithm. 

 
After obtaining the contour line data, on the one hand, according to the ob-

tained radius contour line, mark it as 3 on the map, find the minimum circum-
scribed rectangle of the radius contour line, and calculate the length of the mini-
mum circumscribed rectangle, as shown in Figure 2. The position of the 1/3 dis-
tal of the radius, which is the WHO recommended site for BMD measurement. 
On the other hand, a 16-bit template image with the same size as the original im-
age is created. The pixels inside the contour are set to 0xffff and pixels outside 
the contours are set to zero. The original image is used to perform a logical bit-
wise AND operation with these template images, respectively. The mean of the 
pixel values of the original image within each specific area by using the above 
segmentation method, combined with the automatically positioned at 1/3 of the 
radius, can be determined. Finally, based on the reference phantom method [1], 
the multi-level gray scale values of the reference phantom are fitted to calculate 
the BMD value in the region of interest. 

2.2. Neural Network Modeling 

Choice of Neural Networks 
Although the anatomy of the human forearm bone is relative simple and sim-

ilar in shape, the radius and ulna can often cover a large area in an X-ray ex-
tremity image. In order to get accurate radius BMD results, accurate pixel-level 
bone contour positions are required. At the same time, all feature information of 
the image categories is also important, including low-level features, which refer 
to binarized features and visual features within the size range of the image ker-
nel, such as contours, edges, textures, shapes, etc., as well as high-level informa-
tion, which refers to the different types of objects understood by the human 
brain after visual recognition. 

The BP (Back Propagation) network model is a well-known multi-layer train-
ing model. When using BP network to segment an image, firstly, all pixels in the  

https://doi.org/10.4236/ojrad.2022.124018


S. Z. Huang, J. F. Chen 
 

 

DOI: 10.4236/ojrad.2022.124018 179 Open Journal of Radiology 
 

 
Figure 2. Mask manipulation and automatic positioning. 

 
image are divided into target pixels and non-target pixels. After that, the non- 
target pixels are removed and the retaining pixels form the target image. But in 
our case, we not only need to obtain low-level features of the radius and ulna to 
obtain pixel-level gray scale value for BMD calculation, but also need to involve 
high-level semantics, such as classification and recognition of the radius, ulna, 
soft tissue, and objects other than human body. For efficiency, we need to pre-
dict all classifications at once in our application. The application of BP network 
in image segmentation has problems such as slow learning speed and easy to fall 
into local optimum [9]. So we gave up. 

CNN (Convolutional Neural Network) has many advantages over general neur-
al network, such as 1) CNN can better adapt to the structure of the image; 2) the 
extraction and classification operations can be performed at the same time, and 
feature extraction is conducive to classification; 3) weight sharing can reduce the 
training parameters of the network, making the network structure simple and 
adaptable. The skip connection structure (feature stitching) of the U-shaped 
network （based on CNN）not only has pixel-level feature recognition, but also 
retains a large field of view to provide high-level semantic features, which is es-
pecially suitable for our application [3]. 

Improvements of Neural Networks 
In order to reduce the hardware requirements of the model, we need to reduce 

the number of parameters of the model. Based on the U-shaped network [3] [7], 
we simplify each stage, including down-sampling and up-sampling, from the origi-
nal two convolution operations to one operation. At the same time, the number 
of input filters in the first-layer of the network is reduced from 64 to 32, which 
can greatly reduce the amount of parameters, as shown in Figure 3 and Table 1. 
Each down-sampling layer in the original network is changed to a convolutional  
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Table 1. The results of training record with the original and modified neural networks. 

Network Description 
Total 

Parameters 
Training  
Set Error 

Training  
Set Accuracy 

Validation  
Set Error 

Validation Set  
Accuracy 

Stop  
Learning 

Epoch 

(a) UNet 
Original U shape network 
with preprocessing dataset 

7,759,686B 0.07306 0.9789 0.1218 0.9639 80 

(b) UNet_1bn Add one Batch Normalization 7,759,690B 0.04543 0.9835 0.0505 0.9816 81 

(c) sUNet_1bn 
Simplified to one convolution 
each layer & Add one Batch 
Normalization 

3,832,326B 0.06771 0.9764 0.0981 0.9626 80 

(d) sUNet_1bn_ 
dilation12312 

use dilated convolution  
instead of convolution in  
sUNet_1bn 

3,832,326B 0.06220 0.9779 0.1039 0.9664 71 

 

 
Figure 3. Simplified schematic diagram of U-shaped network (UNet). 

 
sublayer (relu activation) with a kernel of 3 (in fact, we compared different ker-
nels, and their effects were slightly different, but in the end we chose a kernel 
size of 3, which balances the impact of computational overhead. See Table 2). 
and max pooling sublayer consistency. The parameter amount of the first-stage 
convolution neural network is calculated as kernelWidth × kernelHeight × 
Channel × Number of Filters × Number of convolution operation. Therefore, 
the parameters of the first-stage of the UNet network are reduced from 3 × 3 × 1 
× 64 × 2 to 3 × 3 × 1 × 32 × 1. 

Because the number of convolution layers is reduced from two to one each 
stage, the receptive field is reduced. To preserve the receptive field, we set the 
down-sampling convolution layer to dilation (atrous) convolutions. The schematic  
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Table 2. The results of training record with different kernel sizes. 

Network Description 
Total 

parameters 
Training  
Set Error 

Training Set 
Accuracy 

Validation 
Set Error 

Validation  
Set Accuracy 

Stop Learning 
Epoch 

sUNet_1bn_ 
dilation 
32123_k5 

Dilation rates are set to 3, 2, 
1, 2, 3: and the fifth kernel 
size is set to 5. 

5,929,478B 0.04606 0.9832 0.0625 0.9768 61 

sUNet_1bn_ 
eca_dilation 
842_k35 

Dilation rates are set to 8, 4, 
2: The fourth kernel is set to 
3, while the fifth kernel size 
is set to 5. 

5,929,483B 0.05303 0.9808 0.0585 0.9800 72 

sUNet_1bn_ 
dilation 
12312_k5 

Dilation rates are set to 1, 2, 
3, 1, 2: and the fifth kernel 
size is set to 5. 

5,929,478B 0.06480 0.9769 0.0851 0.9694 57 

sUNet_1 
bneca_dilation 
12312_k97533 

Dilation rates are set to 1, 2, 
3, 1, 2: and the kernels are 
set to9, 7, 5, 3, 3. 

3,916,262B 0.06055 0.9786 0.0859 0.9682 61 

sUNet_1 
bneca_dilation 
12312_spatial 

Dilation rates are set to 1, 2, 
3, 1, 2: and the fifth stage 
use spatial attention. 

3,832,907B 0.0737 0.9744 0.1098 0.9670 52 

 
diagram of dilation convolution is shown in Figure 4. The formula for calculat-
ing receptive field of ordinary convolution is as follows: 

( )1 1 11 n
n n n iiRF RF K S+ + =

= + − ∗∏                 (1) 

where 1nRF +  represents the receptive field of the current layer, and nRF  re- 
presents the receptive field of upper layer. 1nK +  represents the kernel size of the 
current layer. iS  represents the stride of the upper layer. We use stride = 1 here 
for all layers. So the receptive field of the fifth layer of the standard UNet is 21. 

In order to avoid the gridding effect [10], we set the dilation rate to differ-
ent values (we also compared different dialition rates, and they have slightly 
different effects. See Table 2), the first and fourth layers are 1, the second and 
fifth layers are 2, the third layer is 3, so the receptive field of the fifth layer is 
19. 

In order to facilitate mask processing, we pad the boundary of the each payer’s 
input image, as shown in Figure 5, so that the output feature image obtained af-
ter convolution remains the same size as the input image. Suppose the image size 
after convolution is n n∗ , the size of the convolution kernel is k k∗ , where k is 
an odd number, the padding amplitude is set to ( )1 2k − , and the size of output  

image after convolution is 12 1
2

kn k n− − + ∗ + = 
 

. That is, the size of output  

image after the convolution operation still is n n∗ , ensuring that the size before 
and after the convolution remains unchanged. After 4 times of down-sampling 
(the size of the feature map becomes half of the original image) and 4 times of 
up-sampling, the final output classification feature map size of the network has  
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Figure 4. Dilated convolution. 

 

 
Figure 5. The schematic diagram of edge padding. 
 
the same size as the input image. Finally, the desired pixel values are determined 
by masking the feature map and the original image. 

In the first down-sampling layer, batch normalization is added between the 
convolution and the max pooling sublayers. This normalized sublayer is used to 
speed up network convergence. If this layer is not added, the training will be dif-
ficult to succeed (see Table 1 for the training effect), since the sample brightness 
distribution is not uniform. 

The input data is normalized to have a mean of zero and a variance of one. Its 
mathematical expressions are given in Equations (2), (3), and (4) below: 

1

1
ii

m x
m

µ
=

= ∑                            (2) 

( )22
1

1
ii

m x
m

σ µ
=

= −∑                         (3) 

2

i
i

x
x

µ

σ ε

−′ =
+

                           (4) 

where ix  represents the input raw data { }1 2 3, , , , mx x x x , ix′  represents the 
data normalized by the BathNormalization layer. In Equation (3), ε  is the 
small value to prevent the denominator from being zero. Due to the limit num-
ber of samples used in our experiments, data augmentation was used to simulate 
increasing the dataset to improve generalization application ability and avoid 
overfitting. The BatchNormalization layer will then scale and translate the nor-
malized data. The mathematical expression for the scaling and translation is as 
follows: 

i iy xα β′= +                            (5) 

where iy  is the transformed dataset, α  and β  are learnable parameters, in-
itialized to 1 and 0, respectively, which can be adjusted to appropriate values 
through learning and training process. 
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The output layer goes through a 10-channel feature convolution layer with a 
kernel of 1, and finally outputs 10 classification feature images through softmax; 
this layer will perform a cross-entropy error operation with the pre-labeled su-
pervised data nt , and then back-propagate the network to learn and correct the 
parameters of each layer; the hybrid cross-entropy E error of this neural network 
is expressed as 

1 1
0 0

1 log nkn k y
nk eE t

n
− −= − ∑ ∑                      (6) 

where nkt  represents the k-th feature element of the n-th supervised classifica-
tion image, and nky  represents the k-th feature element of the n-th feature out-
put image. Through this error feedback, the neural network can accurately learn 
the classification label of each pixel in each supervised image. 

As shown in Figure 6, the input of the tested neural network is a 16 bits  
512 512 1n× × ×  ( ), , ,n w h c  image dataset: a training sample batch n with a sam-

ple width of 512 and a sample height of 512, the number of sample channels is 1. 
The output is a set of 10 categorical feature images of the same size  

( ), , ,10ny n w h= . The ten categories were described in previous section. The ra-
dius marked as 3 is the feature used in this algorithm to classify the image. The 
training image set is pre-collected with 400 original images and 32 validation 
images. The “labeled multiclass images” in Figure 6 are images that are manual-
ly labeled and classified on the basis of these original images. 

The specific method of labeling and classifying images is: the gray value of the 
image is filled according to the value corresponding to each classification, such 
as the background is 0, the skin is 1, the radius is 3, etc., so that the grayscale 
value of each classified tissue labeled classified images varies from 0 to 9. These 
labeled images are processed into one_hot form after being read during train-
ing. For example, a pixel in radius marked as class 3 is represented as [0, 0, 0, 
1, 0, 0, 0, 0, 0, 0]. These raw images and labeled multi-class images are fed into 
the neural network, and the network is trained to converge according to Equa-
tion (6). 

 

 
Figure 6. The training diagram (without deep-supervision). 
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Figure 7 shows the original and the improved loss accuracy curves after 100 
epochs of training for different versions of the UNet neural network. Here UN-
et_1bn is to add one Batch Normalization, sUNet_1bn is simplified to one convolu-
tion each stage and adds one Batch Normalization, sUNet_1bn_dilation12312 
uses dilated convolution instead of the convolution in sUNet_1bn. Table 1 records 
the accuracy results for the last best state, i.e. stop learning. Network training  
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Figure 7. The original and improved loss-accuracy curves of various versions of the UNet 
neural network after 100 rounds of training: (a) the original UNet network, (b) the mod-
ified UNet_1bn, (c) modified sUNet_1bn, and (d) modified sUNet_dilated. 
 
sets the starting learning rate to 1 × e−4 and the ending learning rate to 1 × e−8. 
Due to the limitation of hardware conditions such as video memory, UNet only 
uses 6 images for each batch for training and verification. 

https://doi.org/10.4236/ojrad.2022.124018


S. Z. Huang, J. F. Chen 
 

 

DOI: 10.4236/ojrad.2022.124018 186 Open Journal of Radiology 
 

The test environment settings for our experiment were as follows: 
windows10_21H1_19043.1766;  
Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz 2.21 GHz; 
GeForce GTX 1060, 6 GB, Driver Version:436.48, CUDA Version: 10.1; 
python3.5.6; 
Numpy1.15.2; 
Scipy1.1.0; 
H5py2.8.0; 
Opencv-python4.4.0; 
Keras2.22.2; 
tensorflow_gpu 1.10.0; 

 

 
Figure 8. The test results of the segmentation by using the original and modified Neural 
Networks after 100 epochs of training (use early stop). 
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The segmentation results are shown in Figures 7(a)-(d). The results show that 
the total numbers of parameters used for the UNet with the improved networks, 
which include both sUNet_1bn and sUNet_1bn_dilation12312, have been re-
duced from 7,759,690B to 3,832,326B. However, the accuracy and cross entropy 
error are not much lower than the original network, which can meet our appli-
cation needs. The segmentation results using these networks are shown in Fig-
ure 8.  

3. Discussions 

One of the main goals of this paper is to obtain a network with few parameters 
and comparable performance. White some combinations may be better in ac-
curacy than the network we ultimately choose, they also have multiple hard-
ware costs. Due to the limited number of samples, it is not possible to include 
all X-ray images in these acquisition cases, so the trained network may not be 
fully applicable to all cases. 

The original UNet network used for comparison failed to converge correctly 
under the same conditions. After normalizing the training set image, we got the 
UNet Training curve shown in Figure 7(a).  

4. Conclusion 

For the segmentation of human forearm bones, especially the radius, we have 
improved and adapted the UNet network, added the normalization preprocess-
ing before fide to the neural network, and modified the specific convolution 
sublayer, so that it can provide satisfactory high-level semantic classification ca-
pabilities and pixel level segmentation performance, while reducing the number 
of parameters, which can prove the degree of automation and reduce manual 
intervention to meet the needs of the scene. 
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