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Abstract 
This paper presents ordered rate nonlinear constitutive theories for thermo-
viscoelastic fluids based on Classical Continuum Mechanics (CCM). We refer 
to these fluids as classical thermoviscoelastic polymeric fluids. The conserva-
tion and balance laws of CCM constitute the core of the mathematical model. 
Constitutive theories for the Cauchy stress tensor are derived using the con-
jugate pair in the entropy inequality, additional desired physics, and the re-
presentation theorem. The constitutive theories for the Cauchy stress tensor 
consider convected time derivatives of Green’s strain tensor or the Almansi 
strain tensor up to order n and the convected time derivatives of the Cauchy 
stress tensor up to order m. The resulting constitutive theories of order (m, n) 
are based on integrity and are valid for dilute as well as dense polymeric, com-
pressible, and incompressible fluids with variable material coefficients. It is 
shown that Maxwell, Oldroyd-B, and Giesekus constitutive models can be 
described by a single constitutive theory. It is well established that the cur-
rently used Maxwell and Oldroyd-B models predict zero normal stress per-
pendicular to the flow direction. It is shown that this deficiency is a conse-
quence of not retaining certain generators and invariants from the integrity 
(complete basis) in the constitutive theory and can be corrected by including 
additional generators and invariants in the constitutive theory. Similar im-
provements are also suggested for the Giesekus constitutive model. Model prob-
lem studies are presented for BVPs consisting of fully developed flow between 
parallel plates and lid-driven cavities utilizing the new constitutive theories 
for Maxwell, Oldroyd-B, and Giesekus fluids. Results are compared with those 
obtained from using currently used constitutive theories for the three poly-
meric fluids. 
 

Keywords 
Polymeric Fluids, Maxwell, Oldroyd-B, Giesekus, Mathematical Models, 
Nonlinear Rate Constitutive Theories, Representation Theorem, Integrity, 

How to cite this paper: Surana, K.S. and 
Ezell, T.J. (2022) Enhanced Constitutive Theo- 
ries for Classical Thermoviscoelastic Poly-
meric Fluids. Applied Mathematics, 13, 917- 
947. 
https://doi.org/10.4236/am.2022.1311058 
 
Received: September 30, 2022 
Accepted: November 27, 2022 
Published: November 30, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.1311058
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2022.1311058
http://creativecommons.org/licenses/by/4.0/


K. S. Surana, T. J. Ezell 
 

 

DOI: 10.4236/am.2022.1311058 918 Applied Mathematics 
 

Generators, Invariants 

 

1. Literature Review and Scope of Work 

Constitutive theories for polymers date back to Maxwell [1], and Oldroyd-B [2] 
based primarily on phenomenological approaches. The observed motion (under 
microscope) of polymeric fluids is cast into appropriate mathematical models 
using empirical, theoretical, or experimental approaches. An organized treat-
ment of these approaches can be found in Bird et al. [3] [4]. These mathematical 
models have enjoyed large success in predicting the reasonable behavior of poly-
meric fluids. In the last six decades, groundbreaking work in continuum mechan-
ics based on a sound thermodynamic foundation has provided an incentive to 
examine these constitutive models more closely to determine if the constitutive 
theories for polymeric fluids can be derived strictly using principles of CCM, 
axioms of constitutive theories, the entropy inequality, and the representation 
theorem. Such a framework based on sound principles, when possible, has pro-
vided an incomparable mechanism for further enhancement of the constitutive 
theories for more complex physics. Surana et al. and Surana [5] [6] [7] used Conser-
vation and Balance Laws (CBLs) of CCM and the conjugate pairs in the entropy in-
equality to determine constitutive tensors and their argument tensors augmented for 
additional physics to derive the constitutive theory for the deviatoric Cauchy 
stress tensor using the representation theorem. These theories utilized convected 
time derivatives of Green’s strain tensor (or the Almansi strain tensor) up to or-
der n and the convected time derivatives of the deviatoric Cauchy stress tensor 
up to order m. Thus, these constitutive theories are referred to as ordered rate 
constitutive theories of orders m and n. The authors showed that: 1) the Max-
well model is a linear constitutive model corresponding to 1m =  and 1n = , 2) 
the Oldroyd-B model is a quasilinear or nonlinear simplified constitutive model 
that utilizes 1m =  and 2n = , and 3) the Giesekus constitutive model is a non-
linear constitutive model based on 1m =  and 1n = . These constitutive models 
are more simplified linear or nonlinear forms of the general constitutive theory 
of orders m and n that are obtained by discarding the generators and invariants 
from the list of combined generators and invariants based on the argument ten-
sors of the deviatoric Cauchy stress tensor. 

There are numerous other constitutive theories available in the published 
works that are mostly phenomenological and are derived based on 1D springs 
and 1D dashpots in series and/or parallel configurations. Such constitutive theo-
ries may be useful for the application in hand, but are difficult to extend for 
more complex applications due to a lack of sound thermodynamic and mathe-
matical foundation. The incentive in references [5] [6] [7] [8] [9] was to show 
that currently used mathematical models for polymeric fluids such as Maxwell, 
Oldroyd-B and Giesekus have a thermodynamic foundation based on CCM. 
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It has been numerically verified that Maxwell and Oldroyd-B models predict 
zero normal stress in the direction perpendicular to the flow. For example, in the 
case of fully developed flow between parallel plates, these two models predict 
reasonable normal stress in the direction of flow, but the normal stress perpen-
dicular to the direction of flow from these models is zero. We can view these 
models as simplified forms of constitutive theories based on rates m and n using 
integrity (complete basis). Then it is rather obvious that this problem of zero 
normal stress perpendicular to the direction of flow is a consequence of neglect-
ing generators and/or invariants in the rate model of orders m, n which should 
have been retained. This forms the basis for enhancing the current models and 
improving their performance. The choice of which additional generators and/or 
invariants (over and beyond those that are already present in the current models) 
should be included is not trivial. Details are discussed in the following sections. 
This paper is organized into the sections:  

(I) Conservation and balance laws (without derivation); 
(II) Derivation of ordered rate constitutive theories of orders m, n; 
(III) Simplification of the constitutive theory of order m, n into a single con-

stitutive theory for dilute and dense polymeric fluids; 
(IV) Obtaining currently used mathematical models using the constitutive 

theory in (III); 
(V) Enhancement of the constitutive theory in (III) for improved prediction 

of normal stress in the direction normal to the flow; 
(VI) Model problem studies using fully developed flow between parallel plates 

and fully developed flow in a lid-driven cavity with comparisons to the currently 
used models; 

(VII) Summary and conclusions. 

2. Mathematical Model 

Conservation and Balance Laws (CBLs) of Classical Continuum Mechanics (CCM) 
in Eulerian description are used in fluid mechanics, hence for polymeric fluids as 
well. The CBLs in Eulerian description can be expressed purely in terms of ve-
locities, hence by choosing velocities as observable quantities, displacements of ma-
terial points can be ignored. Thus, displacements of material points are neither 
present in the CBLs nor can they be obtained using velocities as the velocities are 
observable quantities. 

In Eulerian descriptions, stress measures must be considered using the de-
formed tetrahedron in the current configuration, hence, they can be contrava-
riant or covariant, and the corresponding strain rate measures must be covariant 
or contravariant, respectively. This situation is more complex than in the case of 
solids. In this paper, we consider notation used in references [8] [9], i.e. quanti-
ties with overbar imply Eulerian description or their values in the current confi-
guration. Thus, ix  and ix  are coordinates of a material point in the reference 
and current configurations, respectively. Other than this, we use standard Eins-
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tein notation, index notation, or matrix and vector notation (whichever main-
tains more clarity of presentation). Quantities with subscripts are covariant meas-
ures and those with superscripts are contravariant measures. Since in this paper 
we consider convected time derivatives, we introduce the following notation [8] 
[9], if σ  is the Cauchy stress tensor in the current configuration, then instead 
of σ  we write ( )0σ  or ( )0σ . ( )0σ  is the contravariant Cauchy stress tensor, in 
which the superscript (0) refers to a convected time derivative of order zero, i.e. 
the tensor itself. Thus, we have 

( ) ; 0,1, ,i i m= σ                         (1) 

( ) ; 0,1, ,j i m= σ                         (2) 

In Equations (1) and (2), we have convected time derivatives of Cauchy stress 
tensor up to orders m. Equation (1) is a contravariant measure while Equation (2) 
is a covariant measure. Parentheses imply convected time derivatives. Square 
brackets are used to denote material derivatives. Thus, [ ]0ε  is a material de-
rivative of order zero of the Green’s strain tensor. Let ( ) ; 1, 2, ,i i n= γ  and 

( ) ; 1, 2, ,j j n= γ  be convected time derivatives of Green’s and Almansi strain 
tensors [ ]0ε  and [ ]0ε  up to orders n, then the following constitute the rate of work 
conjugate pairs. 

( )

( )

; 0,1, ,
; 1, 2, ,

i

j

i m
j n
=
=





σ
γ

                        (3) 

( )

( )

; 0,1, ,

; 1, 2, ,

i

j

i m

j n

=

=





σ

γ
                        (4) 

We can also consider Jaumann measures [3] [4] [8] [9], but we avoid these here 
due to their limitations [8] [9]. Thus, the CBLs and constitutive theories for po-
lymeric fluids can be derived using measures in Equations (3) or (4). Such a de-
rivation would be basis dependent as the measures in Equations (3) and (4) are ba-
sis dependent. To make the derivation basis independent, instead of using Equa-
tions (3) or (4), we consider the following notations for the convected time de-
rivatives of the Cauchy stress tensor and strain tensor in the derivation of the 
CBLs and the constitutive theories. 

( )

( )

; 0,1, ,

; 1, 2, ,

i

j

i m

j n

=

=





σ

γ
                        (5) 

The conjugate pairs in Equation (5) can be chosen based on either Equation (3) 
or Equation (4). 

2.1. Conservation and Balance Laws 

Conservation and Balance Laws: Conservation of Mass (CM), Balance of Linear 
Momentum (BLM), Balance of Angular Momentum (BAM), First Law of Ther-
modynamics (FLT), and the Second Law of Thermodynamics (SLT) in Eulerian 
description can be written as [8] [9] (in fixed x-frame) 
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( ) ( )0 CMD
Dt
ρ ρ+ ⋅ =v∇                      (6) 

( )( ) ( )0 0 BLMbD
Dt

ρ ρ− − ⋅ =
v F σ∇                 (7) 

( ) ( )0 0 BAMijk ijє σ =                       (8) 

( ) ( ) ( )0 : 0 FLT
D e

Dt
ρ + ⋅ − =q Dσ∇                 (9) 

( ) ( )0 : 0 SLTD D
Dt Dt

θρ η
θ

 Φ ⋅
+ + − ≤ 

 

q g Dσ           (10) 

in which ρ  is density, v  are velocities, bF  are body forces per unit mass, 
є  is the permutation tensor, e  is specific internal energy, q  is the heat vector, 
D  is the symmetric part of velocity gradient tensor L  (gradients of v  with 

respect to x ), Φ  is Helmholtz free energy density, η  is entropy density, θ  
is absolute temperature, and g  are the gradients of temperature θ  in x-frame. 

This constitutive model contains ( )1ρ , ( )3v , ( ) ( )0 6σ , ( )3q , ( )1θ , four-
teen dependent variables in CM(1), BLM(3), FLT(1), and five partial differential 
equations. Thus, we need nine additional equations for closure. These are ob-
tained from the constitutive theories for ( ) ( )0 6σ  and ( )3q . We note that (shown 
later) ( ),e e ρ θ= , ( ),ρ θΦ = Φ  and ( ),η η ρ θ= ; hence e , Φ , and η  are 
not dependent variables in mathematical model. 

2.2. Constitutive Theories 

In the derivation of the constitutive theories, the entropy inequality aids in the 
initial choice of constitutive tensors and their argument tensors. Total deforma-
tion in a compressible polymeric fluid consists of volumetric deformation that 
results in change of volume without change in shape and distortional deforma-
tion that results in change of shape without change in volume. Thus, clearly the 
volumetric and distortional deformations are mutually exclusive, hence a single 
constitutive theory for the stress tensor cannot possibly describe both deformation 
physics. This necessitates additive decomposition of the Cauchy stress tensor 
( )0 σ  into equilibrium ( ( )0

eσ ) and deviatoric ( ( )0
dσ ) Cauchy stress tensors. 

( ) ( ) ( )0 0 0
e d= +σ σ σ                         (11) 

The constitutive theory for ( )0
eσ  describes volumetric deformation while the 

constitutive theory for ( )0
dσ  addresses distortional deformation physics. From 

the entropy inequality (as well as other CBLs), initial choices of Φ , η , ( )0 σ , 
and q  as constitutive tensors are justified. The rate of work conjugate pair 
( )0 : Dσ  and compressible thermoviscoelastic physics suggest ρ , D , and θ  
as possible argument tensors of ( )0 σ . Likewise, ρ , g  and θ  are possible ar-
gument tensors of q . The choices of ρ  and θ  as argument tensors of Φ  and 
η  is obvious, while others can be initially considered based on the principle of 
equipresence. This gives us 

( ) ( ) ( )0 0 , ,ρ θ= Dσ σ                        (12) 
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( ), ,ρ θ=q q g                          (13) 

( ), , ,ρ θΦ = Φ D g                         (14) 

( ), , ,η η ρ θ= D g                         (15) 

The principle of equipresence for ( )0 σ  and q  is ruled out based on conjugate  

pairs ( )0 : Dσ  and 
θ
⋅q g

 in the entropy inequality. We note that the phsyics 

described by ( )0
eσ  and ( )0

dσ  suggest the following [9]. 
( ) ( ) ( )0 0 ,e e ρ θ=σ σ                         (16) 

( ) ( ) ( )0 0 , ,d d ρ θ= Dσ σ                       (17) 

Thus, based on Equations (16) and (17), Equation (12) is valid. We substitute 
Equation (11) into Equation (10) to obtain 

( ) ( )0 0: : 0e d
D D
Dt Dt

θρ η
θ

 Φ ⋅
+ + − − ≤ 

 

q g D Dσ σ           (18) 

This inequality is the starting point for deriving constitutive theories. 

2.2.1. Constitutive Theory for Equilibrium Stress ( )
e

0 σ  

Using Equation (14), we can write the following using the chain rule of differen-
tiation 

:D
Dt

ρ θ
ρ θ

Φ ∂Φ ∂Φ ∂Φ ∂Φ
= + + ⋅ +
∂ ∂ ∂ ∂

D g
D g



                (19) 

Substituting from Equation (19) into Inequality (18) 

( ) ( )0 0: : : 0e dρ ρ θ ηθ
ρ θ θ

 ∂Φ ∂Φ ∂Φ ∂Φ ⋅
+ + ⋅ + + + − − ≤ ∂ ∂ ∂ ∂ 

q gD g D D
D g

 

  σ σ  (20) 

From continuity (Equation (6)), we have (compressibility condition) 

( ) :ki ikDρ ρ ρ δ ρ= − ∇ ⋅ = − = −v D δ                (21) 

Substituting Equation (21) into Inequality (20) and regrouping terms 

( ) ( )0 02 : : :

0

e dρ ρ ρ
ρ

ρ η θ
θ θ

 ∂Φ ∂Φ ∂Φ
− − − + + ⋅ ∂ ∂ ∂ 

 ∂Φ ⋅
+ + + ≤ ∂ 

D D D g
D g

q g







δ σ σ
        (22) 

The entropy inequality in Inequality (22) is satisfied for arbitrary but admissible 
choices of D , g , and θ  if their coefficients are set to zero, giving the following. 

( )0ρ ∂Φ
= ⇒ Φ ≠ Φ

∂
D

D
                   (23) 

( )0ρ ∂Φ
= ⇒ Φ ≠ Φ

∂
g

g
                   (24) 

0ρ η η
θ θ

 ∂Φ ∂Φ
+ = ⇒ = − ∂ ∂ 

                 (25) 
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Equations (23) and (24) imply that Φ  is not a function of D  and g . Based on 
Equation (25), η  is not a constitutive tensor as it is deterministic using Helm-
holtz free energy density, Φ . Using Equations (23)-(25), Inequality (22) can be 
written as 

( ) ( )0 02 : : 0e dρ
ρ θ

 ∂Φ ⋅
− − − + ≤ ∂ 

q gD Dδ σ σ             (26) 

We note that since the constitutive theory for ( )0
eσ  can only describe volumetric 

deformation physics, thus we can write Equation (16), i.e. ( ) ( ) ( )0 0 ,e e ρ θ=σ σ . The 
constitutive tensors and their argument tensors in Equations (14) and (15) can 
now be modified and we can write 

( ) ( ) ( )0 0 ,e e ρ θ=σ σ                        (27) 

( ) ( ) ( )0 0 , ,d d ρ θ= Dσ σ                       (28) 

( ), ,ρ θ=q q g                         (29) 

( ),ρ θΦ = Φ                         (30) 

Based on Inequality (26) and Equations (27)-(30), we need to derive constitu-
tive theories for ( )0

eσ , ( )0
dσ  and q . 

2.2.2. Constitutive Theory for ( )
e

0 σ  for Compressible Polymeric Fluids 

Based on Equation (30), we can set the coefficient of D  in Inequality (26) to 
zero to obtain ( )0

eσ  as a function of Helmholtz free energy (this in fact means 
that Inequality (26) is satisfied for arbitrary but admissible D  if the coefficient 
of D  in the first term of Inequality (26) is set to zero) 

( ) ( )0 2 ,e pρ ρ θ
ρ

∂Φ
= − =

∂
σ δ δ                  (31) 

( ) 2,p ρ θ ρ
ρ

∂Φ
= −

∂
                      (32) 

and the entropy inequality reduces to 

( )0 : 0d θ
⋅

− + ≤
q gDσ                       (33) 

Equation (31) is the constitutive theory for the equilibrium Cauchy stress tensor 
for compressible polymeric fluids. p  is generally referred to as equation of state. 
Experimental, empirical or analytical expressions for ( ),p ρ θ  are admissible as 
long as p  is continuous and differentiable in ρ  and θ . Equation (23) is called 
the reduced form of the entropy inequality. 

2.2.3. Constitutive Theory for ( )
e

0 σ  for Incompressible Polymeric Fluids 

When the polymeric fluid is incompressible, ( ) ( ) 0, ,t tρ ρ ρ= =x x , i.e. density 
remains constant. In this case 

( ) ( )0 CMρ ρ= − ⋅ =v ∇                     (34) 

and 
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( ) ( )0, ,
0

ρ θ ρ θ

ρ ρ

∂Φ ∂Φ
= =

∂ ∂
                   (35) 

Hence, the constitutive theory for ( )0
eσ  cannot be derived using Equation 

(31). Using Equation (35), Inequality (26) reduces to 

( ) ( )0 0: : 0e d θ
⋅

− − + ≤
q gD Dσ σ                   (36) 

In order to derive constitutive theory for ( )0
eσ  for incompressible polymeric 

fluids, we must introduce the incompressibility condition using conservation of 
mass in the Eulerian description (Equation (34)) into Inequality (36) 

: 0jj ji ijD D δ∇ ⋅ = = = =v Dδ                   (37) 

We note that when Equation (37) holds, the following also holds 

( ) : 0p θ =Dδ                         (38) 

( )p θ  is a Lagrange multiplier (function of temperature θ ). Adding Equa-
tion (38) to Inequality (36) and regrouping terms 

( ) ( )( ) ( )0 0: : 0e dp θ
θ
⋅

− − + ≤
q gD Dδ σ σ               (39) 

Inequality (39) holds for arbitrary but admissible D  if the coefficient of D  
in the first term of Inequality (39) is set to zero, giving 

( ) ( )0
e p θ=σ δ                         (40) 

Equation (40) is the constitutive theory for incompressible, non-isothermal 
polymeric fluids. If the physics is isothermal, then ( )p θ  simply reduces to p  
in Equation (40). Inequality (39) now reduces to (reduced form) 

( )0 : 0d θ
⋅

− + ≤
q gDσ                      (41) 

2.2.4. Constitutive Theory for Deviatoric Stress ( )
d
0 σ  

From Inequality (41), the rate of work conjugate pair ( )0 :d Dσ  suggests that (as 
in Equation (28)) 

( ) ( ) ( )0 0 , ,d d ρ θ= Dσ σ                      (42) 

It is well known [3] [4] that in order to describe fading or short term memory 
in polymeric fluids, the constitutive theory for the deviatoric stress tensor must 
be a differential equation in time, otherwise existence of the memory modulus 
cannot be established. This necessitates that we must at the very least consider 
( )0

dσ  and ( )1
dσ  in which ( )1

dσ  is the constitutive tensor and ( )0
dσ  is its argument 

tensor (in addition to others). If we consider convected time derivatives of ( )0
dσ  

of up to orders m, i.e. ( )k
dσ ; 0,1, ,k m=   (basis independent notation), then we 

can generalize the choices of constitutive tensors and their argument tensors. 
Likewise, since D  is the first convected time derivative of Green’s strain ten-

sor [ ]0ε  and also the first convected time derivative of the Almansi strain tensor 
[8] [9], we can also generalize the choice of D  in Equation (42) by replacing it 

https://doi.org/10.4236/am.2022.1311058


K. S. Surana, T. J. Ezell 
 

 

DOI: 10.4236/am.2022.1311058 925 Applied Mathematics 
 

with ( )j γ ; 1,2, ,j n=  , the convected time derivatives of the strain tensor (in 
basis independent notation). Thus, Equation (42) is replaced with 

( ) ( ) ( ) ( )( ), , , ; 1, 2, , ; 0,1, , 1m m j k
d d d j n k mρ θ= = = − σ σ γ σ      (43) 

We note that ( )k
dσ ; 0,1, ,k m=   and ( )j γ ; 1,2, ,j n=   are all symme-

tric tensors of rank two, ρ  and θ  are tensors of rank zero. The constitutive 
theory for ( )m

dσ  can be derived using representation theorem [10]-[21]. 
Let iσG



; 1,2, ,i N=   be the combined generators of the argument tensors of 
( )m

dσ  in Equation (43) that are symmetric tensors of rank two and let jIσ



; 
1,2, ,j M=   be the combined invariants of the same argument tensors. Then 

tensors I , iσG


; 1,2, ,i N=   constitute the integrity, i.e. complete basis of the 
space of the constitutive tensor ( )m

dσ , hence we can express ( )m
dσ  as a linear com-

bination of this basis. 

( ) ( )0

1

N
m i i
d

i

σ σ σα α
=

= +∑I G
  

σ                   (44) 

in which 

( ), , ; 0,1, , ; 1, 2, ,i i jI i N j Mσ σ σα α ρ θ= = = 

 

         (45) 

In Equation (44), iσα


; 0,1, ,i N=   are coefficients of the linear combina-
tion (and not the material coefficients). Material coefficients are derived by con-
sidering Taylor series expansion of iσα



; 0,1, ,i N=   (based on the axiom of 
smooth neighborhood) in jIσ



; 1,2, ,j M=   about a known configuration 
Ω  and retaining only up to linear terms in jIσ



; 1,2, ,j M=   (for simplici-
ty). The Taylor series expansion of iσα



, 0,1, ,i N=   in jIσ



, 1,2, ,j M=   
about Ω  gives 

( )
1

; 0,1, ,
iM

i i j j
j

j
I I i N

I

σ
σ σ σ σ

σ

α
α α

Ω Ω
= Ω

 ∂ = + − =
 ∂ 

∑ 



  



      (46) 

Substituting iσα


; 0,1, ,i N=   from Equation (46) into Equation (44) and 
collecting coefficients of I , jIσ



, iσG


, and ( )j iIσ σG
 

; 1,2, ,i N=  ,  
1,2, ,j M=   and regrouping, we can obtain the following. 

( ) ( ) ( ) ( )( )0

1 1 1 1

M N N M
m j i j i
d j i ij

i i i i
a I b c Iσ σ σ σ σ σ σσ

Ω
= = = =

= + + +∑ ∑ ∑∑I I G G
      

σ  (47) 

in which 

( )

( )

0
0 0

1

0

1

1, 2, ,
;

1, 2, ,

M
j

j
j

j j

iM
i j

i j
j

i

ij j

I
I

a
I i N

j M
b I

I

c
I

σ
σ σ

σ

σ
σ

σ

σ
σ σ σ

σ

σ
σ

σ

α
σ α

α

α
α

α

Ω Ω Ω
= Ω

Ω

Ω Ω
= Ω

Ω

∂
= − 

∂ 


∂ = ∂ =
 =∂ = − ∂ 
∂ =
∂ 

∑

∑



 















 









        (48) 
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Equation (47) is the constitutive theory for the deviatoric Cauchy stress tensor 
based on the integrity, i.e. complete basis in which jaσ



, ibσ


, ijcσ



; 1,2, ,i N=  ; 
1,2, ,j M=   are ( )N M NM+ +  material coefficients defined in a known 

configuration Ω . The material coefficients can be functions of the invariants 
jIσ



; 1,2, ,j M=  , ρ , and θ  (based on Equation (45)). 

2.3. Derivation of Currently Used Constitutive Theories for  
Polymeric Fluids 

Equation (47) contains many material coefficients, some of which may not be 
significant for specific types of polymers. Nonetheless, we point out that Equa-
tion (47) represents the totality of all possible constitutive theories for polymeric 
fluids as it is based on a complete basis of the space of the constitutive tensor. In 
this section, we first show derivations of Maxwell, Oldroyd-B, and Giesekus 
constitutive theories using Equation (47) by selective choices of generators and 
invariants. This is followed by enhancement of these theories by incorporating ad-
ditional generators and/or invariants (that are permissible based on Equation (47)) 
in the existing constitutive theories based on Equation (47) to remedy some ob-
vious deficiencies in them, especially for dilute polymeric fluids. The currently 
used Maxwell, Oldroyd-B and Giesekus constitutive theories for the stress tensor 
are listed below [3] [4] [8] [9] for the compressible case. We refer to these as model 
A in the model problem studies. 

( ) ( )( ) ( )( ) ( )( ) ( )0 1 1 12 tr Maxwelld dλ η κ+ = + Iσ σ γ γ           (49) 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )0 1 1 1 2
22 tr 2 Oldroyd-Bd dλ η κ ηλ+ = + +Iσ σ γ γ γ    (50) 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
20 1 1 1 02 tr Giesekusd d d

λλ η κ α
η

+ = + +Iσ σ γ γ σ    (51) 

Remarks 
1) From Equation (49), we note that the Maxwell constitutive model only 

contains the first convected time derivatives of the deviatoric stress tensor and 
the strain tensor (Green’s or Almansi). Thus, this constitutive model can be ob-
tained by using Equation (47) with 1n m= = , and by deleting the terms in it 
other than those in Equation (49). 

2) From the Oldroyd-B constitutive model in Equation (50), we note that it 
contains only up to first convected time derivatives of the deviatoric stress tensor 
but contains up to second convected time derivatives of the strain tensor. Hence, 
the constitutive model is a subset of the constitutive theory in Equation (47) for 

2n =  and 1m = , thus can be obtained from the general form in Equation (47) for 
2n =  and 1m =  by deleting terms other than those that appear in Equation (50). 

3) The Giesekus constitutive model is also a subset of Equation (47) for 1n =  
and 1m = . This model is the same as the Maxwell model except for the nonli-
near term in ( )0

dσ . 
4) From Equations (1)-(3), we conclude that Maxwell, Oldroyd-B and Giese-

kus constitutive models are a subset of the general constitutive model in Equa-
tion (47) for 2n =  and 1m = . We remark that the complete constitutive model 
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(based on the integrity for 2n =  and 1m = ) contains many more generators 
and invariants of the argument tensors than those appearing in Equations (49)-(51). 
The generators and invariants in Equation (47) that are not considered in Equa-
tions (49)-(51) provide the basis for enhancing constitutive theories in Equations 
(49)-(51). 

5) In the following, we first present a single constitutive theory using Equation 
(47) with 2n =  and 1m =  that describes all three constitutive models (Equa-
tions (49)-(51)) used currently. 

6) The Giesekus constitutive model used currently utilizes additive decompo-
sition of ( )0

dσ  into ( )( )0
d s
σ  and ( )( )0

d p
σ , the solvent and polymer deviatoric 

stresses. Newton’s law of viscosity is used to describe constitutive theory for 
( )( )0

d s
σ  while ( )0

dσ  in Equation (51) is replaced with ( )( )0
d p
σ . It has been shown 

[8] [9] that this decomposition and the use of ( )( )0
d s
σ  and ( )( )0

d p
σ  in the con-

stitutive theories as described above is not supported by classical continuum me-
chanics. Thus, we do not use their additive decomposition, hence ( )0

dσ  and ( )1
dσ  

are maintained in Equation (51).  
For deriving Equations (49)-(51) constitutive theories, we consider 2n =  

and 1m = , that is 
( ) ( ) ( ) ( ) ( )( )1 1 1 2 0, , , ,d d dρ θ=σ σ γ γ σ                   (52) 

The use of representation theorem [10]-[21] to derive the constitutive theory 
for ( )1

dσ , a symmetric tensor of rank two, requires that we must consider the 
combined generators of the argument tensors of ( )1

dσ  in Equation (52) that are 
symmetric tensors of rank two as well as their combined invariants. The genera-
tors from each argument tensor ( )1 γ , ( )2 γ , and ( )0

dσ  that are symmetric ten-
sors of rank two are ( )1 γ , ( )( )21 γ ; ( )2 γ , ( )( )22 γ , and ( )0

dσ , ( )( )20
dσ  and their  

invariants (principal) are ( )1I
γ

, ( )1II
γ

, ( )1III
γ

; ( )2I
γ

, ( )2II
γ

, ( )2III
γ

, and ( )0
d

I
σ

, 

( )0
d

II
σ

, ( )0
d

III
σ

. In addition to these, there are combined generators and invariants  

of the argument tensors considering these tensors in sets, two at a time and three 
at a time, i.e. ( )1 γ , ( )2 γ ; ( )2 γ , ( )0

dσ ; ( )1 γ , ( )0
dσ , and ( )1 γ , ( )2 γ , ( )0

dσ . ρ  and 
θ  are tensors of rank zero, hence they do not contribute to the combined ge-
nerators and invariants. The constitutive theories in Equations (49)-(51) do not 
contain combined generators, hence we need not consider these in this deriva-
tion. Thus, a general constitutive theory for ( )1

dσ  based on generators of ( )1 γ , 
( )2 γ , and ( )0

dσ  would be 
( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2 21 1 1 2 20 1 2 3 4

20 05 6

d

d d

σ σ σ σ σ

σ σ

α α α α α

α α

= + + + +

+ +

I
    

 

σ γ γ γ γ

σ σ
     (53) 

in which coefficients iσα


: 0,1, ,6i =   in the linear combination in Equation 
(53) are functions of ρ , θ  and the invariants of ( )1 γ , ( )2 γ , and ( )0

dσ . The 
material coefficients are established by considering a Taylor series expansion of 

iσα


: 0,1, ,6i =   in the invariants of ( )1 γ , ( )2 γ , and ( )0
dσ  about a known 

configuration Ω , retaining only up to linear terms in the invariants. This con-
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stitutive theory will contain generators (as in Equation (53)) and invariants of 
( )1 γ , ( )2 γ , ( )0

dσ  as well as the products of the generators and invariants. This 
constitutive theory is the most comprehensive constitutive theory based on Equ-
ation (53). We use this constitutive theory as a guide for modifications of Equa-
tions (49)-(51). To derive Equations (49)-(51) as a subset of this single constitu-
tive theory, we retain generators ( )1 γ , ( )2 γ , and ( )0

dσ  and ( )( )20
dσ  in Equation 

(53), which reduces Equation (53) to (redefining coefficients in the linear com-
bination) 

( ) ( )( ) ( )( ) ( )( ) ( )( )21 1 2 0 00 1 2 3 4
d d d

σ σ σ σ σα α α α α= + + + +I
    

σ γ γ σ σ    (54) 

iσα


: 0,1, , 4i =   are functions of ρ , θ  and invariants of ( )1 γ , ( )2 γ , and 
( )0

dσ . Substituting the Taylor series expansion of iσα


: 0,1, , 4i =   in the inva-
riants of ( )1 γ , ( )2 γ , and ( )0

dσ  about a known configuration Ω  (retaining on-
ly up to linear terms in the invariants, for simplicity) and retaining only those 
generators and invariants that appear in Equations (49)-(51), we can obtain 

( ) ( )( ) ( )( ) ( )( ) ( )( )21 1 2 0 0
0 1 2 3 4d d da a a aσ= + + + +Iσ γ γ σ σ           (55) 

By dividing throughout by 1a , rearranging terms and defining new coeffi-
cients, we can obtain the following 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )20 1 1 2 0 1
22 2 trd d d

λλ η ηλ α κ
η

+ = + + + Iσ σ γ γ σ γ     (56) 

in which η  is viscosity, λ  is relaxation time, 2λ  is retardation time, κ  is 
second viscosity and α  is mobility factor. If the polymer is incompressible, 

( )( )1tr 0=γ , in which case Equation (56) yields Equations (49)-(51) when 
1) 2 0λ = , 0α = ; Maxwell  
2) 0α = ; Oldroyd-B  
3) 2 0λ = ; Giesekus  

we note that Equation (56) is in ( )0
dσ  and ( )1

dσ , not ( )( )0
d p
σ  and ( )( )1

d p
σ  as 

used currently. 
Remarks 
The decomposition 

( ) ( )( ) ( )( )0 0 0
d d ds p

= +σ σ σ                        (57) 

suggests that we substitute this into the entropy inequality to determine how to 
derive constitutive theories for ( )( )0

d s
σ  and ( )( )0

d p
σ . Using the reduced form of 

Inequality (41), we can write 

( )( ) ( )( )( )0 0 : 0d ds p θ
⋅

− + + ≤
q gDσ σ                  (58) 

At this stage, it is perhaps convenient to conclude that 
( )( ) ( )( ) ( ) ( )( ) ( )( )1 1 1 1, , , ,d d ds s s

ρ θ ρ θ= =Dσ σ σ γ             (59) 

and ( )( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 0, , , ,d d dp p
ρ θ=σ σ γ γ σ               (60) 

This assumption may not be reflective of the true physics due to the fact that a 
polymer is an isotropic, homogeneous fluid which has its own properties, and 
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constitutive theories that relates to the constituents (solvent and polymer) as 
done in Equations (59) and (60) are not possible. In references [8] [9], model prob-
lem studies are presented to demonstrate that the use of Equation (59) and Equa-
tion (60) instead of Equation (56) leads to drastically different results. 

3. Enhancement of Constitutive Theories Used Currently 

It is well known that the mathematical models for polymers utilizing constitutive 
theory in Equation (56) are deficient in simulating normal stresses perpendicular 
to the direction of flow, for example, in the case of flow between parallel plates in 

1x  direction, ( )1
11dσ  is in fairly good agreement with experiments but ( )1

22dσ  is 
zero in Maxwell and Oldroyd-B models. The constitutive theory in Equation (47) 
of orders m and n based on the integrity (complete basis) contains all possible 
generators and invariants due to the argument tensors of ( )m

dσ  in Equation (43). 
In the current constitutive theories ( 1m = , 2n = ) for deviatoric Cauchy stress 
tensor, we consider 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 0 1 2 0, , , , , , , ,d d d d dρ θ ρ θ= = Dσ σ γ γ σ σ γ σ         (61) 

The combined generators of the argument tensors of ( )1
dσ  in Equation (61) 

that are symmetric tensors of rank two are: 
( ) ( ) ( )( )21 1 11 2 2due to : ; or ,σ σ= =G G D D

 

γ γ γ                 (62) 

( ) ( ) ( )( )22 2 23 4due to : ;σ σ= =G G
 

γ γ γ                         (63) 

( ) ( ) ( )( )20 0 05 6due to : ;d d d
σ σ= =G G
 

σ σ σ                        (64) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )
( ) ( )

1 2 1 2 2 1 2 27

2 21 2 2 1 2 28 2 2

2 2 2 21 2 2 1 2 29

1 0 10 11 12 7 8 9

2 0 13 14 15 7

due to and :

due to and : , , similar to , ,

due to and : , , similar to ,

d

d

σ

σ

σ

σ σ σ σ σ σ

σ σ σ σ σ

= ⋅ + ⋅ = ⋅ + ⋅

= ⋅ + ⋅ = ⋅ + ⋅

= ⋅ + ⋅ = ⋅ + ⋅

G D D

G D D

G D D

G G G G G G

G G G G







     

    

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ σ

γ σ ( )8 9, σG G


(65) 

( ) ( ) ( )1 2 0due to , and dγ γ σ : can be obtained from [8] [9] 

and the combined invariants of the same argument tensors are 
( ) ( ) ( ) ( )1 1 2 2 3 3due to : tr ; tr ; trI I Iσ σ σ= = =D D D

  

γ                (66) 

( ) ( )( ) ( )( ) ( )( )2 32 2 2 24 5 6due to : tr ; tr ; trI I Iσ σ σ= = =
  

γ γ γ γ            (67) 

( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )
( ) ( )( )
( ) ( )( )

1 2 2 2 27 8 2

2 22 29 10 2

2 211

2 212

due to , or , : tr , tr

tr , tr

tr

tr

I I

I I

I

I

σ σ

σ σ

σ

σ

= ⋅ = ⋅

   = ⋅ = ⋅   
   

= ⋅ + ⋅

= ⋅ − ⋅

D D D

D D

D D

D D

 

 





γ γ γ γ γ

γ γ

γ γ

γ γ

 (68) 
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( ) ( ) ( )
( ) ( ) ( )

1 0

2 0

due to , : : = 13,14, ,18 similar to : 7,8, ,12

due to , : : = 19,20, , 24 similar to : 7,8, ,12

j j
d

j j
d

I j I j

I j I j

σ σ

σ σ

=

=

 

 

 

 

γ σ

γ σ
 

( ) ( ) ( )1 2 0due to , and dγ γ σ : can be obtained from [8] [9] 

In the currently used constitutive theories, we use generators: 1σ =G D


,  
( )23σ =G



γ  and ( )( )206
d

σ =G


σ . First invariants of tensors D , ( )2 γ , and ( )0
dσ , 

i.e. ( )tr D , ( )( )2tr γ , and ( )( )0tr dσ  could have been used but are neglected in 
Equation (56). ( )tr D  in Equation (56) does not appear due to the incompres-
sibility assumption, but must be included in Equation (56) if the polymer is 
compressible. 

The constitutive theory in Equation (56) can be enhanced by using generators 
and invariants in Equations (62)-(68). Since D  is a fundamental measure of 
deformation rate, our first choice must include the generators and invariants re-
lated to D  that are not present in Equation (56). This suggests that we must 
consider the addition of generators 2D  and invariant ( )2tr D  in Equation 
(56). Thus, we must explore the new constitutive theory for Maxwell, Oldroyd-B, 
and Giesekus polymeric fluids, 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )2 20 1 2 0 2
2 1 32 2 trd d d

λλ η ηλ α η η
η

+ = + + + +D D D Iσ σ γ σ   (69) 

Determination of 1η  and 3η , i.e. calibration of Equation (69) requires expe-
riments. In the following we present two model problem studies: 1) fully devel-
oped flow between parallel plates and 2) a lid-driven square cavity. 

4. Complete Mathematical Model and Its Dimensionless  
Form 

For isothermal, incompressible flow, conservation of mass, balance of linear mo-
mentum, and the constitutive theories are given by (using contravariant Cauchy 
stress tensor, ( )0σ ) 

( )ˆ ˆˆ ˆ 0
t
ρ ρ∂
+ ⋅ =

∂
v∇                        (70) 

( )( )T0
ˆ ˆ ˆˆ ˆ ˆ ˆ 0b

d
D p
Dt

ρ ρ+ + ⋅ − ⋅ =
v F σ∇ ∇                (71) 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )220 1 0 2
2 1 32

ˆˆ ˆ ˆˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2 tr
ˆd d d
λλ η ηλ α η η
η

+ = + + + +D D D Iσ σ γ σ  (72) 

Hat (^) over all quantities indicate that they have their usual dimensions (or 
units). We choose the following reference quantities (with zero subscript) and 
dimensionless variables (without hat). 

( )
( )0

0

0 0 0 0 0

3 01
1 3 0

0 0 0 0 0

ˆˆ ˆ ˆ ˆ
; ; ; ;

ˆˆˆ
; ; ; ;

d
d

b

pp
L v p

L
t

v F

ρρ
ρ τ

ηηηη η η
η η η

= = = = =

= = = = =

x vx v

FF

σ
σ

       (73) 

Using Equation (73) in Equations (70)-(72), we can obtain the following di-
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mensionless form for the conservation of mass, balance of linear momentum, and 
the constitutive theories. 

( ) 0
t
ρ ρ∂
+ ⋅ =

∂
v∇                        (74) 

( )( )T00 0 0 0
2 2 2
0 0 0 0 0

0b
d

L F pD p
Dt v v v

τ
ρ ρ

ρ ρ
     

+ + ⋅ − ⋅ =     
     

v F σ∇ ∇     (75) 

( ) ( )( ) ( )( )
( )( ) ( )

( )

0 1 0 0 0
2 2

0 0 0 0 0

22 200 0 0
12

0 0 0 0

2
20 0

32
0 0

2 2

tr

d d

d

v
De De

L L v

v vDe
L L

v
L

η η
η η

τ ρ

η
α η

η η τ

η
η

τ

   
+ = +   

   
  

+ +   
   
 

+  
 

D

D

D I

σ σ γ

σ     (76) 

If we define 

( )( )

0 0 0 1 0 2 0 0 0
2 10 1 30 3

0 0 0 0 0

2
0 0 0 0

ˆ ˆ
; ; ; ;

characteristic kinetic energy CKE

v L v v v v
Re De De

L L L L

p v

ρ λ λ
η η η η

η

τ ρ

   
= = = = =   

   
= =

 (77) 

Then using Equation (77), we can write Equations (74)-(76) as 

( ) 0
t
ρ ρ∂
+ ⋅ =

∂
v∇                        (78) 

( )( )T00 0
0 2

0

0b
d

L FD p
Dt v

ρ ρ
 

+ + ⋅ − ⋅ = 
 

v F σ∇ ∇            (79) 

( ) ( )( ) ( )( ) ( )( )

( )

20 1 002
2

0 0

2 210 30

22

tr

d d d
vDe DeDe

Re Re L

Re Re

ηη α
η η

η η

 
+ = + +  

 

+ +

D

D D I

σ σ γ σ
   (80) 

Equations (78)-(80) constitute the complete enhanced mathematical model 
for incompressible, isothermal flow of polymeric fluids in 3  and are used in 
the model problem studies. We refer to this model as model B in the model 
problem studies.  

5. Model Problems 

In this section we consider two boundary value problems: fully developed flow 
between parallel plates and a square lid-driven cavity. Solutions are presented for 
Maxwell, Oldroyd-B, and Giesekus fluids using the new, enhanced constitutive 
theories presented in this paper. Results obtained using the new constitutive 
theory are compared with the constitutive models used currently to demonstrate 
the benefits of using enhanced constitutive theories for the deviatoric Cauchy stress 
tensor derived in this paper. In both model problems, we use the following ma-
terial coefficients and reference values. 

Maxwell and Oldroyd-B Fluids: 

https://doi.org/10.4236/am.2022.1311058


K. S. Surana, T. J. Ezell 
 

 

DOI: 10.4236/am.2022.1311058 932 Applied Mathematics 
 

3
0 0 0 ˆ0.015 m, 0.015325 m s, 998.2 kg m ,L v ρ ρ= = = =  

( )

( ) ( )

3 4
0

4
1 2

0
0

0
2

2 0 0 0 0

ˆ ˆ1.002 10 Pa s, 9.018 10 Pa s,
ˆ ˆˆ 1.002 10 Pa s, 0.1 s, 0.05 s 0 for Maxwell ,

0, 0.97879 s, 229, 0.10217,

= 0.051085 0 for Maxwell , CKE

s

p

L
t Re De

v

De p v

η η η

η λ λ

α

τ ρ

− −

−

= = × ⋅ = × ⋅

= × ⋅ = =

= = = = =

= =

 

(Parallel plates)  

1 3ˆ ˆη η=  are 0%, 5%, 10%, 15%, and 20% of 3ˆ ˆ ˆ 1.002 10 Pa ss pη η η −= + = × ⋅  
(0.0, 0.501, 1.002, 1.503, 2.004) × 10−4 Pa·s 

(Lid-driven cavity)  

1 3ˆ ˆη η=  are 0%, 0.2%, 1%, 5%, and 20% of 3ˆ ˆ ˆ 1.002 10 Pa ss pη η η −= + = × ⋅  
(0.0, 2.004, 10.02, 50.1, 200.4) × 10−6 Pa·s 

Giesekus Fluid: 
3

0 0

1 2

ˆ ˆ ˆ800 kg m , 1.426 Pa s, 0.002 Pa s,
ˆ ˆˆ 1.424 Pa s, 0.06 s, 0, 0.15

s

p

ρ ρ η η η

η λ λ α

= = = = ⋅ = ⋅

= ⋅ = = =
 

(Parallel plates) 0 0.015 mL = , 0 0.015325 m sv =  

1 3ˆ ˆη η=  are 0%, 5%, 10%, 15%, and 20% of ˆ ˆ ˆ 1.426 Pa ss pη η η= + = ⋅  
(0.0, 0.0713, 0.1426, 0.2139, 0.2852) Pa·s 

( )20
0 0 0 0 0

0

0.97879 s, 1.2896, 0.613, CKE
L

t Re De p v
v

τ ρ= = = = = =  

(Lid-driven cavity) 0 0.1 mL = , 0 0.025 m sv =  

1 3ˆ ˆη η=  are 0%, 2.5%, 5%, 7.5%, and 10% of ˆ ˆ ˆ 1.426 Pa ss pη η η= + = ⋅  
(0.0, 0.03565, 0.0713, 0.10695, 0.1426) Pa·s 

( )20
0 0 0 0 0

0

4 s, 1.403, 0.025, CKE
L

t Re De p v
v

τ ρ= = = = = =  

5.1. Mathematical Model in 2  

The expanded forms of the conservation of mass, balance of linear momentum, 
and the constitutive theories in 2  for boundary value problems are given by 
(in the absence of body forces) 

0u v
x y

ρ
 ∂ ∂

+ = ∂ ∂ 
                        (81) 

( )( ) ( )( )0 0
11 12

0
d du u pu v

x y x y y

σ σ∂ ∂∂ ∂ ∂
+ + − − =

∂ ∂ ∂ ∂ ∂
             (82) 

( )( ) ( )( )0 0
12 22

0
d dv v pu v

x y y y y

σ σ∂ ∂∂ ∂ ∂
+ + − − =

∂ ∂ ∂ ∂ ∂
             (83) 

Explicit expressions for three constitutive equations for ( )0
11dσ , ( )0

22dσ , and 
( ) ( )0 0
12 21d dσ σ=  can be obtained using Equation (80) and the following. 
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( )
( ) ( )

( ) ( )

0 0
0 11 12

0 0
12 22

;d d
d

d d

u u
x y

L
v v
x y

σ σ
σ

σ σ

∂ ∂ 
   ∂ ∂    = =     ∂ ∂     ∂ ∂ 

           (84) 

( )
( )

( ) ( )
0

T1 0 0d
d d d

D
L L

Dt

σ
σ σ σ

 
         = + +                  (85) 

( ) ( ) ( )0 0 0
d d dD

u v
Dt x y

σ σ σ     ∂ ∂     = +
∂ ∂

              (86) 

( ) ( )T

1

1
21

2 1
2

u u v
x y x

D L L
u v v
y x y

γ

  ∂ ∂ ∂
+  ∂ ∂ ∂        = = + =         ∂ ∂ ∂ + ∂ ∂ ∂   

   (87) 

( ) ( ) ( ) ( )
T

2 1 1 1u v L L
x y

γ γ γ γ
 ∂ ∂          = + + +            ∂ ∂ 

        (88) 

This mathematical model is used to present numerical studies for a lid-driven 
cavity. 

Solutions of the model problems are obtained using finite element methods 
based on the residual functional (least squares finite element method) [22] in 
which the local approximations are in ( ),k p eH Ω  higher order scalar product 
spaces permitting a higher degree of local approximation as well as desired higher 
order global differentiability [23]. 

5.2. Mathematical Model in 1  

We consider fully developed flow between parallel plates. If x  is the direction 
of flow, then for fully developed flow, the flow is independent of the x  coordi-
nate, hence the gradients of the dependent variables in the x  direction are zero. 
The complete mathematical model in 1  can be obtained using Equations 
(78)-(80). We can write the following (neglecting body forces) for the balance of 
linear momentum and the constitutive theories. 

( )( )

( )( )

0
12

0
22

0

0

d

d

p
x y

p
y y

σ

σ

∂∂
− =

∂ ∂

∂∂
− =

∂ ∂

                       (89) 

and the constitutive equations are given by 

( ) ( )( )( ) ( )( ) ( )( )2 20 0 0 00
11 12 11 12

0 0

2 2
10 30

2

1 1
4 2

d d d d
vu DeDe

y L

u u
Re y Re y

σ σ α σ σ
η η

η η

 ∂  + = +  ∂   

   ∂ ∂
+ +   ∂ ∂   
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( ) ( )( )
( ) ( )( ( ) ( ) )

0 0
12 22

0 0 0 00
11 12 12 22

0 0

d d

d d d d

u uDe
y Re y

v De
L

ησ σ

α σ σ σ σ
η η

 ∂ ∂
+ =  ∂ ∂ 

 
+ + 
   

( ) ( )( ) ( )( )
2

2 20 0 002
22 12 22

0 0

2 2
10 30

2

1 1
4 2

d d d
vDe u De

Re y L

u u
Re y Re y

η
σ α σ σ

η η

η η

  ∂  = + +   ∂     

   ∂ ∂
+ +   ∂ ∂   

         (90) 

6. Model Problem Studies 

In this section, we present converged finite element solutions of fully developed 
flow between parallel plates and lid-driven cavities for currently used Maxwell, 
Oldroyd-B and Giesekus models as well as using the enhanced constitutive model 
presented in this paper. In the finite element method based on the residual func-
tional (least squares method) used here, when the approximation spaces are mi-
nimally conforming (or of orders higher than minimally conforming), the proximity 
of the L2-norm of the residual functional is an absolute measure of the accuracy 
and convergence of the computed solutions. In all numerical studies presented 
here, the L2-norm of the residuals of ( )410O −  or lower is achieved, ensuring 
convergence of the computed solutions to the true solution of the BVP. Since the 
mathematical model consists of nonlinear partial differential equations, the solu-
tion of the nonlinear algebraic system of equations resulting from the residual func-
tional formulation is obtained using Newton’s linear method with line search 
described in the following. 

6.1. Solution Procedure for Nonlinear Boundary Value Problems 

An unconditionally stable (Variationally Consistent (VC) [22]) finite element 
formulation of nonlinear BVPs can be constructed using the residual functional. 
For simplicity, we illustrate the details for a single nonlinear differential equation 
describing the BVP. Let 

0A f xφ − = ∀ ∈Ω ⊂   

be a BVP. Let T e

e
Ω = Ω



 be the discretization of Ω  in which e e eΩ = Ω ∪Γ   

is a finite element e with a closed boundary eΓ . Let e
hφ  be the approximation 

of φ  over eΩ  (local approximation) and hφ  
e

h h
e

φ φ=


                          (91) 

be the approximation of φ  over TΩ . Then the residual function E is defined 
by 

T
hE A f xφ= − ∀ ∈Ω                     (92) 

The residual functional ( )hI φ  can be written as 
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( ) ( ) ( )( ) ( ) ( )( ) ( ), = ,

In which

T e
e e e e e e

h h h h h h
e e

e e e
h

I E E E E I

E A f x

φ φ φ φ φ φ

φ

Ω Ω
= =

= − ∀ ∈Ω

∑ ∑
    (93) 

If ( )hI φ  is differentiable in its arguments (i.e. hφ ), then ( ) 0hIδ φ =  is a 
necessary condition for an extremum of ( )hI φ . 

( ) ( ) ( ) ( )2 , 2 , 2 2 0T
e e e e e

h h
e e

I E E I E E g gδ φ δ δ φ δ
Ω

= = = = = =∑ ∑ ∑  (94) 

From Equation (94), we can confirm that Euler’s equation from ( ) 0hIδ φ =  
is in fact the BVP. Thus, a function of hφ  that yields the extremum of ( )hI φ  is 
also a solution to the BVP. 

When the differential operator is nonlinear, then g in Equation (94) is a non-
linear function of hφ . We must find a solution hφ  iteratively that satisfies Eq-
uation (94). This is accomplished using Newton’s linear method with line search 
[22]. The final result is that if 0

hφ  is the assumed starting solution then the im-
proved solution hφ  is given by 

0
h h hφ φ α φ= + ∆                          (95) 

( )( ) 00

121
2 hh

h hI g
φφ

φ δ φ
−

∆ = −                     (96) 

in which 

( ) ( ) ( )2 2 , 2 , 0e e
h

e
I E E E Eδ φ δ δ δ δ= >∑              (97) 

( ) ( )00 2 is such that h hI Iα φ φ< < ≤                 (98) 

and hφ  is considered to be converged when 

( )max i hi
g φ ≤ ∆                        (99) 

where Δ is a preset tolerance for computed zero (generally O(10−6) or lower). If 
the tolerance in Equation (99) is not satisfied, 0

hφ  is set to hφ  and Equations 
(95)-(99) are repeated until Equation (99) is satisfied. Since Newton’s linear me-
thod has quadratic convergence, an accuracy of Δ = O(10−6) is generally achieved 
in less than five iterations. 

This approach for one differential equation can be easily extended to m diffe-
rential equations. Let ; 1, 2, ,iE i m=   be the residual functions resulting from 
each partial differential equation. Then the residual functional I for TΩ  can be 
written as 

( ) ( )
1 1 1

, ,T e

m m m
e e e

i i i i i
i i e i e

I E E E E I
Ω Ω

= = =

= = =∑ ∑∑ ∑∑            (100) 

Remaining details follow the details given above for one equation. 

6.2. Model Problem I: Fully Developed Flow between Parallel  
Plates 

We consider fully developed flow between parallel plates separated by a dimen-
sionless distance of 2H =  ( ˆ 3H =  cm). Figure 1 shows a schematic, discreti-
zation, and boundary conditions. 
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Figure 1. Fully developed flow between parallel plates. 

 
The origin is located halfway between the centers of the plates. The upper half 

of the domain ( 0 1x≤ ≤ ) is discretized using ten three node p-version hierarchical 
elements. Since the mathematical models for all three fluids consist of a system of 
first order partial differential equations, the local approximation of class ( )1 eC Ω  
ensure integrals are in the Riemann sense for the discretizations TΩ . Initial 
studies show that a p-level of 5 (p = 5) is sufficient to yield a residual functional I 
for TΩ  of O(10−6) or lower. Newton’s linear method with line search converges  
in approximately 2 to 4 iterations with a tolerance of 610−∆ =  on max ii

g .  

We choose 1 3ˆ ˆ 0%η η= = , 5%, 10%, 15%, and 20% of 0η  giving 1 3ˆ ˆ 0.0η η= = , 
0.0000501, 0.0001002, 0.0001503, and 0.0002004 for Maxwell and Oldroyd-B flu-
ids and 1 3ˆ ˆ 0.0η η= = , 0.0713, 0.1426, 0.2139, and 0.2852 for Giesekus fluid. The 
flow is pressure driven with 0.0133p x∂ ∂ = −  for Maxwell and Oldroyd-B fluids 
and 0.2p x∂ ∂ = −  for Giesekus fluid. Figures 2(a)-(d) show plots of velocity u , 
stresses ( )0

12dσ , ( )0
11dσ , and ( )0

22dσ  versus y  for different values of 1 3ˆ ˆη η=  for 
Maxwell fluid. Velocity u  reduces with increasing values of 1 3ˆ ˆη η= . Shear 
stress ( )0

12dσ  remains unaffected as it only depends on p x∂ ∂ . ( )0
22dσ  is zero 

when 1 3ˆ ˆ 0η η= =  (standard Maxwell model), but progressively increasing val-
ues of 1 3ˆ ˆη η=  yield progressively increasing values of ( )0

22dσ  for 0 1y≤ ≤ . 
( )0
11dσ  has nonzero values for 1 3ˆ ˆ 0η η= =  (as expected). The ( )0

11dσ  values al-
so increase along 0 1y≤ ≤  for progressively increasing values of 1 3ˆ ˆη η= . 

Figures 3(a)-(d) show plots of u , ( )0
12dσ , ( )0

11dσ , and ( )0
22dσ  versus y  for 

different values of 1 3ˆ ˆη η=  (same as those used for Maxwell model) for Ol-
droyd-B model. Velocity u  versus y  and ( )0

12dσ  versus y  plots are almost 
identical to those of the Maxwell model. ( )0

22dσ  versus y  in Figure 3(d) is ex-
actly identical to that of the Maxwell model. This is expected as ( )0

22dσ  is zero 
for Maxwell as well as Oldroyd-B models when 1 3ˆ ˆ 0η η= = , thus ( )0

22dσ  in 
both models is only due to 1 3ˆ ˆ 0η η= ≠  and has the same mechanism. ( )0

11dσ  in 
the Oldroyd-B model is lower than that of the Maxwell model for all values of 

1 3ˆ ˆη η=  due to additional dissipation. 
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Figure 2. Fully developed flow between parallel plates: Maxwell. 
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Figure 3. Fully developed flow between parallel plates: Oldroyd-B. 
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Figure 4. Fully developed flow between parallel plates: Giesekus. 
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The currently used Giesekus model naturally produces ( )0
22 0dσ ≠  when  

1 3ˆ ˆ 0η η= =  (Figure 4(d)), but ( )0
22dσ  values are enhanced (increased) for pro-

gressively increasing 1 3ˆ ˆη η= . ( )0
11dσ  (Figure 4(c)) in this model is an order of 

magnitude higher than Maxwell or Oldroyd-B models, thus we do not observe 
an appreciable change in ( )0

22 0dσ ≠  versus y  for increasing values of 1 3ˆ ˆη η= . 
We note that for an order of magnitude higher pressure gradient in the Giesekus 
model as compared to Maxwell and Oldroyd-B models, the velocity u  is an 
order of magnitude lower. An exploded plot of u  versus y  in Figure 4(a) 
shows progressively decreasing velocity u  versus y  for progressively increas-
ing 1 3ˆ ˆη η= . 

6.3. Model Problem II: Lid-Driven Square Cavity 

Figure 5(a) shows a schematic of the square 1 × 1 (dimensionless) lid-driven 
cavity with the lid moving at velocity 1.0u = . Boundary conditions are also 
shown in Figure 5(a). Figure 5(b) shows a graded discretization of the cavity 
using 36 p-version hierarchical elements with a higher order global differentia-
bility local approximation. 1 3ˆ ˆ 0%η η= = , 0.2%, 1%, 5%, and 20% of 0η  giving 

1 3ˆ ˆ 0.0η η= = , 0.000002004, 0.00001002, 0.0000501, and 0.0002004 for Maxwell 
and Oldroyd-B fluids and 1 3ˆ ˆ 0%η η= = , 2.5%, 5%, 7.5%, and 10% of 0η  giving 

1 3ˆ ˆ 0.0η η= = , 0.03565, 0.0713, 0.10695, and 0.1426 for Giesekus fluid are used in 
the calculations. For solutions of class ( )11 eC Ω  with 5p pζ η= = , Newton’s 
linear method with line search yielded a residual functional I for TΩ  of at most 
O(10−4) within 12 iterations for these values of 1 3ˆ ˆη η= . 

We only present results at 0.5x =  as a function of y  (vertical center line) 
for the sake of brevity. Figures 6(a)-(f) show plots of velocities u , v , stresses 

( )0
11dσ , ( )0

22dσ , ( )0
12dσ , and pressure p  as a function of y  at 0.5x = . Veloci-

ty v , stress ( )0
22dσ , and pressure p  show the most dependence on progres-

sively increasing values of 1 3ˆ ˆη η= . Similar plots for Oldroyd-B and Giesekus 
fluids are shown in Figures 7(a)-(f) and Figures 8(a)-(f) respectively. Oldroyd-B 
model results parallel to those of the Maxwell model. In the case of the Giesekus 
model, we see significant dependence of velocity v , stresses ( )0

11dσ , ( )0
22dσ , and 

pressure p  on progressively increasing values of 1 3ˆ ˆη η= . 
Remarks 
Based on the numerical studies presented for the two model problems, we can 

make the following remarks. 
1) In the model problem study involving fully developed flow between parallel 

plates, the new constitutive theory for ( )0
dσ  produces nonzero, progressively 

increasing ( )0
22dσ  with progressively increasing 1 3ˆ ˆη η=  values. This is more 

dramatic for Maxwell and Oldroyd-B models in which currently used constitu-
tive theories yield ( )0

22 0dσ = .  
2) In model problem 1 for the currently used Giesekus model, ( )0

22 0dσ ≠ . The 
new constitutive theory results in additional ( )0

11dσ  and ( )0
22dσ  stresses greater 

than their values for 1 3ˆ ˆ 0η η= =  from the currently used constitutive model.  

https://doi.org/10.4236/am.2022.1311058


K. S. Surana, T. J. Ezell 
 

 

DOI: 10.4236/am.2022.1311058 941 Applied Mathematics 
 

 
Figure 5. Lid drive square cavity. 
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Figure 6. Square lid-driven cavity: Maxwell. 
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Figure 7. Square lid-driven cavity: Oldroyd-B. 
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Figure 8. Square lid-driven cavity: Giesekus. 
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3) ( )0
12dσ  remains unaffected in model problem 1 as it can be theoretically 

determined using p x∂ ∂  (as is evident from Figures 2(b)-4(b)).  
4) The influence of the new constitutive theory is also evident in lid-driven 

cavity. However, due to complex flow physics, clear and concise observations 
(similar to model problem 1) are difficult in this model problem.  

5) Fully developed flow between parallel plates serves as a good model prob-
lem for calibration, i.e. determination of 1 3ˆ ˆη η= . Measurements of ( )0

22dσ  for a 
given p x∂ ∂  can be simulated numerically using varied values of 1 3ˆ ˆη η= . Val-
ues of 1 3ˆ ˆη η=  yielding the same ( )0

22dσ  as in the experiment are the correctly 
calibrated values of 1 3ˆ ˆη η= .  

7. Summary and Conclusions 

In the following, we summarize the work presented in the paper and draw some 
conclusions. 

1) A new, enhanced constitutive theory has been presented for Maxwell, Ol-
droyd-B, and Giesekus constitutive models for incompressible polymeric fluids. 
This constitutive theory is designed to correct the major deficiency in Maxwell 
and Oldroyd-B models of zero normal stress perpendicular to the direction of 
the flow. These models produce ( )0

22 0dσ =  when x  (direction 1) is the direc-
tion of the flow as shown in the case of fully developed flow between parallel plates.  

2) Constitutive theory derivations are initiated using entropy inequality and a 
general constitutive theory of orders ( ),m n  (in stress and strain rates) is derived 
based on the integrity (complete basis) and representation theorem.  

3) It is shown that the currently used constitutive models for polymeric fluids 
are a small subset of the general constitutive theory of orders ( ),m n  based on 
the integrity presented in this paper.  

4) The enhancement of the currently used constitutive models is accomplished 
by retaining additional generators and invariant(s) in the constitutive theory from 
the integrity. The rationale is presented for retaining the additional generator 

2
D    and additional invariant ( )2

tr D    in the enhanced constitutive theory.  
5) The new, enhanced constitutive theory yields additional nonzero  
( ) ( )0 0
11 22d dσ σ= , but shear stress ( )0

12dσ  remains unaffected. The magnitude of 
( )0
11dσ  and ( )0

22dσ  depend upon the material coefficients 1̂η  and 3η̂ . In the 
present work, a simple case of 1 3ˆ ˆη η=  is considered. However, 1̂η  and 3η̂  can be 
two additional material coefficients that can be determined experimentally.  

6) We remark that the generator 
2

D    and invariant ( )2
tr D    are part of 

the integrity, hence will always be present in a constitutive theory for ( )0
dσ  if it 

would have been based on the complete basis or integrity. Extremely simplified 
forms of currently used Maxwell, Oldroyd-B, and Giesekus models that do not 
include enough terms from the integrity create this deficiency of normal stress 
perpendicular to the flow direction being zero.  

7) In this paper, we have shown that the inclusions of 
2

D    and ( )2
tr D    

from the integrity help us in restoring nonzero normal stress perpendicular to 
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the flow direction.  
8) In the first model problem (parallel plates), we clearly show that nonzero, 

progressively increasing values of ( )0
22dσ  are obtained for progressively increas-

ing values of 1 3ˆ ˆη η= . Velocity u  and stress ( )0
11dσ  change accordingly while 

( )0
12dσ  remains unaffected as it only depends upon p x∂ ∂ .  

9) The influence of the new constitutive theory for lid-driven cavities has also 
been illustrated for progressively increasing values of 1 3ˆ ˆη η= .  

10) Fully developed flow between parallel plates can be used to calibrate the 
model, i.e. determination of 1 3ˆ ˆη η=  as two material coefficients.  
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