
Intelligent Information Management, 2010, 2, 46-52
doi:10.4236/iim.2010.21006 Published Online January 2010 (http://www.scirp.org/journal/iim)

Copyright © 2010 SciRes IIM

Adaptive Parallel Computation for Blind Source

Separation with Systolic Architecture

H. JEONG1, Y. KIM2, H. J. JANG3
1Department of EEE, POSTECH, Pohang, South Korea

2Digital media & Communication R&D Center, Samsung Electronics, Suwon, South Korea
3Department of Information Technology POSTECH, Pohang, South Korea

Email: {hjeong, ddda, hjj0501}@postech.ac.kr

Abstract

The purpose of Blind Source Separation (BSS) is to obtain separated sources from convolutive mixture in-
puts. Among the various available BSS methods, Independent Component Analysis (ICA) is one of the rep-
resentative methods. Its key idea is to repetitively update and calculate the measures. However, dealing with
the measures obtained from multi-array sensors causes obstacles for real-time use. In order to solve this
problem, it is necessary to convert the software implementation of BSS algorithm into the hardware archi-
tecture. Through the use of hardware architecture, the BSS algorithm can efficiently work within a relatively
short time. In this study, we investigate a practical method using a parallel algorithm and architecture for
hardware use in a blind source separation. We design a feedback network for real-time speech signal proc-
essing. The network is composed of forward and updates algorithms. The architecture of the network is sys-
tolic and therefore it is suitable for parallel processing. We only have to add and connect modules for scaling.
This paper covers the process from the systolic design of BSS to the hardware implementation using Xilinx
FPGAs. The simulation results of our proposed implementation are also represented in the experimental sec-
tion. In that section, our architecture returns satisfying results with robust qualities.

Keywords: BSS, convolutive mixtures, VLSI, field programmable gate array (FPGA)

1. Introduction

In the signal processing area, BSS is considered to be
one of the fundamental problems. BSS assumes a Multi-
Input-Multi-Output (MIMO) model. It is primarily based
upon the principle that we can recover independent
sources from mixture inputs. Among various forms of
BSS, the simplest form is when mixtures are assumed to
be linear instantaneous mixtures of sources [1]. In the
1980’s, Jutten and Herault [2] formalized the problem
and there have been many models proposed to solve this
problem [3–6].

From the many available models, this paper suggests
the use of K. Torkkola’s feedback network [7–9] algo-
rithm because it has the ability to deal with convolutive
mixtures. For the learning algorithm, we propose T. No-
mura’s extended Herault-Jutten method [10] algorithm.

By using these algorithms, the linear systolic architecture
of an efficient BSS method can be designed and imple-
mented in this paper. This architecture is composed of
forward and updates processors. In the chip, we con-
nected each processing element in a systolic manner.
Therefore, we can easily scale up the architecture by
adding more identical chips. Fabricated FPGA enables us
to reduce the development period and verify the algo-
rithms using hardware at a low cost, even though we can-
not optimize the hardware implementation with FPGA
when compared to Application-Specific-Integrated-Circuit
(ASIC). Accordingly, we use a Very-High-speed-inte-
grated-circuit-Hardware-Description-Language (VHDL)
and fabricated FPGA in order to design the BSS chip.

Our paper mainly consists of three parts: Section 2 de-
rives an algorithm for a feedback network, and Section 3
shows detailed architecture of the feedback network. Se-

H. JEONG ET AL. 47

ctions 4 and 5 show the simulation results and conclusion.

2. Backgrounds

This section provides an introduction to convolutive
mixing model. Then, it focuses on K. Torkkola’s feed-
back network algorithm and T. Nomura’s extended He-
rault-Jutten method, which is implemented in software
by Choi and Cichocki’s method [6,11].

2.1. Convolved Mixture Model

In a convolved mixture model in which a real speech
signal is assumed, the acoustic environment imposes a
different impulse response between each source and ar-
ray sensor. Given N statistically independent speech
sources s(t)=[s1(t), s2(t), . . . , sN(t)]T and M signals
measured at the array sensors x(t)=[x1(t), x2(t), . . . ,
xM(t)]T , the mixing model is represented as

,
0

(t) = () (), for i=1,2,...,m,.
n

i ij p j
p j

x h t s t p

 (1)

Here, {hij,p} is the room impulse response between the
jth source and the ith microphone and xi(t) denotes the
signal present at the ith microphone at time instant t. If
we simplify the model to two mixture inputs of two in-
dependent sources (M = 2, N = 2) in the Z domain, the
model can be shown as

1 1 12 2

2 21 1 2

() () () (),

() () () ().

X z S z H z S z

X z H z S z S z

 (2)

2.2. Feedback Network Algorithm

[7,12] suggests a feedback network algorithm as follows

, ,
0

(t) = (t) () (), for i, j=1,2,...,n,
L n

i i i j p j
p j i

y x w t y t p

(3)

where wij,p is the weight between yi(t) and yj(t − p). (4) is
the abbreviated form of the output vector y(t).

0

1

0
1

() () () (),

() { () () ()}.

L

P
p

L

P
P

y t x t W t y t p

I W t x t W t y t p

 (4)

1 1 21 2

2 2 12 1

() () () (),

() () () ().

Y z X z W z Y z

Y z X z W z Y z

 (5)

Figure 1 and (5) represent (4) in the Z-domain. If the
feedback network performs perfect separation (Y (z) =
S(z)), then we can easily derive the weight from (2) and (5):

Figure 1. Feedback network for the separation of convolut-
ively mixing sources

12 12

21 21

() (),

() ().

W z H z

W z H z

 (6)

The existence of this solution requires H12(z) and
H21(z) to have stable inverses. If these are not fulfilled,
the network is unable to achieve separation.

In [2], the Jutten-Herault algorithm suggested a learn-
ing algorithm of weight W for instantaneous mixtures.
[10] extended the Jutten-Herault algorithm and proposed
the blind separation model, based upon the assumption
that observable signals are convolutively mixed. The
learning algorithm updates W using the following form.

() (1) (()) (()),T
P P tW t W t f y t g y t p (7)

In (7), ηt is the learning rate, and f(.) and g(.) are odd
symmetric functions. The update rule is based on the
gradient descent method. It is easy to see that the corre-
lation between f(yi(t)) and g(yj(t − p)) is removed when
the learning algorithm achieves convergence. In this pa-
per, we use the signum function as f(.) and the 1st order
linear function as g(.) for easy hardware implementation.

2.3. The Modified Algorithm

By assuming that the speech signals are quasi-stationary,
we can use the rth frame input xr(t) and the (r−1)th frame
weight wr−1(t) in order to obtain the rth frame output yr(t).
The rth frame weight wr(t) is also obtained from yr(t).
With this logic, we can modify the forward and update
process Equations (4) and (7) as follows

() () (1) ()

0

1(1) () (1)() ()
0

1

() () () ()

() { () ()}

L
r r r r

p
P

L
r r r t r

P
P

y t x t W t y t p

I W t x t W y t p

 (8)

() (1) () ()() (1) (()) (())r r r r
P P tW t W t f y t g y t p T (9)

Copyright © 2010 SciRes IIM

H. JEONG ET AL.

Copyright © 2010 SciRes IIM

48

Figure 2. Timing diagram of modified algorithm

Figure 2 represents a schematic diagram of the modi-

fied algorithm.

3. Systolic Architecture for Feedback

Network

In this section, we will establish systolic architecture for
the forward and update process. Each sub part contains
overall architecture and internal architecture. The com-
putational complexity is also analyzed in this section.

3.1. Systolic Architecture for Forward Processor

First, we will introduce the overall architecture of the
forward process. This architecture is spatially efficient
because it can accommodate more time delays with a

given limited space. The below is the cost of the forward
processor fi,p(t) at time index t.

,0

, , 1 , ,0 ,

() 0,

() () (() ())

 for p=1,2,...,L.

i

i p i p ij p j ij ji p i

f t

f t f t w y t p w w y t p

(10)

We can combine (4) and (10) as follows.
1

1 12,0 21,0 1 12,0 2 1,

1
2 21,0 12,0 2 21,0 1 2,

() (1) { () () ()},

() (1) { () () ()}.

x L

x L

y t w w x t w t f t

y t w w x t w t f t

(11)

Figure 3 is the systolic array architecture of the for-
ward processor. This architecture calculates the PE cost
with L + 1 processing elements. When p = 1, 2, ..., L, the
pth PE uses inputs y1(t−p), y2(t−p), and fi,p−1(t) from (p−
1)th PE, and weights w12,p and w21,p in order to updates PE
cost fi,p(t) by (10). At the end of the array p = L+1, y1(t)
and y2(t) are calculated by using (11). This array is very
scalable and can be easily implemented. This array al-
lows us to considerably reduce computational complexity.
Each PE consists of 2 adders, 2 registers, and 2 multipli-
ers. The internal structure of the PE is represented in
Figure 4.

Figure 3. Linear systolic array for forward processor

Figure 4. The internal structure of the processing element

H. JEONG ET AL. 49

Figure 5. Linear systolic array for the update processor

Figure 6. The internal structure of update element

The forward process of the feedback network algo-

rithm consists of two linear arrays of (L + 1) PEs. 4L
buffers are required for output y(t) and the cost of PE
needs 2L buffers. Since each output y(t) is By bits long, a
memory with O(LBy) bits is needed. In this manner, each
PE must store the partial cost of Bp bit and thus addi-
tional O(LBp) bits are needed. Therefore, we need the
total O(LBy + LBp) bits.

3.2. Systolic Architecture for the Update Processor

This part shows the architecture used for weighted up-
dates. This architecture also consists of processing ele-
ments with a similar operation. In the update processor,

we call the processing element Update Element (UE). If
the number of outputs is two (n = 2), (7) can be written as

12, 12, 1 2

21, 21, 2 1

() (1) (()) (),

() (1) (()) ().
P P t

P P t

w t w t f y t y t p

w t w t f y t y t p

 (12)

Figure 5 shows the systolic array for the update proc-
essor. In the figure, 2L + 1 UEs are connected in series
when the number of PE is L. We also define the forward
process clock and the update process clock as CLKf and
CLKu = 2*CLKf respectively. The even UEs are only
active at even times. Similarly, the odd UEs are only
active at odd times. The UE equation can be represented
as

1 2

2 1

() (1) ([1 / 2()])) [1 / 2()]),

() (1) ([1/ 2()])) [1 / 2()]).
P P t

P P t

t t y t p L y t p L

t t y t p L y t p L

 (13)

Here, [x] denotes the maximum integer which is not
over x.

If the number of PE is L, the architecture of the update
consists of 2L + 1 UEs shown in Figure 5. We denote the

forward process clock as CLKf , and the update clock is
CLKu = 2*CLKf . At even times, only even UEs are acti-
ve and the odd UEs are inactive. At odd times, the UE play
the roles in a reversed way. The UE equation has the form

1 2

2 1

() (1) ([1 / 2()])) [1 / 2()]),

() (1) ([1/ 2()])) [1 / 2()]).
P P t

P P t

t t y t p L y t p L

t t y t p L y t p L

 (14)

where [x] is the maximum integer which is not over x.
Figure 6 is the internal structure for the UE. The Pth UE
receives two inputs y1(t) and y2(t), and returns the up-

Figure 6 shows the internal structure of the UE of the
feedback network. The pth UE receives tw

dated UE cost up(t) as a final result. In the figure, f() is
the signum function, f(y1(t)) = sign(y1(t)).

o inputs y (t)
an

num function, f(y1(t)) = sign(y1(t)). The update of the

1

d y2(t), then one input becomes f(y1(t)). Finally, it up-
dates the UE cost up(t). In this architecture, f() is the sig-

Copyright © 2010 SciRes IIM

H. JEONG ET AL. 50

feedback network algorithm uses a linear array of (2L +
1) UEs. The output y(t) and the cost of UE need 4L + 2
and 2L + 1 buffers respectively. If UE stores the partial
cost of Bu bits, the total O(LBy + LBw) bits are sufficient.

3.3. Overall Architecture

Figure 7 and Table 1 represent the whole feedback net-

 that there are two mixture
puts from two independent sources. The goal of the

esigned the system for implementa-
(Xilinx Virtex-II XC2V8000). The

evice utilization can be seen in Table 3. We fully tested

work architecture. We assume
in
architecture is to reduce the correlation between the in-
puts as much as possible. In 3.3, we represent the overall
feedback network algorithm. The system consists of Ini-
tialization, Forward process, Update process, and Wei-
ghts update. The initialization step is for setting the state
suitable for the beginning of the system. At this step, all
of the weights and costs of processing elements are set to
zero. Through the forward process step and the update
process step, all of the weights are calculated and re-
loaded recursively for the separation.

4. Experiments

Using VHDL, we d
tion with an FPGA
d
the chip with and without noise. In this section, we tested
our method based upon a VHDL simulation. We also tes-
ted the chip by extensively using ModelSim simulation

Figure 7. Overall block diagram of feedback network ar-
chitecture

F

igure 9. Two mixtures of speech signals

F
work

igure 10. Two recovered signals using the feedback net-

Table 1. Algorithm overall of recurrent network architec-
ture

(1) Initialization
for

t=0
All the weights are initialized as zeros : Wp=0
The cost of processing elements are initialized as
zeros : f1,p=0, f2,p=0

(2) Forward process
for

T=
For p=1,2,…,L:

1,
2.,,,,N-1

f1,p= f1,p-1+(w12,py2(t-p)+ w12,0 w21,py1(t-p))
f2,p= f2,p-1+(w21,py1(t-p)+ w21,0 w12,py2(t-p))

y1(t)=(1- w12,0 w21,0)
-1 {x1(t)+ w12,0 x2(t)+f1,L }

y2(t)=(1- w -1 + w21,0 x1(t)+f2,L }

For p=L:

21,0 w12,0) {x2(t)

(3) Update process
for

T=N,
N+1,…,

3N-1

2

u (t)= u) y2([1/2(t+p-L)])

If t=even, then for p=even :
up(t)= up(t-1)-ηtφ(y1([1/2(t-p-L)])) y ([1/2(t+p-L)])
else t=odd, then for p=odd :

(t-1)-η φ(y1([1/2(t-p-L)])p p t

(4) W ights updat e e
f

t=3N 12,0 21,0 0

…,L : w21,p=up(t)

or For p=-L,…,-2,-1 : w12,p=u-p(t)
or p=0 : w = w =u (t) F

For p=1,2,

Table 2. The experim NRI with noisy mix-
tu

ental results of S
res

 SNRI1(dB) SNRI2(dB)
Clean 2.7061 4.9678
10dB 2.6225 4.9605
5dB 2.4396 4.7541
0dB 2.3694 4.6506
-5dB 1.9594 3.9757

SNR
(signal to ratio)
= 10log10(s/n)

-10dB 0.1486 3.2470 Figure 8. Two original speech signals

Copyright © 2010 SciRes IIM

H. JEONG ET AL. 51

T su tput implementa-
tion (L=40)

Forward
Processor

Update
Processor

Overall

able 3. Re lts from two-inputs two-ou

Number of Slices 32,692 20,629 44,027
Number of Slice FF 46,184 5,801 52,391

Number of 3 inputs LUTs 49,883 36,490 87,394
Max. frequency 63.529M Hz zHz 86,760M 63.529MH

Figure 11. The convergence of SNRI (‘o’: SNRI1, ‘+’:
SNRI2)

tools. It is designed to interface with the PLX9656 PCI
chip. For the parametric setup, we fixed L = 100 and ηt =
10−7. As a performance measure, we used a signal to
noise ratio improvement by Choi and Cichocki [11], as

2

10 2

{(() ()) }
10log

{(() ()) }
i i

i
i i

E x k s k
SNRI

E y k s k

 (15)

Figure 8 shows two different sampled speech signals,

the mixture records of s(t) and the recovered
y(t) and are shown in Figure 9 and 10 respec-

vely. In this test, the experiment results are SNR

Figure 11 is the graph showing the convergence
learning for the feedback network. In the f
tem seems to converge at r 100.

us hardware and soft-
are implementation differ significantly it will be diffi-

le, to migrate software implementa-
ons directly to hardware implementations. The hard-

ignals,” in ICNN, 1997.

 “Blind separation of source, part
 based on neuromimetic archi-

tecture,” Signal Processing, Vol. 24, pp. 1–10, 1991.

ng, Vol. 11, No. 3, pp. 204–215, 2003.

Malay Gupta, Hiroshi Sawada, and Shoji
tio-Temporal FastICA Algorithms for the

Blind Separation of Convolutive Mixtures,” IEEE Trans-

”, MLSP

which were used for this simulation. The received signals
x(t) are
signals
ti I =1

2.7061, SNRI2 = 4.9678.
We have also tested the performance of our method in

noisy environments. In Table 2, the system shows a ro-
bust performance even in high SNR (above 0dB only

actions Audio, Speech and Language Processing, Vol. 15,
No. 5, pp. 204–215, 2007.

).
of

EURASIP Journal on Applied Signal Processing, pp.
1260–1277, 2007.

[6] M. Ounas, S. Chitroub, R. Touhami, M. C. E. Yagoub,
“Digital circuit design of ICA based implementation of
FPGA for real time Blind Signal Separation

igure, our sys-

5. Conclusions

In this paper, the systolic algorithm and architecture of a
feedback network have been derived and tested with
VHDL code simulation. This scheme is fast and reliable
since the architectures are highly regular. In addition, the
processing can be done in real time. The full scale sys-

tem can be easily obtained by the number of PEs, and
UEs. Our system has two inputs but we will extend it for
N inputs.

Because the algorithms ed for
w
cult, if not impossib
ti
ware needs different algorithms for the same application
in terms of performance and quality. We have presented a
fast and efficient VLSI architecture and implementation
of BSS. The architecture has the form of a linear systolic
array using simple PEs that are connected with only
neighboring PEs and thus can be easily scalable with
more identical chips.

6. Acknowledgement

This work has been supported by Brain Korea 21 project
and Ministry of Knowledge Economy under Human Re-
sources Development Program for Convergence Robot
Specialists.

7. References

[1] T. Lee, A. Bell, and R. Orglmeister, “Blind source separa-

tion of real world s

[2] C. Jutten and J. Herault,
I: An adaptive algorithm

[3] F. Asano, S. Ikeda, M. Ogawa, and H. Asoh, and N. Ki-
tawaki, “Combined Approach of Array Processing and
Independent Component Analysis for Blind Separation of
Acoustic Signals,” IEEE Transactions Speech and Audio
Processi

[4] S. C. Douglas,
Makino, “Spa

[5] R. Aichner, H. Buchner, F. Yan and W. Kellermann, “A
real-time blind source separation scheme and its applica-
tion to reverberant and noisy acoustic environments,”

2008. IEEE Workshop on, October 2008.

[7] K. Torkkola, “Blind separation of convolved sources
based on information maximization,” Proceedings IEEE
Workshop Neural Networks for Signal Processing, pp.
423–432, 1996.

[8] K. Torkkola, “Blind separation of delayed source based
on information maximization,” Proceedings ICASSP, At-
lanta, GA, pp. 7–10, May 1996.

Copyright © 2010 SciRes IIM

H. JEONG ET AL.

Copyright © 2010 SciRes IIM

52

et?” IEEE Workshop on Independent

Jutten Network

y problem,” in Proeeding In-
[9] K. Torkkola, “Blind Source Separation for Audio Sig-

nal-Are we there y
Component Analysis and Blind Signal Separation, Aus-
sois, France, January 1999.

[10] T. Nomura, M. Eguchi, H. Niwamoto, H. Kokubo and M.
Miyamoto, “An Extension of The Herault-
to Signals Including Delays for Blind Separation,” IEEE
Neurals Networks for Signal Processing, VI, pp. 443–452,
1996.

[11] S. Choi and A. Cichocki, “Adaptive blind separation of
speech signals:Cocktail part
ternational Conference Speech Processing (ICSP’97), pp.
617–622, August 1997.

[12] N. Charkani and Y. Deville, “Self-adaptive separation of
convolutively mixed signals with a recursive structure -
part I: Stability analysis and optimization of asymptotic
behaviour.” Signal Processing, Vol.73, No. 3, pp. 255–
266, 1999.

