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Abstract 

The purpose of Blind Source Separation (BSS) is to obtain separated sources from convolutive mixture in-
puts. Among the various available BSS methods, Independent Component Analysis (ICA) is one of the rep-
resentative methods. Its key idea is to repetitively update and calculate the measures. However, dealing with 
the measures obtained from multi-array sensors causes obstacles for real-time use. In order to solve this 
problem, it is necessary to convert the software implementation of BSS algorithm into the hardware archi-
tecture. Through the use of hardware architecture, the BSS algorithm can efficiently work within a relatively 
short time. In this study, we investigate a practical method using a parallel algorithm and architecture for 
hardware use in a blind source separation. We design a feedback network for real-time speech signal proc-
essing. The network is composed of forward and updates algorithms. The architecture of the network is sys-
tolic and therefore it is suitable for parallel processing. We only have to add and connect modules for scaling. 
This paper covers the process from the systolic design of BSS to the hardware implementation using Xilinx 
FPGAs. The simulation results of our proposed implementation are also represented in the experimental sec-
tion. In that section, our architecture returns satisfying results with robust qualities. 
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1. Introduction 
 
In the signal processing area, BSS is considered to be 
one of the fundamental problems. BSS assumes a Multi- 
Input-Multi-Output (MIMO) model. It is primarily based 
upon the principle that we can recover independent 
sources from mixture inputs. Among various forms of 
BSS, the simplest form is when mixtures are assumed to 
be linear instantaneous mixtures of sources [1]. In the 
1980’s, Jutten and Herault [2] formalized the problem 
and there have been many models proposed to solve this 
problem [3–6]. 

From the many available models, this paper suggests 
the use of K. Torkkola’s feedback network [7–9] algo-
rithm because it has the ability to deal with convolutive 
mixtures. For the learning algorithm, we propose T. No-
mura’s extended Herault-Jutten method [10] algorithm. 

By using these algorithms, the linear systolic architecture 
of an efficient BSS method can be designed and imple-
mented in this paper. This architecture is composed of 
forward and updates processors. In the chip, we con-
nected each processing element in a systolic manner. 
Therefore, we can easily scale up the architecture by 
adding more identical chips. Fabricated FPGA enables us 
to reduce the development period and verify the algo-
rithms using hardware at a low cost, even though we can-
not optimize the hardware implementation with FPGA 
when compared to Application-Specific-Integrated-Circuit 
(ASIC). Accordingly, we use a Very-High-speed-inte-
grated-circuit-Hardware-Description-Language (VHDL) 
and fabricated FPGA in order to design the BSS chip. 

Our paper mainly consists of three parts: Section 2 de-
rives an algorithm for a feedback network, and Section 3 
shows detailed architecture of the feedback network. Se- 
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ctions 4 and 5 show the simulation results and conclusion. 
 
2. Backgrounds 
 
This section provides an introduction to convolutive 
mixing model. Then, it focuses on K. Torkkola’s feed-
back network algorithm and T. Nomura’s extended He-
rault-Jutten method, which is implemented in software 
by Choi and Cichocki’s method [6,11]. 
 
2.1. Convolved Mixture Model 
 
In a convolved mixture model in which a real speech 
signal is assumed, the acoustic environment imposes a 
different impulse response between each source and ar-
ray sensor. Given N statistically independent speech 
sources s(t)=[s1(t), s2(t), . . . , sN(t)]T and M signals 
measured at the array sensors x(t)=[x1(t), x2(t), . . . , 
xM(t)]T , the mixing model is represented as 

,
0

(t) = ( ) ( ),  for i=1,2,...,m,.
n

i ij p j
p j

x h t s t p


      (1) 

Here, {hij,p} is the room impulse response between the 
jth source and the ith microphone and xi(t) denotes the 
signal present at the ith microphone at time instant t. If 
we simplify the model to two mixture inputs of two in-
dependent sources (M = 2, N = 2) in the Z domain, the 
model can be shown as 
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2.2. Feedback Network Algorithm 
 
[7,12] suggests a feedback network algorithm as follows 
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where wij,p is the weight between yi(t) and yj(t − p). (4) is 
the abbreviated form of the output vector y(t). 
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Figure 1 and (5) represent (4) in the Z-domain. If the 
feedback network performs perfect separation (Y (z) = 
S(z)), then we can easily derive the weight from (2) and (5): 

 

Figure 1. Feedback network for the separation of convolut-
ively mixing sources 
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The existence of this solution requires H12(z) and 
H21(z) to have stable inverses. If these are not fulfilled, 
the network is unable to achieve separation. 

In [2], the Jutten-Herault algorithm suggested a learn-
ing algorithm of weight W for instantaneous mixtures. 
[10] extended the Jutten-Herault algorithm and proposed 
the blind separation model, based upon the assumption 
that observable signals are convolutively mixed. The 
learning algorithm updates W using the following form. 

( ) ( 1) ( ( )) ( ( )),T
P P tW t W t f y t g y t p         (7) 

In (7), ηt is the learning rate, and f(.) and g(.) are odd 
symmetric functions. The update rule is based on the 
gradient descent method. It is easy to see that the corre-
lation between f(yi(t)) and g(yj(t − p)) is removed when 
the learning algorithm achieves convergence. In this pa-
per, we use the signum function as f(.) and the 1st order 
linear function as g(.) for easy hardware implementation. 
 
2.3. The Modified Algorithm 
 
By assuming that the speech signals are quasi-stationary, 
we can use the rth frame input xr(t) and the (r−1)th frame 
weight wr−1(t) in order to obtain the rth frame output yr(t). 
The rth frame weight wr(t) is also obtained from yr(t). 
With this logic, we can modify the forward and update 
process Equations (4) and (7) as follows 
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Figure 2. Timing diagram of modified algorithm 

 
Figure 2 represents a schematic diagram of the modi-

fied algorithm. 
 
3. Systolic Architecture for Feedback   

Network 
 
In this section, we will establish systolic architecture for 
the forward and update process. Each sub part contains 
overall architecture and internal architecture. The com-
putational complexity is also analyzed in this section. 
 
3.1. Systolic Architecture for Forward Processor 
 
First, we will introduce the overall architecture of the 
forward process. This architecture is spatially efficient 
because it can accommodate more time delays with a 

given limited space. The below is the cost of the forward 
processor fi,p(t) at time index t. 
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We can combine (4) and (10) as follows. 
1
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Figure 3 is the systolic array architecture of the for-
ward processor. This architecture calculates the PE cost 
with L + 1 processing elements. When p = 1, 2, ..., L, the 
pth PE uses inputs y1(t−p), y2(t−p), and fi,p−1(t) from (p− 
1)th PE, and weights w12,p and w21,p in order to updates PE 
cost fi,p(t) by (10). At the end of the array p = L+1, y1(t) 
and y2(t) are calculated by using (11). This array is very 
scalable and can be easily implemented. This array al-
lows us to considerably reduce computational complexity. 
Each PE consists of 2 adders, 2 registers, and 2 multipli-
ers. The internal structure of the PE is represented in 
Figure 4. 

 

 

Figure 3. Linear systolic array for forward processor 

 

 

Figure 4. The internal structure of the processing element 
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Figure 5. Linear systolic array for the update processor 

 

 

Figure 6. The internal structure of update element 

 
The forward process of the feedback network algo-

rithm consists of two linear arrays of (L + 1) PEs. 4L 
buffers are required for output y(t) and the cost of PE 
needs 2L buffers. Since each output y(t) is By bits long, a 
memory with O(LBy) bits is needed. In this manner, each 
PE must store the partial cost of Bp bit and thus addi-
tional O(LBp) bits are needed. Therefore, we need the 
total O(LBy + LBp) bits. 
 
3.2. Systolic Architecture for the Update Processor 
 
This part shows the architecture used for weighted up-
dates. This architecture also consists of processing ele-
ments with a similar operation. In the update processor, 

we call the processing element Update Element (UE). If 
the number of outputs is two (n = 2), (7) can be written as 
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Figure 5 shows the systolic array for the update proc-
essor. In the figure, 2L + 1 UEs are connected in series 
when the number of PE is L. We also define the forward 
process clock and the update process clock as CLKf and 
CLKu = 2*CLKf respectively. The even UEs are only 
active at even times. Similarly, the odd UEs are only 
active at odd times. The UE equation can be represented 
as 

1 2

2 1
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( ) ( 1) ( [1/ 2( )])) [1 / 2( )]).
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                      (13) 

Here, [x] denotes the maximum integer which is not 
over x. 

If the number of PE is L, the architecture of the update 
consists of 2L + 1 UEs shown in Figure 5. We denote the 

forward process clock as CLKf , and the update clock is 
CLKu = 2*CLKf . At even times, only even UEs are acti- 
ve and the odd UEs are inactive. At odd times, the UE play 
the roles in a reversed way. The UE equation has the form 

1 2

2 1

( ) ( 1) ( [1 / 2( )])) [1 / 2( )]),

( ) ( 1) ( [1/ 2( )])) [1 / 2( )]).
P P t

P P t
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                       (14)

where [x] is the maximum integer which is not over x. 
Figure 6 is the internal structure for the UE. The Pth UE 
receives two inputs y1(t) and y2(t), and returns the up-

Figure 6 shows the internal structure of the UE of the 
feedback network. The pth UE receives tw

dated UE cost up(t) as a final result. In the figure, f() is 
the signum function, f(y1(t)) = sign(y1(t)). 

o inputs y (t) 
an

num function, f(y1(t)) = sign(y1(t)). The update of the 

1

d y2(t), then one input becomes f(y1(t)). Finally, it up-
dates the UE cost up(t). In this architecture, f() is the sig-
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feedback network algorithm uses a linear array of (2L + 
1) UEs. The output y(t) and the cost of UE need 4L + 2 
and 2L + 1 buffers respectively. If UE stores the partial 
cost of Bu bits, the total O(LBy + LBw) bits are sufficient. 
 
3.3. Overall Architecture 
 
Figure 7 and Table 1 represent the whole feedback net-

 that there are two mixture 
puts from two independent sources. The goal of the 

esigned the system for implementa-
(Xilinx Virtex-II XC2V8000). The 

evice utilization can be seen in Table 3. We fully tested 

work architecture. We assume
in
architecture is to reduce the correlation between the in-
puts as much as possible. In 3.3, we represent the overall 
feedback network algorithm. The system consists of Ini-
tialization, Forward process, Update process, and Wei- 
ghts update. The initialization step is for setting the state 
suitable for the beginning of the system. At this step, all 
of the weights and costs of processing elements are set to 
zero. Through the forward process step and the update 
process step, all of the weights are calculated and re-
loaded recursively for the separation. 
 
4. Experiments 
 
Using VHDL, we d
tion with an FPGA
d
the chip with and without noise. In this section, we tested 
our method based upon a VHDL simulation. We also tes- 
ted the chip by extensively using ModelSim simulation  

 

 

Figure 7. Overall block diagram of feedback network ar-
chitecture 

 

 

 

F  

 

igure 9. Two mixtures of speech signals

 

F
work

igure 10. Two recovered signals using the feedback net-
 

 
Table 1. Algorithm overall of recurrent network architec-
ture 

(1) Initialization 
for 

t=0 
All the weights are initialized as zeros : Wp=0 
The cost of processing elements are initialized as 
zeros : f1,p=0, f2,p=0 

(2) Forward process 
for 

T=
For p=1,2,…,L: 

1, 
2.,,,,N-1 

f1,p= f1,p-1+(w12,py2(t-p)+ w12,0 w21,py1(t-p)) 
f2,p= f2,p-1+(w21,py1(t-p)+ w21,0 w12,py2(t-p)) 

y1(t)=(1- w12,0 w21,0)
-1 {x1(t)+ w12,0 x2(t)+f1,L } 

y2(t)=(1- w -1 + w21,0 x1(t)+f2,L } 

 
For p=L: 

21,0 w12,0)  {x2(t)

(3) Update process 
for 

T=N, 
N+1,…, 

3N-1 

2

u (t)= u ) y2([1/2(t+p-L)]) 

If t=even, then for p=even : 
up(t)= up(t-1)-ηtφ(y1([1/2(t-p-L)])) y ([1/2(t+p-L)]) 
else t=odd, then for p=odd : 

(t-1)-η φ(y1([1/2(t-p-L)])p p t

(4) W ights updat  e e
f

t=3N 12,0 21,0 0

…,L : w21,p=up(t) 

or For p=-L,…,-2,-1 : w12,p=u-p(t) 
or p=0 : w = w =u (t) F

For p=1,2,

 
Table 2. The experim NRI with noisy mix-
tu

ental results of S
res 

 SNRI1(dB) SNRI2(dB) 
Clean 2.7061 4.9678 
10dB 2.6225 4.9605 
5dB 2.4396 4.7541 
0dB 2.3694 4.6506 
-5dB 1.9594 3.9757 

SNR 
(signal to ratio) 
= 10log10(s/n) 

-10dB 0.1486 3.2470 Figure 8. Two original speech signals 
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T su tput implementa-
tion (L=40) 

 
Forward 
Processor 

Update 
Processor 

Overall 

able 3. Re lts from two-inputs two-ou

Number of Slices 32,692 20,629 44,027 
Number of Slice FF 46,184 5,801 52,391 

Number of 3 inputs LUTs 49,883 36,490 87,394 
Max. frequency 63.529M Hz zHz 86,760M  63.529MH

 

 

Figure 11. The convergence of SNRI (‘o’: SNRI1, ‘+’: 
SNRI2) 

 
tools. It is designed to interface with the PLX9656 PCI 
chip. For the parametric setup, we fixed L = 100 and ηt = 
10−7. As a performance measure, we used a signal to 
noise ratio improvement by Choi and Cichocki [11], as 

2
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{( ( ) ( )) }
10log

{( ( ) ( )) }
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i
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E x k s k
SNRI
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Figure 8 shows two different sampled speech signals,

the mixture records of s(t) and the recovered 
y(t) and are shown in Figure 9 and 10 respec-

vely. In this test, the experiment results are SNR

Figure 11 is the graph showing the convergence 
learning for the feedback network. In the f
tem seems to converge at r 100. 
 

us hardware and soft-
are implementation differ significantly it will be diffi-

le, to migrate software implementa-
ons directly to hardware implementations. The hard-

ignals,” in ICNN, 1997. 

 “Blind separation of source, part 
 based on neuromimetic archi-

tecture,” Signal Processing, Vol. 24, pp. 1–10, 1991. 

ng, Vol. 11, No. 3, pp. 204–215, 2003. 

Malay Gupta, Hiroshi Sawada, and Shoji 
tio-Temporal FastICA Algorithms for the 

Blind Separation of Convolutive Mixtures,” IEEE Trans-

”, MLSP 

 
which were used for this simulation. The received signals 
x(t) are 
signals 
ti I  =1

2.7061, SNRI2 = 4.9678. 
We have also tested the performance of our method in 

noisy environments. In Table 2, the system shows a ro-
bust performance even in high SNR (above 0dB only

 
actions Audio, Speech and Language Processing, Vol. 15, 
No. 5, pp. 204–215, 2007. 

). 
of 

EURASIP Journal on Applied Signal Processing, pp. 
1260–1277, 2007. 

[6] M. Ounas, S. Chitroub, R. Touhami, M. C. E. Yagoub, 
“Digital circuit design of ICA based implementation of 
FPGA for real time Blind Signal Separation

igure, our sys-
  

5. Conclusions 
 
In this paper, the systolic algorithm and architecture of a 
feedback network have been derived and tested with 
VHDL code simulation. This scheme is fast and reliable 
since the architectures are highly regular. In addition, the 
processing can be done in real time. The full scale sys-

tem can be easily obtained by the number of PEs, and 
UEs. Our system has two inputs but we will extend it for 
N inputs. 

Because the algorithms ed for 
w
cult, if not impossib
ti
ware needs different algorithms for the same application 
in terms of performance and quality. We have presented a 
fast and efficient VLSI architecture and implementation 
of BSS. The architecture has the form of a linear systolic 
array using simple PEs that are connected with only 
neighboring PEs and thus can be easily scalable with 
more identical chips. 
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