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Abstract 

In this paper, we propose new variants of Newton’s method based on quadrature formula and power mean for 
solving nonlinear unconstrained optimization problems. It is proved that the order of convergence of the 
proposed family is three. Numerical comparisons are made to show the performance of the presented meth-
ods. Furthermore, numerical experiments demonstrate that the logarithmic mean Newton’s method outper-
form the classical Newton’s and other variants of Newton’s method. MSC: 65H05. 
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1. Introduction 
 
The celebrated Newton’s method 
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used to approximate the optimum of a function is one of 
the most fundamental tools in computational mathemat-
ics, operation research, optimization and control theory. 
It has many applications in management science, indus-
trial and financial research, chaos and fractals, dynamical 
systems, stability analysis, variational inequalities and 
even to equilibrium type problems. Its role in optimiza-
tion theory can not be overestimated as the method is the 
basis for the most effective procedures in linear and 
nonlinear programming. For a more detailed survey, one 
can refer [1–4] and the references cited therein. The idea 
behind the Newton’s method is to approximate the objec-
tive function locally by a quadratic function which agr- 
ees with the function at a point. The process can be re-
peated at the point that optimizes the approximate func-
tion. Recently, many new modified Newton-type meth-
ods and their variants are reported in the literature [5–8]. 
One of the reasons for discussing one dimensional opti-
mization is that some of the iterative methods for higher 
dimensional problems involve steps of searching extrema 
along certain directions in  [8]. Finding the step size, n

n , along the direction vector involves solving the 

sub problem to minimize
nd

  n n n n1f x f x d  

n

, which 

is a one dimensional search problem in   [9]. Hence 

the one dimensional methods are most indispensable and 
the efficiency of any method partly depends on them 
[10]. 

The purpose of this work is to provide some alterna-
tive derivations through power mean and to revisit some 
well-known methods for solving nonlinear unconstrained 
optimization problems. 
 
2. Review of Definition of Various Means 
 
For a given finite real number  , the th power   

mean m  of positive scalars  and b , is defined as 

follows [11] 
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It is easy to see that 

For 1   ,  1m  (Harmonic mean) 
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For 1  ,   (Arithmetic mean) 1m
2

a b
 .    (5) 

For 0  , we have 
0

lim m a
 b ,          (6) 

which is the so-called geometric mean of ,  and 
may be denoted by 

a b

gm . 
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For given positive scalars  and , some other 
well-known means are defined as 

a b

N  (Heronian mean) 
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C  (Contra-harmonic mean) 
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 (Centroidal mean) 
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 (Logarithmic mean) 
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3. Variants of Newton’s Method for  

Nonlinear Equations 
 
Recently, some modified Newton’s method with cubic 
convergence have been developed by considering differ-
ent quadrature formula for computing integral, arising in 
the Newton’s theorem [12] 
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Weerakoon and Fernando [13] re-derived the classical 
Newton’s method by approximating the indefinite inte-
gral in (11) by rectangular rule. Suppose that 1nx x   is 

the root of the equation , we then put the left 

side  in the identity (11) and approximate 

the integral by the rectangular rule according to which 
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Therefore, from (11) and (12), they obtain the well- 
known Newton’s method. Weerakoon and Fernando [13] 
further used trapezoidal approximation to the definite 
integral according to which 
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to obtain modified Newton’s method given by 
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is the Newton’s iterate. In contrast to classical Newton’s 
method, this method uses the arithmetic mean of  nf x  

and  *
1nf x  , instead of  nf x . Therefore, it is called 

arithmetic mean Newton’s method [13]. By using differ-
ent approximations to the indefinite integral in the New-
ton’s theorem (11), different iterative formulas can be 
obtained for solving nonlinear equations [14]. 
 
4. Variants of Newton’s Method for     

Unconstrained Optimization Problems 
 
Now we shall extend this idea for the case of uncon-
strained optimization problems. Suppose that the func-
tion  f x  is a sufficiently differentiable function. Let 

   is an extremum point of  f x , then x   is a 

root of 

  0f x                   (16) 

Extending Newton’s theorem (11), we have 
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Approximating the indefinite integral in (17) by the 
rectangular rule according to which 
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and using  1 0nf x  , we get 
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This is a well-known quadratically convergent New-
ton’s method for unconstrained optimization problems. 

Approximating the integral in (17) by the trapezoidal 
approximation 
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in combination with the approximation 
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nf x   and  1 0nf x   ,  

we get the following arithmetic mean Newton’s method 
given by 
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for unconstrained optimization problems. This formula is 
also derived independently by Kahya [5]. 

If we use the midpoint rule of integration in (20) 
(Gaussian-Legendre formula with one knot) [15], then 
we obtain a new formula given by 
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mula (23) as follows:  
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            (22) 1) For 1   (arithmetic mean), Formula (23) corre-

sponds to cubically convergent arithmetic mean New-
ton’s method 

This formula may be called the midpoint Newton’s 
formula for unconstrained optimization problems. Now 
for generalization, approximating the functions in cor- 
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rection factor in (21) with a power means of  na f x  

and , we have  1
N

nb f x 

2) For 1    (harmonic mean), Formula (23) cor-
responds to a cubically convergent harmonic mean 
Newton’s method 
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3) For 0   (geometric mean), Formula (23) cor-
responds to a new cubically convergent geometric mean 
Newton’s method (23) 
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  (26) This family may be called the th power   mean it-

erative family of Newton’s method for unconstrained op- 
timization problems. 

4) For 
1

2
  , Formula (23) corresponds to a new 

cubically convergent method 

Special cases: 
It is interesting to note that for different specific values 

of  , various new methods can be deduced from For- 
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5) For 2   (root mean square), Formula (23) cor-
responds to a new cubically convergent root mean square 
Newton’s method 
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Some other new third-order iterative methods based on 

heronian mean, contra-harmonic mean, centrodial mean, 

logarithmic mean etc. can also be obtained from Formula 

(21) respectively.  

6) New cubically convergent iteration method based 

on heronian mean is 
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7) New cubically convergent iteration method based 
on contra-harmonic mean is 
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9) New cubically convergent iteration method based 
on logarithmic mean is 
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8) New cubically convergent iteration method based 
on centroidal mean is 

5. Convergence Analysis 
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Theorem 5.1 Let I   be an optimum point of a suf-

ficiently differentiable function   :f x I    for 

an open interval I . If the initial guess 0x  is suffi-
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ciently close to  , then for   , the family of meth-

ods defined by (23) has cubic convergence with the fol-
lowing error equation 
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Proof: Let   be an extremum of the function  f x  

(i.e.  and  f  0   0f    ). Since  f x  is 

sufficiently differentiable function, expanding  nf x , 
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Using (35) and (36) in (19), we get 
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Case 1) For  \ 0  , Formula (23) may be written 

as 
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Using binomial theorem and the Formulae (35), (36) 
and (37) in (38), we finally obtain 
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Case 2) For 0  , Formula (23) can be written as 
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Upon using (35), (36) and (37), we obtain 
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From (40) and (41), we obtain 
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Therefore, it can be concluded that for all   , the 
th power   mean iterative family (23) for unconstra- 

ined optimization problems converges cubically. On sim- 
ilar lines, we can prove the convergence of the remaining 
Formulae (29)-(32) respectively. 
 
6. Further Modifications of the Family (23) 
 
The two main practical deficiencies of Newton’s method, 
the need for analytic derivatives and the possible failure 
to converge to the solutions from poor starting points are 
the key issues in unconstrained optimization problems. 
Family (23) and other methods (29)-(32) are also vari-
ants of Newton’s method and will fail miserably if at any 
stage of computation, the second order derivative of the 
function is either zero or very close to zero. The defect of 
Newton’s method can easily be eliminated by the simple 
modification of iteration process. Applying the Newton’s 
method (19) to a modified function: 

     np x xf x e f x


               (43) 

where p . This function has better behavior as well 

as the same optimum point as  f x ; we shall get the 

modified Newton’s method given by 
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This is a one parameter family of Newton’s iteration 
method for unconstrained optimization problems and do 
not fail if   0nf x   like Newton’s method. In order 

to obtain the quadratic convergence, the sign of en-
tity should be chosen so that denominator is largest in 

magnitude. On similar lines, we can also modify some of 
the above-mentioned cubically convergent variants of 
Newton’s methods for unconstrained optimization prob-
lems. Kahya [5] has also derived similar formula by us-
ing the different approach based on the ideas of Mamta et 
al. [16]. Similar approaches for finding the simple root of 
a nonlinear equation or system of equations have been 
used by Ben-Israel [17] and, Kanwar and Tomar [18]. 

p

 
7. Numerical Results 
 
In this section, we shall present the numerical results 
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Table 1. Test problems 

No. Examples Initial guess Optimum point    

7.0 
1 4 3 28.5 31.0625 7.59 45x x x x     10.0 

8.278462409973145 

-1.0 
2 23xe x  1.0 

0.204481452703476  

1.0 
3  2

cos 2x x   3.0 
2.35424280166260  

0.5 
4 310.2

6.2 , 0x x
x

   
2.0 

0.860054146289254  

32.0 
5 

3774.522
2.27 181.529, 0x x

x
    

45.0 
40.777259826660156 

 
Table 2. Comparison table 

Examples NM  AMN  HMN  GMN
Method

(27) 
RMSNM HERNM CNM  TMNM  LMNM

1 5 4 3 5 4 4 4 4 4 3 
 5 4 3 4 4 4 4 4 4 3 

2 5 3 4 5 3 4 3 4 3 3 
 5 3 4 5 4 4 4 3 3 2 

3 5 4 4 5 4 4 4 4 4 2 
 4 3 3 4 3 3 3 3 3 2 

4 6 4 4 6 4 4 4 5 4 3 
 5 4 4 5 4 4 4 4 4 3 

5 5 4 4 5 4 4 4 4 4 3 
 5 4 3 5 4 4 4 4 4 3 

 
obtained by employing the iterative methods namely 
Newton’s method ( ), arithmetic mean Newton’s 
method (

NM
AMN ), harmonic mean Newton’s method 

( HMN

RMSNM

), geometric mean Newton’s method ( ), 
method (27), root mean square Newton’s method 
( ), heronian mean Newton’s method (

GMN

HENM
N

C

), 
contra-harmonic mean Newton’s method ( ), cen-
troidal mean Newton’s method ( ), logarithmic 
mean Newton’s method (LMNM) respectively to com-
pute the extrememum of the function given in Table 1. 
We use the same functions as Kahya [6, 7]. The results 
are summarized in Table 2. We use   as toler-

ance. Computations have been performed using 

CM

1510

TMN

  in 
double precision arithmetic. The following stopping cri-
teria are used for computer programs: 

1) 1n nx x   ,    2)  1nf x  . 

 
8. Conclusions 
 
It is well-known that the quadrature formulas play an 
important and significant role in the evaluations of defi-
nite integrals. We have shown that these quadrature for-
mulas can also be used to develop some iterative meth-
ods for solving unconstrained optimization problems. 
Further, this work proposes a family of Newton-type 

methods based on nonlinear means and can be used to 
solve efficiently the unconstrained optimization prob-
lems. Proposed family (23) unifies some of the most 
known third-order methods for unconstrained optimiza-
tion problems. It also provides many more unknown 
processes. All of the proposed third-order methods re-
quire three function evaluations per iterations so that 
their efficiency index is , which is better than the 
one of Newton’s method 1.41 . Finally experimental 
results showed that the harmonic mean and logarithmic 
mean Newton’s method are the best among the proposed 
iteration methods. 

1.44
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