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Abstract 
The objective of this study is to analyze a chemostat model of very simple 
type with the Haldane expression of growth rate and a variable yield coeffi-
cient. The proposed modified model is analyzed qualitatively and quantita-
tively. Analytic conditions for stability and optimality are determined for 
washout and no washout equilibrium solutions. One of the main focuses of 
the study is to determine parameter values for which Hopf Bifurcations occur 
in a bioreactor. It has been shown that the maximum stable non-washout 
equilibrium exits at a residence time under suitable parameter values. Hopf 
bifurcation is observed at three different conditions of the parameters. 
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1. Introduction 

Researchers have been studying extensively to improve product yield in chemical 
reactors or bio-reactors for many years. To gain desired scale of production, it is 
necessary to find effective engineering instruments and mechanism in a 
bio-reactor. One such engineering instrument is application of oscillatory exter-
nal force. Since implementation of oscillatory external force is costly, it has very 
limited use in industry [1] [2]. Many researchers have studied the oscillatory 
operations in more than one reactors combined in series [3] [4] [5] [6] [7]. In an 
oscillatory operation, the values of the parameters in a model are determined for 
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which a steady concentration of substrate into one reactor stimulates the succes-
sive reactors periodically. This automated periodic forcing of a reactor requires 
no extra energy or logistics. This is why it is very important to determine the 
dynamic conditions for which natural oscillations occur in a bio-reactor. So that 
it can be used to force another bio-reactor periodically without any external 
forcing [3] [6]. Since we would like to use natural oscillations of a reactor to 
force another one arranged in series periodically, it is practical to determine suf-
ficient conditions for which natural oscillations occur in the first reactor. Nelson 
and Sidhu [8] believed that it is better to determine a benchmark for the maxi-
mum output from a single reactor before investigating a two-reactor system. Ba-
lakrishnan and Yang [9] examined a single bio-reactor model by direct integra-
tion on limited range of parameter values. On the other hand, Nelson and Sidhu 
[8] studied the same model analytically by exploiting theory of bifurcation and 
path following methods. 

2. Model Equations  

Our aim is to investigate a microbial system, the process of using systems biolo-
gy to understand microbes and their environment, where growth of the cell mass 
(X) depends on substrate species (S). In this study, the specific growth rate is 
taken from the Haldane kinetic model with variable yield coefficient. We are 
studying a simple chemostat model to optimize the cell mass concentration as a 
function of residence time in a reactor and similar kind of study of microbial 
systems can be found in [1] [3] [6] [9].  

2.1. Dimensional Model Description  

The microbial system which we consider in this study is represented by the fol-
lowing Equations (1)-(4)  

( ) ( )
( )0

d
d

SSV F S S VX
t Y S

µ
= − −                   (1) 

( ) ( )0
d
d
XV F X X VX S
t

µ= − +                  (2) 

with the specific growth rate  

( ) ( )
2

m

s
i

S t
S

SK S
K

µ
µ =

+ +
                     (3) 

and a Monod expression with variable Yield Coefficients  

( ) ( ), , 0Y S Sα β α β= + >                   (4) 

where F is the flow rate (l·hr−1), Ks is the half-saturation constant (g·l−1), Ki is the 
inhibitory constant (g·l−1), V is the volume (l), X0 is the initial cell mass concen-
tration (g·l−1), S0 is the initial substrate concentration (g·l−1), mµ  is the maxi-
mum specific growth rate (/h), α(-) and β(g·l−1) are constant yield coefficients. 
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2.2. Dimensionless Model 

To make the above model dimensionless, we use the transformations *

s

SS
K

= , 

*

s

XX
Kα

= , and *
mt tµ=  and we get the following dimensionless model con-

taining the parameters * * * *
0 0, , ,S X τ β , and *γ .  

( )( )
* ** * *
0

* * * * *2 * *

d
d 1 1

S SS S X
t S S Sτ γ β

−
= −

+ + +
             (5) 

* ** * *
0

* * * * *2

d
d 1

X XX S X
t S Sτ γ

−
= +

+ +
                 (6) 

where * *,m sV K
F
µ β

τ β
α

= = , and * s

i

K
K

γ = . 

We consider a chemostat setup consists of a sterile feed means that *
0X  will 

be zero and assume *τ  (residence time) as our primary bifurcation parameter. 
Our secondary bifurcation parameters are *

0S  (substrate concentration in the 
feed), *β  (dimensionless yield coefficient) which depends on specific microbial 
system and hence not so flexible for tuning, and *γ  (dimensionless inhibitory 
constant). We will denote the dimensional and dimensionless variables inter-
changeably by the same names and notations since they are connected by one to 
one relation. For example, “the yield coefficient” and “the dimensionless yield 
coefficient” will be denoted by the same notation β . 

3. Results 
3.1. Steady State Solutions and Their Stability 
3.1.1. Steady State Solutions 
The system of differential Equations (5) and (6) has one washout steady state 
solution ( )0 0,S X , where  

0 0 0, 0S S X= =                           (7) 

and two no washout steady state solutions ( )1 1,S X  and ( )2 2,S X  where  

( )

( )( )

( )( )( )

( )( )

2

1

2
0

1 2

2

2

2
0 0 0

2

1 4 1
2

1 2 4 1

2

1 4 1 1

2

2 4 1

2

S

S
X

S S S

γ τ τ
γ

γ γ γ τ τ

γ

β γ τ τ τ

γ

βγ γ τ τ

γ

− − − + − + +
=

+ + − + − + −
=

+ − + − + − − +
+

− + + − + − + −
−

            (8) 

and 
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( )

( )( )

( )( )( )

( )( )

2

2

2
0

2 2

2

2

2
0 0 0

2

1 4 1
2

1 2 4 1

2

1 4 1 1

2

2 4 1

2

S

S
X

S S S

γ τ τ
γ

γ γ γ τ τ

γ

β γ τ τ τ

γ

βγ γ τ τ

γ

− + − + − + +
=

+ − − + − + −
=

− + − + − + + − +
−

− + − + − + +
+

            (9) 

If 1 2τ γ≥ + , then the substrate components, 1S  and 2S , in (8) and (9) 
will be real and positive. Conditions for the cell mass concentration component, 

1X , in (8) to be real and non-negative are 2
0

1
S

γ >  and 1 2τ γ≥ + , and for 

the cell mass concentration, 2X , in (9) to be real and non-negative are 2
0

1
S

γ >  

and 
2

0 0

0

1
1 2

S S
S

γ
γ τ

+ +
+ ≤ < . These conditions for the cell mass concentration 

lead us to conclude that both no washout steady state solutions are physically 

meaningful whenever 2
0

1
S

γ >  and 
2

0 0

0

1
1 2

S S
S

γ
γ τ

+ +
+ ≤ < . We need to  

study the effect of variation of the residence time on the reactor’s steady state per-
formance. That means, we need to investigate the relationship between the cell 
mass concentration X and the residence time τ  in the no washout state. Specially, 
we want to determine the value of τ  at which X will have optimum values. 

From Equation (8), we can show that d 0
d
X
τ
=  at  

( )
2 2 2 2

0 0 0
max

0

2 4 2 2
2 1
S S S

S
β β β γ βγ β γ

τ
β β

− + + + − +
=

− +
           (10) 

subject to  

0
1S
β

>                          (11) 

and  
2

2 2 2
0 0 0

1 4
1 2S S S

βγ
β β

< <
− +

                  (12) 

( )X τ′′  will be negative if critical point maxτ  in (10) belongs to the following 
interval 

( )
( ) ( )

2 2 2 2 2
max 0 0

2 2 2 2 2 2 2
0 0 0 0

2 2 2 2 3
0 0

1 2 Root 3 6 16 6

2 3 6 3 6 6 #1

3 3 3 #1 #1 &,3

S S

S S S S

S S

γ τ β β β βγ β γ β γ γ

βγ β γ β β β βγ β γ

β β β β β

+ < < − − − + + +

− + + − + + + −

+ − − + − + 
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where the upper bound of maxτ  depends on ,β γ , and 0S . For example, if we 
take 02, 0.9, 2Sβ γ= = = , we get an upper bound of maxτ  at 3.313471. The 

maxτ  does not exceed the upper bound when  

2 2
0 0

1 4
S S

γ< <                         (13) 

or  

( )
0

2 2 22
0 00

4 and 2
 44

S
S SS

γγγ β
γγ

> < +
− +− +

           (14) 

Therefore, a local maximum value of X has occurred at maxτ . 

From Equation (9), we can show that d 0
d
X
τ
=  at maxτ , subject to the restric-

tion that 0
1S
β

>  and 
2

2 2
0 0

4
1 2S S

β
β β− +

. ( )X τ′′  will be negative if the critical 

point maxτ  is satisfied the following conditions.  

( )
0

2 2 22
0 00

4 and 2
 44

S
S SS

γγγ β
γγ

> > +
− +− +

           (15) 

Therefore, X has a local maximum value at maxτ . 

3.1.2. Stability of the Washout Steady State Solution 
Jacobian Matrix: At the washout steady state solution (7), the system (5) and 

(6) has the following Jacobian matrix which has the eigenvalues 1
τ

−  and 

0
2

0 0

1
1

S
S S τγ

−
+ +

.  

( )( )
0

2
0 0 0

0
2

0 0

1
1 1

10
1

S
S S S

J
S

S S

τ β γ

τγ

 − − + + + =  
 − + + 

                (16) 

Therefore, if 0
0

1 1 S
S

τ γ< + +  then the washout steady state solution will be 

stable. 

3.1.3. Stability of No Washout Steady State Solution (8) 
Jacobian Matrix: At the washout steady state solution (8), the system (5) and 

(6) has the following Jacobian matrix  

11 12

21 0
J J

J
J

 
=  
 

 

where  

( )( ) ( )( )
( )( ) ( )

2 2
0 0

11 2 22

8 4 1 1 2 2 3

2 1 1

S S
J

γ γ γ τ τ ω γ τ ω

τ γ β τ ω τ ω

− + − + − + − − − +
=

+ − + − − +
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( )( )( )
( )( ) ( )

( ) ( )( ) ( )( )( )
( )( ) ( )

( )( )( )
( )( ) ( )

( ) ( )( )
( )( ) ( )

2 2

2 22

2 2
0

2 22

2 2
0

2 22

2

2 22

8 1 3 2 1

2 1 1

8 1 2 5 1 2 4 4 5 2

2 1 1

8 10 19 2 5 3

2 1 1

8 1 6 29 9

2 1 1

S

S

γ τ τ τ ω

τ γ β τ ω τ ω

βγ τ τ τ ω γ τ ω

τ γ β τ ω τ ω

βγ γ τ τ τ

τ γ β τ ω τ ω

βγ τ ω ω τ ω

τ γ β τ ω τ ω

− + − +
+

+ − + − − +

− + − + − + + − + − +
+

+ − + − − +

+ + − +
+

+ − + − − +

− + − + − +
+

+ − + − − +

 

( ) ( )( )( )
( )( ) ( )

( )( )( )
( )( ) ( )

( )( ) ( )( )( )
( )( ) ( )

( ) ( )( )( )( )
( )( ) ( )

32 3
0

2 22

2 2

2 22

2 2
0

2 22

2 2 2
0

2 22

8 4 1 1 3 1

2 1 1

8 1 6 20 14 4 8

2 1 1

8 1 1 3 2 1

2 1 1

8 2 4 6 5 8 3 13 4

2 1 1

S

S

S

β γ τ τ τ ω

τ γ β τ ω τ ω

β γ τ τ τ ω τω

τ γ β τ ω τ ω

β γ τ τ τ τ ω

τ γ β τ ω τ ω

β γ τ ω τ ω τ ω

τ γ β τ ω τ ω

+ − + − + − +
+

+ − + − − +

− − + − + − − +
+

+ − + − − +

− − + − + − +
+

+ − + − − +

+ − + + − − − + +
+

+ − + − − +

     (17) 

( )( )12
2

2 1
J γ

τ γ β τ ω
= −

+ − + −
                 (18) 

( )( )( ) ( )( )( )
( )

( )( ) ( )( ) ( )( )
( )

0
21 22

22
0

22

4 1 1 2 1

1

1 1 1 1 2

1

S
J

S

γ τ τ ω βγ τ ω

γτ τ ω

γτ τ ω β τ τ ω γ γ τ ω

γτ τ ω

+ − + − + + − + −
=

− +

− + − + − + + + − +
+

− +

  (19) 

and ( )24 1ω γ τ= − + − + . 
By following the restrictions (11), (12), (13) and (14), it can be shown that 
( ) 11Tr J J=  is negative and ( ) 21 12Det J J J= −  is positive at the critical point 

maxτ . Hence, we can make a conclusion that the steady state solution (8) is stable 
at maxτ  and has practical importance to study. 

If 1 2τ γ= +  or 
2

0 0

0

1 S S
S

γ
τ

+ +
= , then ( ) 12 21 0Det J J J= =  and Jacobian 

matrix has a zero eigenvalue. The required conditions to have double zero ei-
genvalues of the Jacobian matrix are  

( ) ( )12 21 11 22Det 0 and Tr 0.J J J J J J= = = + =  

It can be shown that the conditions to have double zero eigenvalues are satis-
fied when  

0
1 2 and 1 2S γ τ
β γ

= + + =  
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Here 0S  is positive since 0β >  and 0γ > . This positivity of 0S  in the 
feed immediately implies that double zero eigenvalues can occur. 

3.1.4. Stability of No Washout Steady State Solution (9) 
Jacobian Matrix: At the washout steady state solution (9), the system (5) and 

(6) has the following Jacobian matrix  

11 12

21 0
J J

J
J

 
=  
 

 

where  

( )( )( )
( ) ( )( )

( )( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( ) ( )( )

( )( )( )( )
( ) ( )( )

2 2 2
0

11 222

2
0

222

2

222

2 2
0

222

8 4 1 3 2 1

1 2 1

8 1 1 2 2 3

1 2 1

8 1 2 5 1

1 2 1

8 10 29 19 6 9 2 5 3 1

1 2 1

8

S
J

S

S

γ γ τ τ τ ω

τ τ ω γ β τ ω

γ γ τ τ ω τ ω

τ τ ω γ β τ ω

βγ τ τ τ ω

τ τ ω γ β τ ω

βγ γ τ τ ω τω τ τ τ ω

τ τ ω γ β τ ω

βγ

− + − + − + +
=

− + + + − + +

− − + − + + + − + +
+

− + + + − + +

− + − + − + +
−

− + + + − + +

− + − + + − + − + +
−

− + + + − + +

+
−

( )( )( )
( ) ( )( )

2
0

222

2 4 4 5 2

1 2 1

Sγ τ ω

τ τ ω γ β τ ω

+ − + +

− + + + − + +

 

( ) ( )( )( )
( ) ( )( )
( ) ( )( )( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )( )( )

( ) ( )( )

32 3
0

222

2 2 2
0

222

2

222

2 2 2
0

222

8 4 1 1 3 1

1 2 1

8 1 6 14 4 1 3 2 1

1 2 1

8 1 4 5 2

1 2 1

8 2 4 6 5 8 3 13 4

1 2 1

S

S

S

β γ τ τ τ ω

τ τ ω γ β τ ω

β γ τ τ ω τ τ τ ω

τ τ ω γ β τ ω

β γ τ τ ω

τ τ ω γ β τ ω

β γ τ ω τ ω τ ω

τ τ ω γ β τ ω

− + − + − + − + +
+

− + + + − + +

− − + + − + − + − + +
−

− + + + − + +

− − + − +
+

− + + + − + +

− + + + + − + − +
−

− + + + − + +

   (20) 

( )( )12
2

2 1
J γ

τ γ β τ ω
= −

+ − + +
                  (21) 

( )( )( ) ( )( )
( )

( )( )( ) ( )( )
( )

( )( )( ) ( )( )( )
( )

0
21 22

22

0

22

4 1 1 1 2

1

4 1 1 1 1

1

4 1 1 2 1

1

S
J

S

γ τ τ ω γ γ τ ω

γτ τ ω

γ τ τ ω β τ τ ω

γτ τ ω

γ τ τ ω βγ τ ω

γτ τ ω

− − + − + + + − −
=

− + +

− − + − + + − + − + +
−

− + +

− − + − + + + − + +
+

− + +

       (22) 
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and ( )24 1ω γ τ= − + − + . 
By following the condition (15), the ( )Tr J  is never negative and the 
( )Det J  is never positive at the critical point. Therefore, the maximum steady 

state solution (9) is not stable. 

If 1 2τ γ= +  or 
2

0 0

0

1 S S
S

γ
τ

+ +
= , then ( ) 12 21 0Det J J J= =  and Jacobian 

matrix has a zero eigenvalue. But the later value of τ  is not relevant. The re-
quired conditions to have double zero eigenvalues of the Jacobian matrix are  

( ) ( )12 21 11 22Det 0 and Tr 0.J J J J J J= = = + =  

It can be shown that the conditions to have double zero eigenvalues are satis-
fied when  

0
1 2 and 1 2 .S γ τ
β γ

= + + =  

Here 0S  is positive since 0β >  and 0γ > . This positivity of 0S  in the 
feed immediately implies that double zero eigenvalues can occur. 

3.1.5. Hopf Bifurcation on the No Washout Steady State Solution (8) 
A Hopf bifurcation will take place if 11 0J =  and 12 21 0J J < . 12 21J J  will be 
negative when  

( )2

0 2

4 1
1 2 and 1 2 0.S

γ τ
τ γ γ γ τ

γ
− + − +

> + + + − >         (23) 

These conditions are equivalent to the following three cases. In each case, the 
values of the residence time correspond to the root of 11 0J =  at which Hopf 
bifurcations occur . 

Case I: 00 2S< ≤ , 2
0

1
 S

γ > , and 1 2τ γ≥ + . If we take 0 1.7, 2S γ= = , and 

5.25β = , then 11 0J =  at 4.20144τ =  (Figure 1) (other values are possible). 
A Degenerate Hopf bifurcation occurs at a value of residence time τ  where 

two Hopf points resulting in a single point by annihilating each other which is 

known as H21 degeneracy and it occurs when 11 0J =  and 11d 0
d
J
τ

=  [10]. 

In this case, it is possible to show that when 11 0J = , 11d
d
J
τ

 vanishes for 

suitable values of γ  and β . For example, if we take 2γ = , 5.25β = , then 

11d
d
J
τ

 vanishes at ( ) ( )0 , 1.53265,3.90678S τ ≈ . Therefore, if the substrate con-

centration 0S  is adequately small ( 0 1.53265S < ) or ( 1
0 2.68214 g lS −< ⋅ ) nat-

ural oscillations are not possible to occur for 2γ = , 5.25β = . 

Case II: 0 2S > , 2
0

1 1
4S

γ< ≤ , and 1 2τ γ≥ + . Let 0 3S = , 8
36

γ = , 

5.25β = , then 11 0J =  at 2.281137τ =  and 2.467646τ =  (Figure 2) (other 
values are possible). 
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Figure 1. Hopf point unfolding curve. Parameter values:  

2, 5.25γ β= = . 
 

 

Figure 2. Hopf point unfolding curve. Parameter values:  
8 , 5.25
36

γ β= = . 

 

For this situation, it is possible to show that when 11 0J = , 11d
d
J
τ

 vanishes 

for appropriate values of γ  and β . For example, if 8
36

γ = , 5.25β = , then 

11d
d
J
τ

 vanishes at ( ) ( )0 , 2.97798,2.37231S τ ≈ . Therefore, if the substrate con-

centration 0S  is sufficiently small ( 0 2.97798S < ) or ( 1
0 5.21147 g lS −< ⋅ ) nat-

ural oscillations are not possible for 8
36

γ = , 5.25β = . 

Case III: 0 2S > , 4 1γ > , and 1 2τ γ≥ + . Let 0 3S = , 1
2

γ = , 5.25β = , 

then 11 0J =  at 3.181914τ =  and 2.414296τ =  (Figure 3) (other values are 
possible). 

In this case, it is possible to show that when 11 0J = , 11d
d
J
τ

 vanishes for ap-

propriate values of γ  and β . For example, if we take 1
2

γ = , 5.25β = , then  
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Figure 3. Hopf point unfolding curve. Parameter values:  
1 , 5.25
2

γ β= = . 

 

11d
d
J
τ

 vanishes at ( ) ( )0 , 2.43946,2.68646S τ ≈ . Therefore, if the substrate con-

centration 0S  is small enough ( 0 2.43946S < ) or ( 1
0 4.26906 g lS −< ⋅ ) natural 

oscillations are not possible for 1
1

γ = , 5.25β = . 

In all cases above, we have used parameter values 11.75 gsK −= , 0.01α = , 
10.031 gβ −= , 10.3 hmµ

−= , and * 5.25β =  from [6] [9].  
The work reported in [3] [6] [9] used 1

0 10 g lS −≥ ⋅  without confirming con-
ditions under which natural oscillations are possible. The work in [8] reported 
that natural oscillations are impossible for sufficiently small substrate concentra-
tion 1

0 6.84203 g lS −< ⋅ , for 5.25β = . Both cases above were observed for the 

specific growth rate equation ( ) m

s

S
S

K S
µ

µ =
+

. In our work, we have used 

( ) 2
m

s
i

S
S

SK S
K

µ
µ =

+ +
. It is possible to gain natural oscillations for even signifi-

cantly smaller values of 0S . 

4. Conclusion  

We have studied, analytically, a simple chemostat model in a flow reactor with a 
variable yield coefficient in which the growth rate is taken to be a Haldane expres-
sion. In this study, three steady-state solutions have been discussed, which charac-
terize no washout and washout circumstances in the closed photobioreactor. Un-
der suitable parameter values, a stable steady-state solution attains its maximum 
value. We also corroborated the parameter ranges for the model with variable yield 
coefficient and growth rate, which describes natural oscillations in the chemostat. 
In all three cases of Hopf bifurcation analysis, we have found that natural oscilla-
tions can be achieved at significantly lower values of the substrate concentrations. 
In cases I, II, and III, the value is 1

0 2.68214 g lS −> ⋅ , 1
0 5.21147 g lS −> ⋅ , and 
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1
0 4.26906 g lS −> ⋅  respectively. A previous study reported that natural oscilla-

tion is achieved at a substrate concentration 1
0 6.84203 g lS −> ⋅  and results 

claim that natural oscillations are possible for sufficiently large values of sub-
strate concentration ( 1

0 10 g lS −> ⋅ ) but the conditions of natural oscillations 
were not reported.  
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