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Abstract 
Optimal investment and consumption problem for a CRRA investor or agent 
is solved in this study. An agent invests in the financial market with one 
risk-free security and one risky security. The stochastic interest rate dynamics 
of risk-free security follow a Ho-Lee model and the risky security is modeled 
as Heston’s model with its volatility parameter dynamics following a Cox- 
Ingersoll-Ross (CIR) model. Interest rates and volatility rates, in reality, are 
stochastic due to uncertain events such as the Coronavirus disease 2019 
(COVID19) pandemic, climate change, etc. Our main goal is to allocate initial 
wealth x0 between risk-free security and risky security in order to maximize 
the discounted expected utility of consumption and terminal wealth over a fi-
nite horizon. Applying the Dynamic Programming Principle (DPP), the HJB 
PDE for the value function is established. The power utility function which 
belongs to the Constant Relative Risk Aversion (CRRA) class is employed for 
our analysis to obtain the value function and optimal policies. Finally, nu-
merical examples and simulations are provided and discussed. 
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1. Introduction 

One key area of mathematical finance is the problem of an investor who seeks to 
maximize the expected utility of consumption and terminal wealth. This re-
search work builds on the celebrated work of Merton in [1] [2] who originally 
studied continuous time investment and consumption problems when stock price 
follows a geometric Brownian motion. For Merton’s work, both the interest rate 
and volatility rate are constants. In real life, Interest rates and volatility rates are 
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not constant. For example, the US 2007-2008 global financial crisis (housing 
bubble) made the US central banks adjust interest rates considerably. Interest 
rates and volatility rates, in reality, are stochastic due to uncertain events such as 
the Coronavirus disease 2019 (Covid19) pandemic, climate change, wars, infla-
tion, natural disasters, fiscal policy and financial policy adjustments. In this 
study, a stochastic control problem of a single investor with stochastic interest 
rate from a bond modeled as a Ho-Lee process and a stock modeled as a Hes-
ton’s process with its volatility dynamics following a Cox-Ingersoll-Ross (CIR) 
process is investigated. These models are industry standard for option pricing 
and maximization problems. Thus, it is worth considering in solving an optimal 
investment and consumption problem in this mixed structure. Our main goal is 
to allocate initial wealth x0 between risk-free security and risky security in order 
to maximize the discounted expected utility of consumption and terminal wealth 
over a finite horizon. Bellman’s optimality principle, introduced by Bellman [3] 
called the Dynamic Programming Principle (DPP) will be applied in order to 
determine the Hamilton-Jacobi-Bellman Partial Differential equation (HJB PDE). 
The investor preferences are modeled as a Constant Relative Risk Aversion 
(CRRA) function. Our major contribution is that we have extended Merton’s work 
in [1] [2] problems with a unique mixture of consumption, stochastic interest 
rate and stochastic volatility rate simultaneously. So far, many researchers have 
studied such a control problem by considering constant interest and constant 
volatility. Some have considered one stochastic parameter in their analysis. How-
ever, such assumptions are unrealistic and not practical in the real financial world. 
In addition, we have also linked probability theory to PDE mathematics. 

2. Links to the Literature 

The problem of optimal investment and consumption has attracted a number of 
extensions. For instance, a paper by Benth [4] analyzed Merton’s portfolio opti-
mization problem with stochastic volatility of Ornstein Uhlenbeck type. Yi and 
Guan [5] treated consumption and investment problem with volatility being 
constant. Zariphopoulou [6] explored consumption and investment problem 
with an interest rate, mean rate of return, and dispersion coefficient being 
constant. A paper by Sandjo et al. [7] considered constant expected return and 
stochastic volatility. Wang et al. [8] researched on optimal portfolio and con-
sumption rule with a short interest rate driven by the CIR model under HARA 
utility function. Harrison and Kreps [9] and Harrison and Pliska [10] applied a 
different approach called martingale methods to solve an optimization problem. 
Cox and Huang [11] discussed optimal consumption and portfolio policy when 
asset prices follow a diffusion process. Jinzhu and Rong [12] considered a Cox- 
Ingersoll-Ross (CIR) model to describe the stochastic interest rate and stochastic 
volatility of the stock. Noh and Kim [13] Studied optimal portfolio model with 
stochastic volatility and stochastic interest rate with an assumption that the risky 
asset prices follow geometric Brownian motion. Pang [14] investigated the in-
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terest rate which varies according to a Markov diffusion process and that risky 
asset price obeyed a logarithmic Brownian motion. Korn and Kraft [15] obtained 
optimal policy for the case of a Ho-Lee model and Vasicek model for interest 
rates. Kraft [16] examined optimal portfolios and considered only Heston’s sto-
chastic volatility model. Liu [17] considered the stock portfolio selection prob-
lem when stock return volatility is stochastic via Heston’s model. Zariphopoulou 
[18] studied optimization models in a market where assets are modeled as a dif-
fusion process with coefficients changing with time according to correlated dif-
fusion factors. Zariphopoulou [19] considered an optimization problem with 
bond price deterministic and the stock price modeled as a diffusion process 
such that coefficients of the stock price diffusion are arbitrary nonlinear func-
tions of the underlying process. The paper by Fleming [20] investigated on 
consumption model with stochastic volatility and constant interest rate. Fouque 
et al. [21] considered a portfolio optimization problem with stochastic volatility 
and constant interest rate. In recent years jump-diffusion models, as well as Levy 
process models, have become popular in financial research. This is due to the 
shortcomings of the simple Brownian motion model developed in Black and 
Scholes [22]. 

In this study, Merton [1] [2] are extended in a unique way by studying the 
stochastic control problem for an agent who faces consumption, stochastic in-
terest rates and stochastic volatility rates simultaneously. So far, many research-
ers have studied such models by considering either stochastic interest or stochas-
tic volatility rates separately. However, such an assumption is unrealistic and not 
practical in the real financial world. Therefore, introducing stochastic interest 
and stochastic volatility rates simultaneously makes our model more realistic 
and practical although such stochastic control problems led to complex or so-
phisticated HJB PDE. 

The outline of this paper is as follows: Section 1 Introduction. Section 2 Lite-
rature review. Section 3 Description of the financial market model. In section 4, 
the wealth model is determined. Section 5 Optimization criterion description. In 
section 6, the HJB PDE for the value function is derived. Section 7, we investi-
gate the value function, optimal investment and consumption policies. In Sec-
tion 8, numerical examples and simulations are provided. Here, the effect of 
market parameters on the optimal investment and consumption policies are il-
lustrated. In Section 9, the conclusion and suggested possible future research 
work are stated. 

3. Financial Market Model 

Let ( ), , ,Ω    be a filtered complete probability space with filtration ( )0t t T≤ ≤
  

satisfying the usual conditions such as ( )0t t T≤ ≤
  being right continuous com-

plete filtration and  -complete. Let all stochastic processes be well defined and 
adapted in the filtered complete probability space ( ), , ,Ω   . 

Consider a financial market of a single investor with a portfolio consisting of 
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one risk-free security (e.g. a money market account or bond) ( )B t  and one 
risky security (e.g. a stock or stock index) ( )S t . 

Let the price dynamics of the risk-free security ( )B t  evolve as follows:  

( ) ( ) ( )
( )

d d ,

0 1,

B t r t B t t

B

=


=
                       (1) 

with stochastic interest rate ( )r t  following a Ho-Lee model given by:  

( ) ( ) ( )
( )

0 0

0

d d d ,

0 0,

rr t t t W t

r r

θ σ = +


= >
                    (2) 

where ( )0 tθ  is the expected instantaneous change in the interest rate, 0 0σ >  
is a constant volatility factor and ( )rW t  is a one-dimensional wiener process 
on a filtered probability space ( ), , ,Ω   . Assumed that ( )0 tθ  can be writ-
ten as ( ) ( )0 t r tθ γ β= −   , where γ  and β  are constants. 

Let the price dynamics of the risky security a stock (or share) ( )S t , follow a 
Heston’s model given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

d d d ,

0 0,

SS t S t r t k t t t S t W t

S s

η σ η = + +   
= >

        (3) 

where ( )k tη  is the appreciation factor, ( )1 tσ η  is the volatility of the risky 
price and ( )SW t  is a Wiener process on a filtered probability space ( ), , ,Ω   . 
Note that ( )S t  is risky stock price, ( )r t  is risk-free interest rate, 0k >  is 
the expected returns parameter of risky asset and 1σ  is the volatility of the vo-
latility ( )tη  of risky asset. 

In addition, let ( )tη  follow a Cox-Ingersoll-Ross (CIR) model given by: 

 
( ) ( ) ( ) ( )

( )
2 2

0

d d d ,

0 0,

t b t t t W tηη θ η σ η

η η

 = − +   
= >

            (4) 

where 2 0θ > , 0b > , and 2 0σ >  are constants. Also note that ( ) 0tη >  for 
all 0t ≥ . Wη  is a wiener process on a filtered probability space ( ), , ,Ω   . 

4. The Wealth Model 

Consider an investor with an initial amount of money 0 0x >  and a time hori-
zon of interest T. Over the time interval [ ]0,T , the investor changes his portfo-
lio dynamically. Let ( )t  denote the rate of continuous consumption. Let 
( )tπ  denote the wealth to be invested in the risky asset S. Then the amount in-

vested in the risk-free security is given by ( ) ( )t tπ− . Note that the pair 
( ) ( )( ),t tπ  is an investment and consumption strategy. 

Lemma 1 The net wealth for an investor who faces intermediate consumption, 
stochastic interest rate and stochastic volatility rate evolve as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

d d ,

0 0.

Sd t t r t t t k t t t t W t

x

π η π σ η = − + +   
= >

  


   (5) 
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Proof. In lemma 1, we prove the net wealth model for our financial market. 
Note that net wealth with intermediate consumption is defined by:  

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) 0

d d
d ,

0 0.

B t S t
t t t t t d t

B t S t

x

π π
  

= − + −  
   

 = >

  



       (6) 

Substituting 1 and 3 into 6 gives:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )1

d d d

d .S

t t t r t t t r t k t t

t W t t d t

π π η

σ η

= − + +   
+ −

 


         (7) 

Rearranging 7 gives us that:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

d d d ,

0 0.

St t r t t t k t t t t W t

x

π η π σ η = − + +   
= >

  


   (8) 

5. The Optimization Criterion 

Suppose the set of all admissible strategies is denoted by  . 
Definition 5.1 An investment and consumption strategy pair ( ) ( )( ),t tπ ∈   

is said to be admissible if the following conditions are satisfied.  

1) The pair ( ) ( )( ),t tπ   is progressively t -measurable and ( )2

0
d

T
t tπ < ∞∫ , 

( )
0

d
T

t t < ∞∫  , for all 0T > .  

2) ( ) ( )( )2

10
d

T
t t tπ σ η  < ∞  ∫ .  

3) For all admissible pair ( ) ( )( ),t tπ  , the wealth process 5 with ( ) 00 0x= >  
has a path wise unique solution.  

Remark 1 The investor’s objective is to maximize the net expected discounted 
utility of consumption plus the expected discounted utility of terminal wealth.  

In this study, the power utility function which belongs to the CRRA class is 
used. The investor’s objective is to maximize the expected discounted utility of 
consumption plus the expected discounted utility of terminal wealth formulated 
mathematically as follows:  

( ) ( )( )
( ) ( ) ( )1 20,

max exp d 1 exp .
T t T

t t
U t t U Tλ λ

π
φ φ− −

∈

 + −        ∫
 

        (9) 

subject to the budget constraint  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

d d d ,

0 0,

St t r t t t k t t t t W t

x

π η π σ η = − + +   
= >

  


   (10) 

( ) ( ) ( )
( )

0 0

0

d d d ,

0 0,

rr t t t W t

r r

θ σ = +


= >
                  (11) 

and  
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( ) ( ) ( ) ( )
( )

2 2

0

d d d ,

0 0.

t b t t t W tηη θ η σ η

η η

 = − +   
= >

             (12) 

Definition 5.2 The value function is defined as  

( )
( ) ( )( )

( ) ( ) ( )1 20,
, , , sup exp d 1 exp ,

T t T

t t
V t r x U t t U Tλ λ

π
η φ φ− −

∈

 = + −        ∫
 

   (13) 

with boundary conditions  

( ) ( ) ( )2, , , 1 exp .TV T r x U Tλη φ −= −                  (14) 

where ( ) 0t ≥  for all t, with T being the date of death, ( )T  is the value at 
time T of a trading strategy. The parameter λ  is the subjective discount rate 
and φ  determines the relative importance of the intermediate consumption. 
  denotes the conditional expectation operator. ( )1U t    and ( )2U T    
are consumption and bequest functions respectively.  

Remark 2 Note that ( )1U t    and ( )2U T    are such that ( ).U  is twice 
differentiable with ( ). 0U ′ >  and ( ). 0U ′′ < .  

Remark 3 When 0φ = , the expected utility only depends on the terminal 
wealth and the problem is reduced to an investment problem without interme-
diate consumption.  

Definition 5.3 Let ( )0 0>  be the initial wealth, the investor’s optimal in-
vestment and consumption problem is to maximize the expected discounted 
utility over the set of all admissible strategies ( ) ( )( ),t tπ   such that:  

( )( )
( ) ( )( )

( )
,
sup

t t
V t V

π
π π

∈
=

 
                  (15) 

and  

( )
( ) ( )( )

( )
,
sup ,

t t
V V

π ∈
=

 
                     (16) 

for all ( ) ( )( ),t tπ ∈   , [ ]0,t T∈ .  

6. The Hamilton-Jacobi-Bellman PDE 

Bellman’s optimality principle, introduced by Bellman [3] called the Dynamic 
Programming Principle (DPP) will be applied in order to determine the Hamil-
ton-Jacobi-Bellman Partial Differential equation (HJB PDE). By applying DPP, 
the fully HJB PDE associated with the stochastic control problem 13 is the non- 
linear second order PDE given as follows:  

( )
( )

( ) ( )

2 2 2
1 0 0

,

2
2 2 1 2 1

1 1sup
2 2

1 exp 0.
2

t x xx r rr

t
x

V rx k V V V V

b V V V U

π

λ
η ηη η

π η π σ η θ σ

θ η σ η πσ σ ηρ φ

∈

−

+ − + + + +

+ − + + + =

 



     (17) 

where tV , xV , xxV , rV , rrV , Vη , Vηη  and xV η  denotes partial derivatives.  
Remark 4 For the sake of closed form solutions from the HJB PDE 17, we as-

sume the following:  
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1) The correlation coefficient { }1,1ρ ∈ −  of d dr SW W , d d SW Wη  and 
d drW Wη .  

2) Interest rate for risk-free security and risky security are equal.  
Remark 5 The reduction of the initial nonlinear HJB PDE to a linear PDE is 

useful for obtaining both the value function and the optimal policies.  
Definition 6.1 Applying the first-order maximizing conditions to 17, we ob-

tain the following candidate optimizers:  

( ) 2*
2

11

xx

xxxx

VkV
t

VV
ησ ρ

π
σσ

= − −                     (18) 

and  

( )*
1 .

exp
x

t

V
U λφ −
′ =                        (19) 

Substituting the candidate optimizers 18 and 19 into the PDE 17 we get the 
following after simplification:  

( ) ( )

( )

2 2 22 2 2
2* 0

0 22
1

2
2 *2

1
1

2 22

exp 0.
2

xx rr
t x x r

xxxx

x x t

xx

Vk V V
V rxV t V V b V

VV

V V Vk U
V

η
η

ηη η λ

σ ρ ηη σ
θ θ η

σ

σ η σ ρη
φ

σ
−

+ − − − + + + −

+ − + =





  (20) 

At this stage, we can apply power transformation and change of variable tech-
niques to reduce PDE 20 to a linear PDE with well-defined solutions.  

7. The Value Function and Optimal Policies 

Solving PDE 20 by applying power transformation and change of variable tech-
niques results in a linear PDE with well-defined solutions and thus, the value 
function and optimal policies can be established. 

Taking a trial solution for PDE 20 take the form  

 ( ) ( ) ( ), , , exp , , ,  , , 1 .t xV t r x g t r g T r
δ

λη η η φ
δ

−= = −           (21) 

The partial derivatives for 21 are given by:  

 

( )

1

2

1

exp exp ,

exp ,
exp 1 ,

exp ,

exp ,

exp ,

exp ,

exp .

t t
t t

t
x

t
xx

t
r r

t
rr rr

t

t

t
x

x xV g g

V x g
V x g

xV g

xV g

xV g

xV g

V x g

δ δ
λ λ

λ δ

λ δ

δ
λ

δ
λ

δ
λ

η η

δ
λ

ηη ηη

λ δ
η η

λ
δ δ

δ

δ

δ

δ

δ

− −

− −

− −

−

−

−

−

− −


= − +


=

 = −


=



=



=



=


=

                (22) 
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Note that the optimal consumption strategy becomes  

( )
1 1

* 1 1 .t xgδ δφ
−
− −=                          (23) 

Substituting 22 and 23 into 20 gives the following after simplification:  

 

( )

2 22
2

02
1

1
2 2 2 1 1
0 2 2

1

1 1exp
2 1 2 1

1 1 1 0 .
2 2 1

t
t r

rr

g gx kg r g g
g

kg g b g g

δ
η ηλ

δ
δ δ

ηη η

σ ρ ηδη δλ δ θ
δ δ δσ

ησ ρ δσ σ η θ η δ φ
σ δ

−

−
− −

  
+ − + − − +  

− −  
 

+ + + − − + − =  −   

 (24) 

Eliminating the dependence on x gives a PDE of the form:  

 
( ) ( )

( ) ( )

2 2 2 2 22
2 0 2

02
1

1
2 1 1

2
1

2 1 2 22 1

1 0.
1

t r rr

gkg r g g g g
g

kb g g

η
ηη

δ
δ δ

η

σ ρ ηδ σ σ ηηδλ δ θ
δσ δ

ησ ρδ
θ η δ φ

σ δ

−
− −

 
+ − + − − + + +   −− 
 

+ − − + − =  − 

  (25) 

Again we assume PDE 25 is of the form:  

 ( ) ( ) ( ) ( )
11

1, , , , ,  , , 1 .g t r f t r f T rδ
δη η η φ−
−= = −              (26) 

The partial derivatives for 26 are given by:  

 

( )
( )
( )( ) ( )
( )
( )( ) ( )

1 2

1 2

1 ,
1 ,
1 1 ,
1 ,
1 1 .

t t

r r

rr r rr

g f f
g f f
g f f f f
g f f
g f f f f

δ

δ

δ δ

δ
η η

δ δ
ηη η ηη

δ
δ
δ δ δ
δ
δ δ δ

−

−

− − −

−

− − −

 = −


= − = − − + −
 = −

= − − + −

              (27) 

Substituting 27 into PDE 25, we obtain: 

 

( ) ( )( )

( )

( )

2

2
1

2 2 1 2 2 1 2
2 0 0

1
2 1 2 2 1
2 2

1

11
1 1 2 1 1

1 1
2 2
1 0 .
2 1

t

r r rr

r kf f f

f f f f f f

kf f f b f

δ

η

δ
η ηη η

λ δ η δδ
δ δ δ δσ

σ ρ ηδ θ σ

ησ ρ δσ η δ θ η φ
σ δ

−

− −

− −

  −
− + + −   − − − −  

+ + + +

 
− + + − − + =  −   

      (28) 

Eliminating ( )1 f δδ −−  and simplifying further, 28 result to a nonlinear 
second-order PDE in f  given by:  

 ( )
( )

2
2 2 1 2 2
2 0 02 2

1

12
2 2 2 1
0 2 2

1

1 1 11
1 2 2 21

1 1 0.
2 2 1

t r rr

r

r kf f f f f f

f kf b f
f

η

δ
ηη η

δ λ η δ σ η δ ρ θ σ
δ σ δ

ησ ρ δσ δ σ η θ η φ
σ δ

−

−

 −   + + + − + +  − − 
 

− + + − − + = − 

 (29) 

Remark 6 Note that PDE 29 is still complex and cannot be solved directly 

since there exists the term 
1

1 δφ − .  

Inspired by the paper of Liu [17], we further assume a solution to 29 as stated 
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below:  
Lemma 2 Assume f  given by  

( ) ( ) ( ) ( )
1 1

1 1ˆ ˆ, , , , d 1 , , ,
T

t
f t r f u r u f t rδ δη φ η φ η− −= + −∫             (30) 

is the solution to 29. Then we can prove that ( )ˆ , ,f t r η  can be written as:  

( )
( )

2
2 2 1 2
2 02 2

1

2
2 2 2 2
0 0 2 2

1

1 1ˆ ˆ ˆ ˆ ˆ1
1 2 21

ˆ1 1 1ˆ ˆ ˆ 0,ˆ2 2 2 1

t r

r
rr

r kf f f f f

f kf f b f
f

η

ηη η

δ λ η δ σ η δ ρ θ
δ σ δ

ησ ρ δσ σ δ σ η θ η
σ δ

−
 −   + + + − +  − − 

 
+ − + + − − = − 

     (31) 

with the boundary condition ( )ˆ , , 1f T r η = .  
Proof. In lemma 2, we seek to convert PDE 29 to PDE 31. Define the differen-

tial operator ∆  on any function ( ), ,f t r η  as  

( )
( )

2
2 2 1 2
2 02 2

1

2
2 2 2 2
0 0 2 2

1

1 1 1
1 2 21

1 1 1
2 2 2 1

0.

r

r
rr

r kf f f f f

f kf f b f
f

η

ηη η

δ λ η δ σ η δ ρ θ
δ σ δ

ησ ρ δσ σ δ σ η θ η
σ δ

−
 −   ∆ = + + − +  − − 

 
+ − + + − − − 

=

    (32) 

Then equation 29 can also be written as  
1

1 0,f f
t

δφ −∂
+∇ + =

∂
                       (33) 

where  

( ) ( )
1

1, , 1 .f T r δη φ −= −                       (34) 

Notice that, on the other hand, we find  

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1
1 1

1
1

1 1
1 1

1
1

1
1

ˆ ˆ, , , , d

ˆ ˆ1 , , , ,

ˆ ˆ, , , , d

ˆ ˆ1 , , , ,

.

T T

t t

T

t

f f f u r f u r u
t t

f t r f t r
t

f t r f u r u

f t r f t r
t

δ δ

δ

δ δ

δ

δ

φ η φ η

φ η η

φ η φ η

φ η η

φ

− −

−

− −

−

−

   ∂ ∂
+∇ = +∇      ∂ ∂    

∂ + − +∇ ∂ 

= − + ∇

∂ + − +∇ ∂ 

= −

∫ ∫

∫         (35) 

Note also that  

 
( ) ( )

( ) ( )

ˆ ˆ, , , , d 1

ˆ ˆ, , , , 0

T

t
f t r f u r u

f t r f t r
t

η η

η η

 + ∇ =

 ∂
 +∇ =
∂

∫
                 (36) 

Therefore,  
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ˆ ˆ 0,f f
t

∂
+∇ =

∂
                          (37) 

where  

( )ˆ , , 1.f T r η =                          (38) 

Implying 29 can be converted to the following:  

( )
( )

2
2 2 1 2
2 02 2

1

2
2 2 2 2
0 0 2 2

1

1 1ˆ ˆ ˆ ˆ ˆ1
1 2 21

ˆ1 1 1ˆ ˆ ˆ 0,ˆ2 2 2 1

t r

r
rr

r kf f f f f

f kf f b f
f

η

ηη η

δ λ η δ σ η δ ρ θ
δ σ δ

ησ ρ δσ σ δ σ η θ η
σ δ

−
 −   + + + − +  − − 

 
+ − + + − − = − 

   (39) 

with the boundary condition ( )ˆ , , 1f T r η = .  
PDE 29 has been converted to PDE 31. PDE 31 has well defined solutions. 
Thus, solving 20 or 29 is equivalent to solving 31. 
Theorem 1 Suppose ( ), , ,V t r xη  is continuously differentiable and twice con-

tinuously differentiable for all [ ]0,t T∈  and ( ), ,r x η ∈ × ×   , then the so-
lution of the HJB PDE 20 is given by  

 
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

1
1

11
1

, , , exp exp d

1 exp ,

Tt
t

xV t r x u u r u u

t t r t

δ
λ δ

δ

δ

η φ η
δ

φ η

− −

−

−


= + +



+ − + + 

∫   

  

    (40) 

with ( )t , ( )t  and ( )t  given by:  

 ( )
( )( )( )

( ) ( )( )( )

2
22 1

1 2 1 2

2
22 1

1 2 1 2

1 exp 1
2

,
exp 1

2

T t
t

T t

σ σξ ξ δρ δ ξ ξ

σ σξ ξ δρ δ ξ ξ

  
− − + − − −  

   =
 

− − + − − − 
 

      (41) 

( ) ( )
1

t T tδ
δ

= −
−

                       (42) 

and  

( ) ( ) ( ) ( ) ( )2 2
0 0 2

1 1 d .
2 1

T

t
t s s s sλσ δ θ θ

δ
 = − − − + − ∫        (43) 

In addition, the pair ( )* *,π ∈   given by  

( )
( )

( ) ( )2*
2

11 1
fkt t t
f
ησ ρ

π
σσ δ

= +
−

               (44) 

and  

( ) ( )
1

* 11t t fδφ −−=                      (45) 

are the optimal investment and consumption policies when interest rates of a 
risk-free security follow a Ho-Lee model and stock price dynamics evolve as a 
Heston’s model.  
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Proof. In theorem 1, assume we can fit a solution ( )ˆ , ,f t r η  given by:  

( ) ( ) ( ) ( ){ }ˆ , , exp ,f t r t t r tη η= + +                  (46) 

with the boundary condition ( ) ( ) ( ) 0T T T= = =   . 
From equation 46, we have the following partial derivatives:  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

2

ˆ ˆ , , ,
ˆ ˆ , , ,
ˆ ˆ , , ,
ˆ ˆ , , ,
ˆ ˆ , , .

t

r

rr

f t t r t f t r

f t f t r

f t f t r

f t f t r

f t f t r
η

ηη

η η

η

η

η

η

 ′ ′ ′= + +  
 =


=


=
 =

  









              (47) 

Substituting 47 into 31 gives:  

 

( ) ( ) ( )( ) ( )
( )

( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2 2
1

2 2 2 2 2
2 0 0

2 2 2 2
0 2

2
2

1

1ˆ ˆ, , , ,
1 2 1

1 1ˆ ˆ ˆ1 , , , , , ,
2 2
1 1ˆ ˆ, , , ,
2 2

ˆ , , 0.
1

r kt t r t f t r f t r

f t r t f t r t f t r

t f t r t f t r

k t f t r

δ λ η δη η η
δ σ δ

σ η δ ρ η θ η σ η

σ δ η σ η η

σ ρη δθ η η
σ δ

 −′ ′ ′  + + + +
 − − 

+ − + +

− +

 
+ − − = − 

  

  

 



 (48) 

Canceling the term ( )ˆ , ,f t r η  on both sides of 48 gives:  

( ) ( ) ( )( )
( )

( )( ) ( ) ( ) ( )

( ) ( )

2

2 2
1

2 2 2 2 2 2 2
2 0 0 0

2 2 2
2 2

1

1
1 2 1

1 1 11
2 2 2
1 0.
2 1

r kt t r t

t t t

kt b t

δ λ η δη
δ σ δ

σ η δ ρ θ σ σ δ

σ ρη δσ η θ η
σ δ

 −′ ′ ′  + + + +
 − − 

+ − + + −

 
+ + − − = − 

  

   

 

        (49) 

Rewriting equation 49 to collect like terms in r and η  gives: 

 
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

2
2 2 2 2
2 2 2

1 1

2 2
0 0 2

1 1 11
2 1 2 1

1 1 0.
1 2 1

k kt t b t

r t t t t t

ρσ δ δη σ ρ
δ σ δ σ δ

δ λσ δ θ θ
δ δ

   ′ + − + − + +    −  −   
   ′ ′+ + + − − + + − =   − −   

  

    

 (50) 

After eliminating η  and r, we can split Equation (50) into three ODE’s as 
follows:  

 
( ) ( ) ( )

( )
( )

2
2 2 2 2
2 2 2

1 1

1 1 11 0,
2 1 2 1

0.

k kt t b t

T

ρσ δ δσ ρ
δ σ δ σ δ

   ′ + − + − + + =    −  − 
 =

  



 (51) 

 
( )

( )

0,
1
0.

t

T

δ
δ

 ′ + = −
 =




                         (52) 
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and  

 
( ) ( ) ( ) ( ) ( )

( )

2 2
0 0 2

1 1 0,
2 1
0.

t t t t

T

λσ δ θ θ
δ

 ′ − − + + − = −
 =

   


        (53) 

Rewriting Equations (51)-(53), we get  

 
( ) ( ) ( )

( )
( )

2
2 2 2 2
2 2 2

1 1

1 1 11 ,
2 1 2 1

0.

k kt t b t

T

ρσ δ δσ ρ
δ σ δ σ δ

   ′ = − − + + + −    −  − 
 =

  



 (54) 

( )

( )

,
1

0.

t

T

δ
δ

 ′ = − −
 =




                        (55) 

and  

 
( ) ( ) ( ) ( ) ( )

( )

2 2
0 0 2

1 1 ,
2 1
0.

t t t t

T

λσ δ θ θ
δ

 ′ = − − − + −
 =

   


         (56) 

Rewriting Equation alone (54), we obtain:  

 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
2 2 2

12

2

2 2 2 2
1 2

1 21
2 11

.
1 1

kt t b t

k

ρσ δσ δρ δ
σ δσ δρ δ

δ
σ δ σ δρ δ

  ′ = − + − − + − + −  

+
− + − 

  

 (57) 

Let ∆  denote the discriminant of the quadratic equation given by:  

 ( ) ( ) ( )
( ) ( )

2
2 2

2 22 2 2 2
1 12 2

2 .
11 1 1

k kt b tρσ δ δ
σ δ σσ δρ δ δ σ δρ δ

 
− + + −+ − − + − 

   (58) 

Implying  

 
( ) ( ) ( )

( )
( ) ( )

2 2
2

2 2 2 2 24 2 2 1 1 22 1

2
2 2 2

24 2 2
2 1

4 4
1 1 11

4 1 .
1 11

k kb

k k k b

ρσ δ δ
σ δ σ δ σ δρ δσ σ δρ δ

δ ρ ρ ρ
δ δσ σ δρ δ

 
∆ = + − − − + − + −

 −  = + + + −  − − + −



 (59) 

Let the discriminant ∆  have distinct real solutions, that is 0∆ > , then 
we obtain the following condition for δ  necessary for numerical analysis:  

 
( ) ( )

2

2 2 2
1.

1
k

k k b
δ

ρ ρ ρ
< <

+ + −
 (60) 

Considering condition 60, if we integrate both sides of 57 with respect to t, we 
obtain:  

 ( ) ( )( )2 2
2 1

1 2 1 2

1 1 1 1d 1 ,
2

T

t
t T tσ σ δρ δ

ξ ξ ξ ξ
  −

− = + − − − − − 
∫ 
 

    (61) 
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where 1ξ  and 2ξ  are two distinct real solutions for 57 given by:  

( )

( )
( ) ( )

2
1,2 22 2 12 1

2
2 2 2

24 2 2
2 1

1
11

1 1 .
1 11

kb

k k k b

ρσ δξ
σ δσ σ δρ δ

δ ρ ρ ρ
δ δσ σ δρ δ

 
= + − + −

 −  ± + + + −  − − + −

 (62) 

Solving 61 with terminal conditions ( ) 0T = , we obtain:  

 ( )
( )( )( )

( ) ( )( )( )

2
22 1

1 2 1 2

2
22 1

1 2 1 2

1 exp 1
2

.
exp 1

2

T t
t

T t

σ σξ ξ δρ δ ξ ξ

σ σξ ξ δρ δ ξ ξ

  
− − + − − −  

   =
 

− − + − − − 
 

       (63) 

The solutions to the Equations (55) and (56) are obtained directly as follows:  

 ( ) ( )
1

t T tδ
δ

= −
−

                      (64) 

and  

 ( ) ( ) ( ) ( ) ( )2 2
0 0 2

1 1 d .
2 1

T

t
t s s s sλσ δ θ θ

δ
 = − − − + − ∫          (65) 

Therefore, the value function is represented as follows:  

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

1
1

11
1

, , , exp exp d

1 exp .

Tt
t

xV t r x u u r u u

t t r t

δ
λ δ

δ

δ

η φ η
δ

φ η

− −

−

−


= + +



+ − + + 

∫   

  

   (66) 

where ( )t , ( )t  and ( )t  are given in 63, 64 and 65 respectively. 
In addition, the optimal feedback portfolio functions are given as follows:  

 ( )
( )

( )* 2
2

11 1
fkt
f
ησ ρ

π
σσ δ

 
= + ⋅  − 

                (67) 

and  

 ( ) ( )
1

* 11= ,t fδφ −−                       (68) 

where  

 
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

1
1

1
1

, , exp d

1 exp ,

T

t
f t r u u r u u

t t r t

δ

δ

η φ η

φ η

−

−

= + +

+ − + +

∫   

  

         (69) 

with ( )t , ( )t  and ( )t  determined in 63, 64 and 65.  

8. Numerical Examples and Simulations 

In this section, we determine how parameters affect investment ( )* tπ  and 
consumption ( )t  controls. 
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When ( )0 0 2 0tθ σ σ= = = , then problem becomes an investment and con-
sumption problem with the following optimal policies:  

 ( ) ( )*
2
1

1
1

kt tπ
δσ

= ⋅
−
                      (70) 

and  

 ( ) ( )
1

* 11= .t t fδφ −−                       (71) 

When 1ρ = , then the problem becomes an investment and consumption 
problem giving the following optimal policies:  

 ( ) ( ) ( )* 2
2

11

1
1

fkt t t
f
ησ

π
δ σσ

= ⋅ + ⋅
−
                  (72) 

and  

 ( ) ( )
1

* 11 .t t fδφ −−=                        (73) 

When 1ρ = − , then the problem becomes an investment and consumption 
problem having the following optimal policies:  

 ( ) ( ) ( )* 2
2

11

1
1

fkt t t
f
ησ

π
δ σσ

= ⋅ − ⋅
−
                  (74) 

and  

 ( ) ( )
1

* 11 .t t fδφ −−=                         (75) 

When 0φ = , the problem becomes an asset allocation problem without con-
sumption. In such a case, optimal policies can be investigated further in another 
study. 

8.1. Effects of Wealth   on Optimal Investment ( )tπ ∗  and  

Consumption ( )C t∗  

Here, we assess the effects of Wealth on investment and consumption. Note that  
*

2
2

11

1 0.
1

fk
f
ησ ρπ

δ σσ
∂

= ⋅ + ⋅ >
∂ −

                    (76) 

and 

 
1*

11 0.fδφ −−∂
= >

∂



                        (77) 

Figure 1 and Figure 2 show the effect of the wealth ( )t  on the investment 
( )* tπ  and consumption ( )t . The curve results analysis indicates that wealth 
( )t  affects investment and consumption rates in a positive way when 1ρ = −  

and 1ρ = . In summary, we can confidently state that optimal investment 
( )* tπ  and consumption ( )t  increase with the accumulation of the wealth 
( )t . This agrees with practical investments and our intuition. 
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Figure 1. The effects of wealth ( )t  on optimal investment ( )* tπ  

when 0 : 0.01: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 1δ = − ; 

1 1.2σ = ; 0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 
 

 

Figure 2. The effects of wealth ( )t  on consumption ( )* t  when 

0 : 0.01: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 1δ = − ; 1 1.2σ = ; 
0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 

8.2. Effects of the Expected Returns Parameter of Risky Asset k on  
Optimal Investment ( )tπ ∗  and Consumption ( )C t∗  

In Figure 3 and Figure 4, the optimal investment ( )* tπ  and optimal con-
sumption ( )* t  increases with respect to the increase in expected returns of 
risky asset k when 1ρ = −  and 1ρ = . Note that in 3, the product ( )k tη  is 
considered as the appreciation rate of the stock implying the more the investor 
wishes to invest in the stock for more wealth and consumption. This agrees with 
practical investments and our intuition. 
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Figure 3. The effects of the expected returns parameter of risky asset k on optimal 
investment ( )* tπ  when 0 : 0.01:1t = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 1 1.2σ = ; 

0.6η = ; 1δ = − ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 
 

 

Figure 4. The effects of the expected returns parameter of risky asset k on con-
sumption ( )* t  when 0 : 0.01:1t = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 1 1.2σ = ; 

0.6η = ; 1δ = − ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 

8.3. Effects of Risk Aversion Factor δ  on Optimal Investment  
( )tπ ∗  and Consumption ( )C t∗   

In Figure 5 and Figure 6, the optimal investment ( )* tπ  and consumption 
( )t  increase with larger values of risk aversion factor δ  as this lead to 

smaller relative risk aversion 1 δ−  for the investor. The investor becomes vi-
gorous in investing in the stock resulting in more wealth and thus more con-
sumption. 
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Figure 5. The effects of risk aversion factor δ  on optimal investment 
( )* tπ  when 1: 0.1:1t = − ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 

1 1.2σ = ; 0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 
 

 

Figure 6. The effects of risk aversion factor δ  on optimal consumption 
( )* t  when 1: 0.1:1t = − ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 

1 1.2σ = ; 0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 

8.4. Effects of Weight for Intermediate Consumption φ  on  
Optimal Consumption ( )C t   

In Figure 7, ( )* t  is increasing as weight for intermediate consumption φ  
increase. When φ  gets larger, optimal consumption amount will also increase 
for 1ρ = −  and 1ρ = . In conclusion, the amount to consume increases for 
larger values of φ . 
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Figure 7. The effects of weight for intermediate consumption φ  on optimal 
consumption ( )* t  when 0 : 0.01:1t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 

0.9b = ; 1δ = − ; 0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ =  and 1 1.2σ = .  

8.5. Effects of Risk-Free Interest Rate r on Optimal Investment  
( )tπ ∗  and Consumption ( )C t∗

 

 

Figure 8. The effects of risk-free interest rate r on optimal investment ( )* tπ  

when 0 : 0.01: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 1 1.2σ = ; 
0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 

8.6. Effects of Risk-Free Interest Rate r on Optimal Consumption  
( )C t∗  

In Figure 8, the optimal investment ( )* tπ  decreases as interest rate r increases 
when 1ρ =  and vise verse for 1ρ = − . In this case, the investor will reduce the 
investment amount in the stock in order to avoid the risks and invest more in 
risk-free assets since income is increasing in this asset. In Figure 9, consumption 
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( )* t  increases as interest rate r increases when { }1,1ρ ∈ − . Again the inves-
tor will reduce the investment amount in the stock in order to avoid the risks 
and invest more in risk-free assets since income is increasing in these assets. Net 
wealth still increases resulting in more consumption. 

8.7. Effects of Volatility of Risky Security 2σ  on Optimal  
Investment ( )tπ ∗  and Consumption ( )C t∗  

In Figure 10, the optimal investment policy ( )* tπ  increases as the volatility of 
risky security η  increases when 1ρ = −  but decreases when 1ρ = . Implying 
the value of correlation is key when making an investment decision in this fi-
nancial market setup. In Figure 11, the consumption policy ( )* t  increases as  

 

 

Figure 9. The effects of risk-free interest rate r on optimal consumption 
( )* t  when 0 : 0.01: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 

1 1.2σ = ; 0.6η = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 2 1.1σ = . 
 

 

Figure 10. The effects of volatility of risky security η  on optimal investment 

( )* tπ  when 0 : 0.001: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 

1δ = − ; 0.6r = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 1 1.2σ = . 
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Figure 11. The effects of volatility of risky security η  on optimal consump-
tion ( )* t  when 0 : 0.001: 0.5t = ; 0.6k = ; 0 0.2σ = ; 0.8a = ; 0.9b = ; 

1δ = − ; 0.6r = ; 0.5λ = ; 0 0.25θ = ; 2 0.26θ = ; 1φ =  and 1 1.2σ = . 

 
the volatility of risky security η  increases. Higher risky investments yield higher 
returns implying more consumption. This agrees with practical investments and 
our intuition. 

9. Conclusion 

This research work builds on the celebrated work of Merton [1] [2] who origi-
nally studied continuous-time investment and consumption problems. We in-
vestigate an optimal investment and consumption problem for a single investor 
with a portfolio consisting of one risk-free security (e.g. a money market account 
or bond) ( )B t  and one risky security (e.g. a stock or stock index) ( )S t . The 
interest rate dynamics of risk-free security follow a Ho-Lee model. In addition, 
the risky asset price follows Heston’s model with its volatility evolving as the CIR 
model. Our main goal is to allocate initial wealth 0x  between risk-free security 
and risky security to maximize the discounted expected utility of consumption 
and terminal wealth over a finite horizon. By applying the Dynamic Program-
ming Principle (DPP), we obtain the HJB PDE. Upon solving the HJB PDE, we 
derive the closed-form solutions of optimal investment and consumption strate-
gies for the power utility case. The impact and economic implications of market 
parameters on optimal investment and consumption strategies showed that the 
wealth  , the weight for intermediate consumption φ , the risk aversion factor 
δ  and the expected returns parameter of risky asset k affect the optimal in-
vestment ( )* tπ  and optimal consumption ( )* t  is a positive way regardless 
of the value of the correlation coefficient { }1,1ρ ∈ − . In addition, an increase in 
risk-free interest rate r and volatility of risky security η  led to an increase in 
net wealth resulting in more consumption. Also the value of { }1,1ρ ∈ −  is key 
for optimal investment in this financial market setup. The future research will 
focus on extending our study to include other utility functions. We will also 
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introduce multiple risky securities resulting in more sophisticated nonlinear 
second-order partial differential equations. 
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