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Abstract 
In this project, we consider obtaining Fourier features via more efficient sam-
pling schemes to approximate the kernel in LFMs. A latent force model 
(LFM) is a Gaussian process whose covariance functions follow an Exponen-
tiated Quadratic (EQ) form, and the solutions for the cross-covariance are 
expensive due to the computational complexity. To reduce the complexity of 
mathematical expressions, random Fourier features (RFF) are applied to ap-
proximate the EQ kernel. Usually, the random Fourier features are imple-
mented with Monte Carlo sampling, but this project proposes replacing the 
Monte-Carlo method with the Quasi-Monte Carlo (QMC) method. The 
first-order and second-order models’ experiment results demonstrate the de-
crease in NLPD and NMSE, which revealed that the models with QMC ap-
proximation have better performance. 
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1. Introduction 

This project considers improving the performance of random Fourier feature 
maps to speed up the testing and training speed when dealing with the large data 
sets in LFMs. Besides, this project proposes replacing the MC approximation 
with the QMC approximation, a more efficient sampling scheme for the kernel 
approximation. 

Latent force model (LFM) [1] is a type of Gaussian process with multiple- 
output. LFM can be used to reveal the dynamics in the gene network [2], to infer 
human movements from motion capture data [3], for motion primitive segmen-
tation in humanoid robot [4], and it can also be used for modelling the buildings’ 

How to cite this paper: Di, Q.L. (2022) 
Quasi-Monte Carlo Approximations for 
Exponentiated Quadratic Kernel in Latent 
Force Models. Open Journal of Modelling 
and Simulation, 10, 349-390. 
https://doi.org/10.4236/ojmsi.2022.104021 
 
Received: June 24, 2022 
Accepted: October 10, 2022 
Published: October 13, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojmsi
https://doi.org/10.4236/ojmsi.2022.104021
https://www.scirp.org/
https://doi.org/10.4236/ojmsi.2022.104021
http://creativecommons.org/licenses/by/4.0/


Q. L. Di 
 

 

DOI: 10.4236/ojmsi.2022.104021 350 Open Journal of Modelling and Simulation 
 

thermal characteristics [5]. Among several other applications mentioned above, 
the prior knowledge of the mechanical model can be encoded with the cova-
riance function of the Gaussian process. After combining the physics with the 
covariance function of a GP, the extrapolation ability can be granted to another 
interpolation-only model. 

In classical LFMs, the expression of the covariance function ( ),k t t′  is in the 
form of Exponentiated Quadratic (EQ) that leads to the solutions for the cross- 
covariances ( ), ,fd fdk t t′ ′ . While obtaining the solutions, the cost is expensive be-
cause the solutions include complex calculations that can be obtained only by 
numerical methods. To easier the expressions involved in the LFM’s covariance 
functions, random Fourier features (RFF) [6] are applied to approximate the 
calculation of EQ kernel with Monte Carlo method [3]. 

( ) ( ) ( ) ( ),, e dj T T
qk T T pω ω ω′′ = ∫                 (1.1) 

The expression of kfd,fd'(t, t) is simplified as 

( ) ( ), ,

1 1
, , , ,

Q S
d q d q

d d s d d s
q S

S S
v t v t

S
θ λ θ λ′

′
= =

 ′  
∑ ∑             (1.2) 

Therefore, the double integrals are transformed into two separate integrals 
which reduce the cost of computation. 

For the QMC method, there are modifications can be made in the expression 
( ) ( ) ( )e dj w p w wτ τ ′−∫ , the sampling points generated by w with the traditional 

MC method is randomly distributed. Different from the MC method, the QMC 
method will choose the points generated in a unit cube, where the points are 
firstly generated in discrepancy sequence [ ]1 0, ,, 1 d

st t ∈ . Then, a cumulative 
function of jp , iΦ  will be used to transformed the sequence. Through set-
ting ( )1

i iw t−= Φ , and ( ) ( ) ( )( )1 1 1
1 , , d

dt t t R− − −Φ = Φ Φ ∈ , the integral 
( ) ( ) ( )e dj w p w wτ τ ′−∫  can be converted over the unit cube. 

This project aims to get the random Fourier feature maps via replacing the 
MC method with the QMC method. Then, the LFMs with new approximated 
kernels will be applied to carry out the experiments. Also, this project will use 
NLPD and NMSE as evaluation metrics. 

1.1. Aims and Objectives 

This project aims to find a more efficient sampling scheme to obtain the random 
Fourier features and improve the efficiency of random Fourier feature maps to 
speed up the EQ kernel’s training and testing rate in LFMs. Furthermore, this 
project considers using the QMC method to replace the MC method and im-
plementing 4 kinds of low-discrepancy sequences to assess the performance. 

1.2. Chapter Overview 

Chapter 2—Literature review: This chapter will firstly review relative back-
ground knowledge. It begins with the study of latent force models and kernel 
methods. Then, it goes to the introduction of random Fourier features. Finally, 
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this project will introduce the MC and QMC methods, the sampling schemes 
applied. 

Chapter 3—Requirements: begins with the analysis of the detailed require-
ments of this object. 

Besides, ethical issues, evaluation are discussed in the section. 
Chapter 4—Design: It contains the overall design and the basic models. Be-

sides, the detailed datasets for experiments and the low discrepancy sequences 
are also discussed in this section. 

Chapter 5—Implementation and testing: The steps to implement the projects, 
for example, the preprocessing of data, the training of models, the implementa-
tion of sequences, will all be discussed in this part. 

Chapter 6—Experiments and discussion: Two different datasets are used to 
experiments with the approximated model with QMC methods. The experimen-
tal tables and figures are posted out. This project judges the performance ac-
cording to the metrics mentioned in chapter 3. Moreover, the goals achieved by 
the project and the future work are discussed in this section. 

Chapter 7—Conclusion: The findings and improvements of this project are 
discussed in this chapter. 

1.3. Discussion 

The project is based on machine learning and numerical analysis. According to 
the courses of Master degree, the lesson about machine learning is provided, and 
it is the theoretical basis of this project. Besides, the practices and assignments of 
the machine learning course supply me with experience dealing with data and 
basic sampling technology. 

However, the experience and knowledge gained from the course cannot offer 
a solution to this project. The project needs a solid foundation of mathematics 
and Matlab. Moreover, students need to have a clear understanding of how the 
physic models work, and the basic knowledge of algorithms is required. 

It is a challenge for a traditional computer science student, but it is also a 
chance for students to master numerical analysis skills. 

2. Literature Review 

This section will first give a general review of the latent force models. Then, the 
following two parts will review the kernel methods and random Fourier features 
(RFF), which are the key points to developing our project. Finally, the last two 
parts introduce the two different sampling methods, the Monte-Carlo method, 
which is classic, and the Quasi-Monte Carlo method (QMC), which is applied in 
this project. 

2.1. Latent Force Models 
2.1.1. Gaussian Process 
The latent force model (LFM) belongs to the Gaussian process. Gaussian Process 
[7] is a concept in statistics, and it belongs to a particular example in the Sto-
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chastic process. It’s a set of random variables in a continuous domain, with 
each random variable obeying a Gaussian distribution at each time or space 
point. A Gaussian Process is decided by the mean and covariance function. The 
characteristics are controlled by the kernel function, which denotes the similar-
ity of pairs of points [8]. The GP is a powerful model that can be used to 
represent the distribution of a function. It directly models the function to gen-
erate a non-parametric model. One of the outstanding advantages is that it can 
simulate any black-box functions and simulate uncertainty. As for the cova-
riance function, this part is widely discussed later in the application of machine 
learning, and it is also called the kernel function. The reason is that it captures 
the relationship between different input points and reflects the position of the 
subsequent samples. Gaussian processes can be entirely specified by second- 
order statistics, which is a fundamental feature. Therefore, if the mean value of 
the Gaussian process is regarded as zero, the covariance function formula can 
fully explain the behaviour of the process [9]. 

2.1.2. Introduction of Latent Force Model 
LFM is a Gaussian process having multiple outputs. It has the feature that its 
covariance function contains ordinary differential equations (ODEs) or partial 
differential equations (PDEs). Especially, every output in the LFMs can be de-
scribed as ( ){ } ( )d dD f t u t= , in which Dd is the differential operator related to 
a partial or ordinary differential equation. Besides, u(t) is the excitation function. 
A latent force model presumes that u(t) is unknown, and a Gaussian process is 
placed over it. The expression for fd(t) can be written as 

( ) ( ) ( )
0

d
t

d df t G t T u T T= −∫  

in which Gd(·) is equivalent to the Green’s function which is related to the diffe-
rential operator Dd. The function u(t) or the latent force is not observed, and it 
follows a GP prior having mean function zero, and covariance function given by 
k(t, t). After u(t) being modified by the linear operator, the expression of fd(t) 
also follows a Gaussian process having covariance kfd,fd0(t, t). Moreover, there is a 
possibility to compute the cross-covariance function from fd(t) and ( )df t′ ′  be-
cause every fd(t) has a u(t) as its input. The equation of fd(t) can be extended, af-
ter containing the extra latent functions with distinct traits, the expression of 
each output can be written as 

( ) ( ) ( ), 0
1

d
Q t

d d q d
q

f t S G t T u T T
=

= −∑ ∫  

in which the Q represents the number or latent forces, and Sd,q is a sensitivity 
parameter which represents the affect of force uq(t) with output d. Presuming 
the independence of uq(t), and they all follow the same covariance kq(t, t), there-
fore the cross-covariance functions can be computed [3]. 

( ) ( ) ( ) ( ) ( ) ( ), , 0, 0
1

, d, d
Q t t

d q d q d d qfd f
q

d S S G t T G t T k T T T Tk t t
′

=
′ ′ ′ ′ ′ ′=′ − − ×∑ ∫ ∫  (2.1) 
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Based on the expressions for kq(t, t), a similar expression for kfd,fd0(t, t) may 
also be found. There is a normal expression for kq(τ, τ') which follows an EQ 
form. 

( ) ( )2

2, expq
q

T T
k T T

 ′−
′ = − 

  

 

in which 2
q  is defined as the length-scale. 

This project will further explain the essential concepts related to LFMs, such 
as kernel methods, the random Fourier features, and the sampling methods. 

2.2. Kernel Methods 

Considering the EQ kernel in LFMs, there is necessary to introduce the kernel 
methods. The kernel method is a kind of machine learning method. The so- 
called machine learning (ML) refers to the use of computers to simulate or rea-
lise the learning behaviour of humans to acquire knowledge and experience and 
to organise new knowledge structures to continuously improve them The per-
formance of the system itself [10]. People’s attention to kernel methods [11] [12] 
[13] benefits from the theoretical and applied development of Support vector 
machine (SVM) [14] [15]. The adoption of the kernel function makes it easy to 
extend the linear SVM to the nonlinear SVM. Its core lies in the use of rela-
tively simpler kernel function calculations, which not only avoids the complex 
inner product calculation in the feature space but also avoids the design of the 
feature space itself [16] [17]. The research on the kernel function started very 
early. In 1964, Aizermann et al. proposed introducing the kernel method into 
machine learning when studying the potential function. However, due to the 
constraints of the limited technology at the time, its advantages did not attract 
widespread attention [18]. The kernel method effectively solves the problem of 
high-dimensional model construction under limited samples and has a strong 
generalisation ability. The theoretical foundation of nuclear methods is ancient. 
Mercer’s theorem, which has a cornerstone function, was found in 1909. The re-
search on Reproducing Kernel Hilbert Space (RKHS) began in the 1940s [19]. 
Aronszajn’s detailed exposition on RKHS completed in 1950 laid a solid founda-
tion for later development [20]. Kernel methods [21] [22] [23] provide an allin-
clusive collection of non-parametric modelling skills for problems about ma-
chine learning. 

2.2.1. The Principles of Kernel Methods 
Given a supervised machine learning problem, a sequence of pair points, 
( ) ( ) ( )1 1 2 2, , , , , ,i ix y x y x y X Y∈ × , in which input domain nX R⊆ , output 
domain Y R⊆  (regression problems) or Y = −1, +1 (classification problems). 
A new feature space F can map the input points into via a non-linear mapping, 
in which nF R⊆ . 

( )
: x F

x x
ψ

ψ
→



                       (2.2) 
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Then, a new expression of the data will be used to describe the origin problem 

( )( ) ( )( ) ( )( )1 1 2 2, , , , , ,i ix y x y x y F Yψ ψ ψ ∈ ×          (2.3) 

The kernel function combines the two steps of nonlinear mapping and the 
inner product of two vectors in the feature space, so that the nonlinear mapping 
is performed implicitly, and the linear hyper-plane can be composed of all 
training samples and a test sample in the feature space. The linear combination 
representation of product terms, thus avoiding the curse of dimension. 

According to Mercer condition [24], assume X be the Compact subset of Rn, 
:k Rχ χ× →  is a continuous symmetric function, if its integral operator on the 

Hilbert space satisfies the integral positive definite condition [25]: 

( ) ( ) ( ) ( )2 , , d d
x x

f L x k x z f x f z x z
×

∀ ∈ ∫            (2.4) 

Then, there must be a feature space F and a mapping ψ, let 

( ) ( ) ( ),k x z x zψ ψ= ×                   (2.5) 

Different kernel functions can be designed for different uses. Linear kernels, 
polynomial kernels, radial basis kernels, Sigmund kernels, Fourier kernels, and 
other kernel functions are extensively utilised. In particular, if a kernel function 
k is a function of (x − y), it is called a shift-invariant kernel. The Gaussian kernel, 
Laplace kernel, and the EQ kernel in LFM belong to this type of kernel. In space 
F, normal regularised linear statistical models offer the origin input expression 
nonlinear inference. Classical Representer Theorems [22] [23] contains these ba-
sic algorithms of such constructions, and the finite-dimensional solutions of re-
lated optimisation problems will be promised although F is an infinite-dimension 
space. 

2.2.2. How Feature Maps Approximate the Kernels 
Let us review the randomised creation of low-dimensional approximate feature 
maps [6] which is used to scale up the kernel methods. Feature maps, ˆ : sCψ χ → , 
provide the kernel function :k Cχ χ× →  with low-distortion approxima-
tions:  

( ) ( ) ( )ˆ ˆ, , Sk x z x z cψ ψ≈                    (2.6) 

in which Cs represents the s-dimensional space with complex numbers and the 
inner product, with z* representing the complex number z’s conjugate. Although 
the real-valued feature map is defined [6], Jiyan’s technical description is predi-
gested by using the generality of complex-valued features [26]. The expressions 
in (2.1) leads to solutions, e.g., for problems like regression problems, we have 
O(ns2) training and O(s + maptime) predictions speed in which the maptime 
means it should take the time to create features for test inputs, with O(ns) mem-
ory requirements. Especially, the approximation mentioned in the Equation 
(2.10) is useful to a kind of significant kernels which is called shift-invariant 
kernel. Assume that a kernel function K on Rd, K(x, z) = f(x − z), the kernel will 
be defined as shift-invariant kernel, for some complex-valued positive definite 
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functions f on Rd. Positive definite function is a function which satisfy the re-
quirement that if it is given a set of n points, 1

d
ny y R∈ , the n × n matrix B 

defined by Bij = g(yi − yj) is positive semi-definite. 
From the above review of kernel methods, we can know that the data can be 

mapped to the-high dimensional space by kernel function, and we only need to 
calculate the k(x, y) to realise the learning algorithm, with no need to know the 
implicate feature mapping function φ(·,·), but this convenience may lead to some 
problems. For instance, if we take consideration into realising a non-linear clas-
sification algorithm, and the data set is large, thus, it will take much time and 
space cost to calculate the kernel function, due to the factor that k(·,·) calculates 
a value for (x, y) at each point, and finally forms a kernel matrix whose size is the 
square of the data amount. Therefore, the calculation cost should be under con-
sideration when the kernel function is non-linear and with big data sets. 

2.3. Random Fourier Features 

Rahimi and Recht (2007) paid attention to the above problems, and propose an 
estimation method based on Fourier transformation [6]. In simple, RFF maps 
two pieces of origin data x, y to a low-dimensional Euclidean space RD via an ex-
plicit mapping function Z, that is Z: Rd → RD, and the inner product between the 
x and y point after mapping will be the approximated value of the kernel func-
tion k(x, y): 

( ) ( ) ( ) ( ) ( )T, ,k x z x y Z x Z yφ φ= ≈ ⋅               (2.7) 

Z function maps x to a relatively low-dimension space which is different from 
the feature mapping function φ(·) in the function k(·,·) will map the x to a 
high-dimension space. Hence, we can use function Z to transform the input data, 
and then apply linear methods to approximate the non-linear algorithms. 

According to the Bochner [27] theorem, a function f which is complex-valued, 
and it is positive definite if and only if the function is the Fourier Transform of a 
Borel measure µ which is finite non-negative on Rd, 

( ) ( ) ( )T
ˆ e d ,d

ix w d
R

f x x w x Rµ µ−= = ∀ ∈∫              (2.8) 

With no loss of generality, this project suppose that µ(·) is a probability meas-
ure and the function has its related density function p(·). As a result of the ex-
pression above, a scaled kernel that is shift-invariant could have a one-to-one 
correspondence with the density function p, implying that, 

( ) ( ) ( ) ( ) ( )
T

, e dd
i x z w

R
k x z f x z p w w− −= − = ∫            (2.9) 

Therefore, we only need to sample W from p(w) om theory in order to ap-
proximate the value of k(x − y). 

The equation (2.8) can be approximated as:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
T T

1

1 ˆ ˆ, e d e ,d

s
i x z w i x z s

s s sR
j

k x z p w w w x z c
s

ψ ψ− − − −

=

= ≈ =∑∫  (2.10) 
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and in which the feature map is:  

( )
TT

1
1ˆ e e six wix w s

s x C
S

ψ −− = ∈
 

              (2.11) 

The subscript S in the expression, represents the feature map’s dependence on 
the sequence S = (w1, …, Ws). As the elements in the sequence are obtained from 
the function p(·), the approximation in expression (2.9) can be thought as Monte 
Carlo method. Therefore, in the next part this project will introduce the Monte 
Carlo (MC) method. 

2.4. Monte Carlo Method 
2.4.1. The Introduction of the Monte Carlo Approach 
In the 1940s, members of the world-famous USA-Los Alamos National Labora-
tory, John von Neumann, Manhattan Project, Stanislaw Ulam and Nicholas 
pioneered the Monte Carlo method. At that time, this method was mainly ap-
plied for nuclear weapon’s development and production [28]. However, due to 
roulette, a simple random number generator, Ulam’s uncle is super fond of 
gambling. Therefore, he always plays in Monte Carlo, and he always loses his 
cash in Monte Carlo. Hence the approach is called Monaco’s world-renowned 
casino-Monte Carlo [29]. Thus, the name and system development of the Monte 
Carlo approach began. 

There were some isolated and unexplored examples in an earlier period of the 
MC method. For instance, people randomly throw a needle on a parallel and 
straight ruler, and they deduced the value of π by looking at the nodes of the 
needle and the parallel lines. In 1873, a report about an exciting experiment ap-
peared in the paper entitled “Experimental Determination of Pi”. There is re-
lated software that is developed for simulation experiments by the author. In 
1899, Lord Rayleigh also indicated that one-dimensional random walk kinetic 
energy with no absorption limits approach a parabolic differential equation. In 
1931, Kolmogorov also indicated Markov the unique association between the 
integral equations [30]. 

The British Statistics Schools sunk in heavy simple Monte Carlo work in the 
early twentieth century. The majority of the results were like a predicant and 
rarely applied for researches or discoveries. Under rare circumstances, an origi-
nal discovery was highlighted instead of comfort validation. For example, in 
1908, a student used a sampling experiment to assist him in completing the 
study of distributing correlation parameters. In the meantime, the student sup-
ported the so-called T distribution originated from his shaky and synsemantic 
theoretical discussions. Nevertheless, the study of developing atomic bombs in 
the Second World War is the origin of the actual use of the Monte Carlo method 
as a study device. There is a direct emulation of the probability of randomly dif-
fusing neutrons in nuclear fuel in this work. In the early stages of these tests, this 
unique “Russian Roulette” and “splitting” approach was refined by von Neu-
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mann and Ulan. By 1948, based on Schrodinger’s equation, Fermi, Metropolis, 
and Ulan evaluated its eigenvalues with the MC method, and since then, the 
study of the MC method has been started. 

As we understand it today, there is no statistical sampling technology to 
seek immediate solutions to quantitative problems in the Monte Carlo ap-
proach. Ulam did not propose statistical sampling technology. However, quan-
titative problems during physical processes were analysed with the statistical 
sampling technology long ago. Ulam’s contributed to identifying the hidden 
automatic sampling role of the newly developed electronic computer. He de-
veloped computer-executed algorithms and investigated the methods of shift-
ing non-random issues into arbitrary forms by statistical sampling. This re-
search changed the statistical sampling method from a purely mathematical 
approach to a formal process. As a result, the methodology applies to various 
problems [30]. 

The Monte Carlo method solves issues by producing suitable random num-
bers and investigating some given nature or attributes of the information. When 
carrying out sampling experiments, the MC method provides an approximation 
for different mathematical issues. This method is very effective for obtaining 
digital solutions for some issues that are too complex to be analysed and solved. 
It is also appropriate for issues with no probability and issues with an inborn 
probability framework. 

Monte Carlo simulation technology had officially existed since the early 1940s 
[30], and it was applied to nuclear fusion research then. As a result, MC has been 
extensively applied, particularly at the end of the 20th century. As electronic 
computers develop quickly, the realisation, growth, and enhancement of ap-
proaches have been significantly promoted. Monte Carlo methods are emerging 
endlessly because modern computers can perform millions of simulations more 
quickly and effectively, which is also an essential element for Monte Carlo simu-
lation to offer suitable solutions fast and guarantee a higher-level precision. After 
all, it represents that the technology can offer more simulations. For sure, similar 
solutions are more precise. However, an approximate answer can only be pro-
vided by these approaches. Hence, the discussion on the approximate mistake is 
the major element to be taken into account when using these methods to eva-
luate the response. Due to the attempt to decrease this approximation mistake, 
there are various types of Monte Carlo approaches. Different approaches have 
various extents of precision for their solutions, and the precision level of several 
approaches will differ with the issue. 

Compared with conventional mathematical-statistical approaches, the Monte 
Carlo approach decreases the difficulty of implementation in virtue of comput-
ers. It is hard or even impossible to deal with complex problems with other ma-
thematical approaches. However, an appropriate way can be observed to cope 
with it. Generally, for the probability allocation of an unclear entity, a simulation 
is operated many times. The Monte Carlo approach aims at calculating compli-
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cated integrals, especially various integrals with almost no study approach. Due 
to their sophistication, they are appropriate for seeking a suitable solution in-
stead of calculating the complex integrals. Under these cases, Monte Carlo’s ap-
proximation is a useful device because a reasonable approximation can be given 
faster than other standard technologies. The uses of the Monte Carlo approaches 
aim at optimisation, numerical integration and probability distribution produc-
tion. 

The MC method is often applied while settling physical and mathematical is-
sues. For example, if it is hard or impossible to get analytical expressions, or it is 
impossible to use conclusive algorithms, the MC method is critical and most 
valuable. 

The Monte Carlo methods have become a widely promoted and irreplaceable 
computing tool as electronic information technology develops quickly in statis-
tics and other areas. Especially while settling exploration issues, including opti-
misation and integration, more immeasurable value is even shown. From eco-
nometrics, genetics to computational physics, the Monte Carlo approach ap-
proximation [31] derive all kinds of statistics. 

2.4.2. The Monte Carlo Method’s Essential Concept 
The statistical approach is a famous mathematical approach recently. Monte 
Carlo approach is a statistical experiment approach, primarily through statis-
tical sampling experiment to provide approximate solutions to various ma-
thematical problems, sometimes also known as Random sampling technology. 
They can be easily defined as statistical simulation approaches. In a statistical 
simulation, a set of random numbers are adopted to simulate experiments. 
Hence, the Monte Carlo approach collects various approaches with the same 
processes. This process includes using random numbers to perform many si-
mulations and the probability of obtaining a similar solution to an issue. Thus, 
random numbers are the defining characteristic of MC technology in the si-
mulation process. 

From the theories of great numbers and moment calculation, when the sample 
scale value T is infinite, the mean value of the sample in the statistical sampling 

( ) ( )( )
1

1 ,
T

t t
t

h p p f p
T =
∑                  (2.12) 

will converge to Ef[h(p)]’s expectation. In statistical experiments, using the ex-
pectation Ef[h(p)] to refer to the mean is not uncommon in statistical algorithms. 
It exists in many approximate approaches for settling integrals. The Monte Carlo 
approach to solve the approximate value is based on the methods mentioned 
above. In addition, this approximation has the same precision as statistical esti-
mation, usually denoted as o(sqrt(T)). Hence, Once a sample p1, …, pT has been 
generated using the same probability allocation density functionf, all standard 
statistical devices, such as bootstrapping procedures, apply to this sample. As 
the above formula shows, when a single Monte Carlo experiment concludes the 
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output and estimated value, it is impossible to settle the variability. Neverthe-
less, based on Monte Carlo thought, analysis and study approaches can be 
straightforward. Moreover, systematic implementation of statistical thought can 
interpret why the Monte Carlo method performs better than a numerical me-
thod to a certain extent. 

Concerning various issues, an appropriate solution can be found by the Monte 
Carlo method. However, MC technology’s real solution falls into two categories: 
the association between the thing itself and the random processes. 

The first is a deterministic mathematical issue. While applying the Monte 
Carlo approach to answer such questions, a related probability model can be 
constructed based on the problem and the deterministic issue’s solution, and it is 
precisely equivalent to the probability allocation of the established model. 

Then, sampling research applies a lot of random experiments to this probabil-
ity model. A lot of random numbers and variables will be generated, and in the 
end, the variables determined by the model will be sampled. The arithmetic 
means nearly equivalent to the approximated value of the deterministic issue. 

The second is randomness issues. Unexpected issues are universal in life. For 
instance, neutron diffusion and other problems belong in the medium because 
certain deterministic factors affect neutrons. Nevertheless, several uncertain and 
random elements exert more influence. This issue can be defined as some par-
ticular function equations or specific multiple integrals sometimes and can be 
further changed into a random sampling approach for calculation. However, we 
seldom apply this kind of indirect simulation approach. On the contrary, a si-
mulation approach is applied based on the probability regulations of actual 
physical characteristics, applying scientific computers to simulate random sam-
pling experiments. On the contrary, the simulation method uses scientific com-
puters to simulate random sampling experiments with reference to the physic 
properties. 

As we concluded above, the specific problem-solving steps for the two kinds 
of problems are as follows: 

1) Show the probabilistic process and set up a simple and easy-to-use proba-
bility model or random model according to the question asked. If the question 
has random features, the probability process can be described and simulated 
correctly. While, for the inherently non-random problems, we need to under-
stand the physical process and geometric nature of actual objects to settle this 
kind of problem by the Monte Carlo method. A probabilistic process can be ar-
tificially constructed, and the required solution with the statistical values of the 
coefficients in the established models can be made. The established model 
should also conform to actual problems concerning primary characteristic coef-
ficients. 2) Taking a sample from a population with a well-defined distribution. 
What strategy should be used to select a population with a precise distribution 
adequately based on the distribution of every random variable in the model 
should be evaluated, and suitably random numbers in a computer simulation 
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should be generated. It can be recognised as being made up of the probability 
distribution of related random variables. As a result, the standard technique is to 
generate random numbers using a uniform distribution, then follow a provided 
distribution based on real-world examples before completing the random simu-
lation test. 

3) Determination of the estimator. The simulation will be carried out accord-
ing to the constructed model. While realising the simulation, it is necessary to 
determine a random variable. Then, many repeated experiments must be done 
to calculate random solutions to the problem. If the solution to the problem is 
the expected value of this random variable, the estimator is known as an un-
biased estimator. 

2.4.3. Random Numbers and Pseudo-Random Numbers 
The Monte Carlo method is a means of statistical sampling experiments based 
on computer-generated random numbers. Random numbers play an immea-
surable role in dealing with problems. While applying the Monte Carlo approach 
to a simulation experiment, random variables following different probability 
distributions can be generated. The standard random variables are uniformly 
distributed from 0 to 1 in the interval of random variables in different distribu-
tions. The sampling value of this kind of random variable is usually called ran-
dom numbers, and random numbers are used to sample other distributed ran-
dom variables. 

Now we will introduce two methods for generating uniform random numbers: 
one of them is called the physic method, which use physical phenomena to 
generate completely random numbers, such as throwing a sieve, using an op-
tional electronic wheel to generate random numbers with random pulses, but 
this method has a significant loophole, where random processes cannot be 
saved for information verification and sometimes the cost of experiments is ex-
pensive. The second method is called the mathematical method, where mathe-
matical processes performed by iterative formulas will generate a series of num-
bers. Although this kind of method relies on a computer, it is easy to implement 
and time-saving. Nowadays, most methods belong to this type. 

In daily Monte Carlo simulation experiments, random numbers are obtained 
by mathematical approaches and superimposed applications based on explicit 
recursive formulas. However, mathematically, this kind of random number is 
not a truly random number. Once it is given an initial value, a random number 
sequence will be determined. Hence, the random number produced by this ap-
proach is usually known as pseudo-random numbers. 

Nevertheless, these pseudo-random numbers can pass every rigorous test in 
actual simulation experiments. 

Therefore we can use pseudo-random numbers instead of random numbers. 

2.4.4. The Characteristics of the Monte Carlo Method 
In this subsection, we will review the Monte Carlo integration about its conver-
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gence and error. Assume that when computing an approximation of the follow-
ing expression, 

[ ] ( )[ ]0,1
dddI f f x x= ∫                    (2.13) 

We can notice that when Xd is a random variable which is distributed un-
iformly in the interval [0, 1]d, then Id[f] = E[f(Xd)]. By drawing a sequence con-
taining random points S = w1, …, Ws independently from the interval [0, 1]d, 
then we can compute: 

[ ] ( )1
S

w S
I f f x

s ∈

= ∑                     (2.14) 

This process is called the MC method. Then, we define the integration error 
about the sequence S as 

[ ] [ ] [ ]d Ss f I f I f∈ = − .                (2.15) 

In the above equation, as the sequence S is drawn randomly, according to the 
Central Limit Theorem [32], for s large, 

[ ] [ ] 1 2s f f s vσ −∈ ≈                   (2.16) 

in which υ is a stand normal random variable, and variance f’s square-root is σ 
[f]. That is, 

[ ] ( ) [ ][ ]( )2
1 2

0,1
ddf f x I f xσ = −∫              (2.17) 

The above expression means the error of the Monte Carlo approach converges 
at the rate of O(S−1/2). 

2.4.5. Advantages and Disadvantages 
The advantages of the MC approaches are listed below. Based on the explanation 
of the elementary concepts and features of the Monte Carlo approach, it is not 
confined to mistakes and convergence. Moreover, the MC method has unique 
features compared with the general mathematical calculation approach. The ad-
vantages of the MC methods will be discussed in the following fields: 

1) The Monte Carlo approach is intuitive and easy to know. Monte Carlo 
analysis of problems establishes probabilistic models for physical tests based on 
the actual physical features of the issue itself. Moreover, it shows the features of 
describing the randomness of things. While settling actual issues, the Monte 
Carlo approach begins with the issue itself. Thus, it directly establishes the mod-
el rather than construct numerical equations or complex mathematical expres-
sions. Therefore, it guarantees its intuitive and straightforward characteristics. 2) 
Underestimation of the extensive adaptability of the Monte Carlo approach shall 
not be made. The prominent characteristic is that while settling issues, the im-
pacts of conditional constraints are minimal. For instance, while calculating 
various integrals in any area in any dimensional space, for any unusual shape of 
the integration region, the Monte Carlo approach can produce a lot of uniformly 
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distributed points in the integration region via the computer. Next, the approx-
imate value of the integration can be obtained by analysing and calculating the 
experimental outcomes. In the case of very irregular or complicated integration 
regions and challenging numerical methods to calculate, the Monte Carlo ap-
proach is especially remarkable [33]. 

3) Probability convergence is not related to the dimension of the issue. 
Based on the previous explanation of the error, when the confidence level re-
mains the same, the convergence speed of the Monte Carlo method is 
O(1/sqrt(S)), which has nothing to do with the dimension of the issue itself. 
Furthermore, as dimensionality changes, the sampling time and the calculation 
time of the estimator can be increased with no influence on the error. Namely, 
in the Monte Carlo approach experiment, the number of samples N is not as-
sociated with the dimension S. A growth of the dimension S will not alter the 
original mistake of the issue but will only cause an increase in the amount of 
calculation. Based on these advantages, the Monte Carlo method is more de-
sirable and applicable when solving high-dimensional problems than the usual 
numerical methods. 

Here we conclude the disadvantages of the MC method. In conclusion, the 
MC method shows the convergence rate of O(1/sqrt(S)), High-precision ap-
proximate outcomes are usually hard to get. 

By comparing with other approaches, the efficiency may not be excellent 
while solving the low dimensionality problems. Meanwhile, the estimation of the 
mistake of the MC approach is applied at a specific confidence level, which dif-
fers from the traditional numerical error computation. As a result, the error will 
vary depending on the level of confidence. Under general circumstances, for an 
approximate solution with a certain degree of precision, the MC method needs 
many experiments, which increases the amount of calculation and decreases the 
efficiency of the computer (See Figure 1). 

 

 
Figure 1. Comparison between MC and QMC.Reproduced from  
https://en.wikipedia.org/wiki/Main_Page/wiki/Sobol sequence with the permission of the cop-
yright owner. 
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2.5. Quasi-Monte Carlo Sampling Method 
2.5.1. Introduction of the QMC Methods 
A typical component in computer applications is efficiently generating random 
integers uniformly distributed in high-dimensional space. A uniformly distri-
buted random number means a superior sample distribution for all algorithms 
that need to be sampled. Financial mathematics and computational mathemat-
ics more apply quasi-Monte Carlo approaches [34]. The Quasi-Monte Carlo 
approach aims to solve the problem associated with numerical integration and 
several othe, the QMC method shows a quicker rate [34]. 

QMC approaches refer to use a deterministic low-discrepancy sequence to es-
tablish S rather than randomly sampling points. Figure 1 illustrates the under-
lying intuition as it shows a set of 256 2D random points (left graph) and 256 2D 
points from a Sobol sequence (right graph). In the random sequence, n unde-
sired clustering of points and, consequently, empty spaces can be seen. Therefore, 
clusters add little to the integral approximation in those areas, while the sam-
pling of the integrand is not conducted in the blank spaces. Furthermore, due to 
the independence of the Monte Carlo samples, the points lack consistency. The 
QMC method carefully designed a sequence of associated points to remove such 
clustering effects. Moreover, it also tries to prevent these phenomena and offer 
quicker convergence to the integral. Classic QMC sequences have a hierarchical 
framework: the integrand is sampled by the initial point on a coarse scale, and 
the following points sample it more finely. 

Unofficially, the integration mistake related to a sequence relies on measuring 
the variation of the integrand f over the integration domain. Moreover, a se-
quence-dependent term typically measuring the discrepancy, or extent of de-
parture from uniformity, of the sequence S. For instance, the expected Monte 
Carlo integration mistake decouples into a variance term and 1/sqrt(s) as in (9). 
A classic QMC theory formalises instinct as follows. 

According to the Koksma-Hlawka inequality [35], for any function f with 
bounded variation, and a random set of points S = W1, …, Ws, the integration 
mistake is bounded above as it shows below: 

[ ] ( ) [ ]HKs f D S V f∗∈ ≤                     (2.18) 

in which V[HK] is the variance of f in the meaning of Hardy and Krause defined 
by the following partial derivatives [36], 

[ ] [ ][ ] 0,1
, 0

1,IHK j
I d I

fV f u j I duI
uI∈ ≠

∂
= = ∉

∂∑ ∫ ,           (2.19) 

where D* is the star discrepancy, whose definition is: 

( )
[ ]

( )
0,1

sup
d

s
X

D S disr X∗

∈

=                    (2.20) 

in which disrS is the local discrepancy function 

( ) ( )
{ }: i X

s x

i W J
disr X Vol J

S
∈

= −                (2.21) 
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with [ ) [ )10, 0,X dJ x x= × × . The infinite sequence Wi mentioned above is de-
fined to be a low-discrepancy sequence when the situation is as a function of s, 
the star discrepancy { }( ) ( )( )1, , log d

SD W W O S S∗ =
. 

Based on low-discrepancy sequences and the Koksma-Hlawka inequality, the 
classic Quasi-Monte Carlo method obtains a convergence rate of O((logS)d/S). 
Although it is superior to O(1/sqrt(S)) for a stationary d, it needs s to be expo-
nential in d to show the progress. Due to the factor above, the QMC method was 
rejected as unsuitable for high-dimensional integration. 

2.5.2. Low-Discrepancy Sequence 
Before this project introduces the low-discrepancy sequences, the definition of 
Discrepancy should be explained further. According to the definition of Discre-
pancy (2.15) [36], in simple words, the expression can be described as randomly 
selecting an area in space, the ratio of the number of points in this area to the total 
number of points minus the area of the space. Then the maximum number of the 
absolute value of their difference is Discrepancy. Next, before introducing these 
sequence definitions, this project will introduce a basic operation, Radical Inverse. 

The radical inverse of an integer i with L digit base b expansion is defined as: 
( )1 2 0, , ,L L b

i i i i− −=  . 
And the expansion can be obtained via mirroring the numbers at the fraction-

al point, ( ) ( )0 1 10. Li i i iϕ −=  . 
This is also the definition of van der Corput sequence [37]. 
Digit Nets and Lattice Rules are two main kinds of methods for generating 

low-discrepancy sequences. For example, Halton sequence, Sobol sequence, 
Faure sequence and Niederreiter(t, s) sequence all belong to the kind of Digital 
Nets. The low-discrepancy sequence has the characteristic that for T’s values, 
whose subsequence s1, …, sT has a low discrepancy. Besides, a low-discrepancy 
sequence is sometimes in the name of quasi-random sequences because these 
sequences are usually applied to replace random numbers. 

The quasirandom sequences have different uses, and they have an advantage 
compared with pure random sequences, in which they quickly and uniformly 
cover the domain of interest. They also have an advantage over strictly determi-
nistic approaches in that they only provide high accuracy when data points are 
pre-set. When employing quasirandom sequences, on the other hand, accuracy 
improves as additional data points are provided, with full reuse of the existing 
points. In contrast to totally random sequences, quasirandom point sets can 
have a substantially lower disparity for a given number of points. Finding the 
characteristic function of a probability density function is one of the practical 
uses. Finding the derivative function of a deterministic function with a small 
quantity of noise is the other one. Furthermore, higher-order moments may be 
calculated rapidly and accurately using quasirandom numbers. 

3. Requirements and Analysis 

In this chapter, this project will introduce the goals of this project in detail and 
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the analysis of the objectives. Then, this project will prepare some methods 
based on the review mentioned above. Finally, the evaluation of the result will be 
discussed. 

3.1. Project Requirements 

The project aims at implementing a new sampling scheme and applies the 
scheme into the kernel approximation based on the LFMs [3]. Therefore, this 
project will try to implement four kinds of low discrepancy sequences to obtain 
the random Fourier features for the approximation of the EQ kernel. 

The requirements of the project are listed below: 
1) Analyse the methods to obtain random Fourier features. 
2) Implement the QMC sampling scheme. 
3) Replace the MC approximation with the QMC approximation. 
Besides these steps related to implementation, there are other requirements 

about this project. This project will carry out the new sampling schemes on dif-
ferent data sets and different models to fully verity the performance. Moreover, 
detailed experiment results and figures will be posted to make comparisons 
among all the sequences, thus the conclusion drawn from the project will be 
move reasonable and convincible. 

3.2. Analysis 

To satisfy the requirements of the project, this project will discuss the methods 
to meet the requirements mentioned above. The analysis of the each step will be 
analysed in the following subsections. 

3.2.1. Random Fourier Features for EQ Kernel 
According to the review about the LFMs, the expression for kq(τ, τ) is obtained. 
Moreover, based on the Bochner theorem [27], this project can transform the 
expression with a random Fourier feature expression. 

( )
( )

( ) ( )

2

2
,

,, e e dq

T T

e j T T
qk T T p λλ λ

′
−

′′ = = ∫               (3.1) 

in which P(λ) obeys the distribution. Rahimi and Recht [6] gave a insight about 
approximating the Kq(τ, τ0) with the MC methods to solve the integral related to 
λ. 

( ) ( ) ( )
1 1

1 1, e e , ,s s
S S

j T j T
q S S

S S
k T T v T v T

S S
λ λ λ λ′ ∗

= =

′ ≈ − =∑ ∑        (3.2) 

in which S denotes the number of samples, and v is function with λs, meanwhile 
the function v* is the complex conjugate of v, and λs ~ p(λ). Due to the kernel 
function is a real number, we only need the real part of the inner product of the 
v(τ, λs)v*(τ, λs). Now we have the Equation (3.1), then we use replace the tradi-
tion kq(τ, τ0) with the transformed expression for the kfdfd0(t, t0) which is the 
cross-covariance of the LFM, we get 
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( ) ( ) ( ) ( )
, , 0 0

1
e d

Q t t j T T
d q d q d d

q
S S G t T G t T p λ λ

′ ′−
′ ′

=

′ ′− − ×∑ ∫ ∫ ∫       (3.3) 

According to Alvarez [3], the above expression can be organized as 

( ) ( ), ,

1 1
, , , ,

Q S
d q d q

d d s d d s
q S

S S
v t v t

S
θ λ θ λ′

′
= =

 ′  
∑ ∑ ,            (3.4) 

in which λs ~ p(λ), with  

( ) ( )
0

, , e dT
t j

d d dv t G t T Tλθ λ = −∫                (3.5) 

While, the expression of vd(t, θd, λ) can still has a further extension. The θd re-
fers to the Green’s function’s parameter Gd(·), and the integral over t can be 
solved using Laplace transform L(·). 

( ) ( ){ }
( ) { }{ }

1
0

1

, , e d

e

T

T

t j
d d d

j
d

v t L L G t T T

L g s L

λ

λ

θ λ −

−

= −

=

∫
             (3.6) 

in which gd(s) denote the Laplace transform for Gd(t), and the function L−1 
represents the inverse Laplace transform. Via the same steps, the expression is 
vd(t', θd0, λs). Therefore, to obtain the approximation value of the LFM, there are 
two steps, 

1) Calculate the expression for vd using the Laplace transform. 
2) Calculate the RFF approximation for the Equation (3.2), in which λs ≈ p(λ). 
After analysing the steps above, there are two findings as listed below: 
1) In step 1, vd is a function related to Green’s function, and the function gd(·) 

changes according to different models. Besides, the the function is in symbol of 
the dynamic system’s response to the excitation with referent to time, and it is 
defined as random Fourier response feature [3]. In step 2, the expression is ap-
proximated by the MC methods, in which the S denotes the number of samples. 
The project will focus on this part which is related to the kernel and the sam-
pling method. 

3.2.2. Implement the QMC Sampling Scheme 
The QMC skill is usually applied when integrals are on the unit cube. Therefore, 
to realise the Quasi-MC method, a low-discrepancy sequences should be gener-
ated firstly. The points should be drawn regularly in a determined interval, 

[ ]1, , 0,1 d
se e ∈ . Then the sequence should be transformed into a new sequence 

1, , d
sw w R∈ , which is completely different from the methods used to generate 

the MC sequence. Define the density function in the Equation (2.8), in which 
pn(·) denote a uni-variate density function. Moreover, the density function can 
make changes according to different types of shift-invariant kernels. Compared 
to the Avron’s model [26], whose transformation is made on the Gaussian kernel. 
While, in this project, the kernel this project used is based on the LFMs, whose 
kernel is Exponentiated Quadratic kernel. To transform the equation 2.8 into an 
integral unit cube, making a simple change to the variable will be sufficient. 
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( ) ( ) ( )( )1 1 1
1 1 , , d

d de e e R− − −Φ = Φ Φ ∈ ,             (3.7) 

in which function pn has a cumulative distribution function Φn, for n = 1, …, d. 
Via making w = Φ−1(t), the Equation (2.8) can be modified as 

( ) ( ) ( ) ( )
[ ]

1

0,1
e d e ddd

j T T w j T T e

R
p w w e

−′ ′− − Φ=∫ ∫             (3.8) 

Therefore, this project can transform the sequence [ ]1, , 0,1 d
se e ∈  with 

function wi = Φ−1(ei). Then, the transformed sequence can be applied in Equa-
tion (2.10) to obtain the QMC feature map. In conclusion, the QMC sampling 
scheme can be realised once the low discrepancy sequence is determined. This 
project has noticed the classic low discrepancy sequences, such as the Halton 
and Sobol sequences, which will be experimented with later. After the two sim-
ple experiments, more sequences will be experimented with to validate the im-
provement. 

3.2.3. Replace the MC Approximation with QMC Approximation 
According to the analysis of above parts, this project will explain the methods to 
replace the Sampling method as follow steps: 

1) The shift-invariant kernel should be determined. The detailed definition 
can be found according to Bochner’s theorem [27]. Here, the project uses the EQ 
kernel. 

2) Decide p, which is the inverse Fourier transform of function k. 
3) Choose a kind of low-discrepancy sequence to generate. 
4) Make transformation to the sequence e1, …, es with function wi = Φ−1(ei) by 

Equation (3.3). 
5) Obtain the feature map ( )ˆ : d sx R CΨ → . 
Notice that, according to the Section 3.2.1, when carrying out the project, the 

approximations are about vd and dv∗ . This project will use the obtained RFRF 
for the approximations. 

3.3. Evaluation 

In this section, two aspects of evaluating the project will be analysed. Then, the 
detailed experiment results will be taken into consideration to compare their 
performance. Therefore, this project will design the evaluation metrics for the 
results. 

From the aspect of meeting the requirements of the project this project will be 
evaluated according to the fulfilment of the sampling scheme, the replacement of 
the approximation, and the quality of new obtained random Fourier features. 

From the aspect of assessing the performance of the LFMs. Evaluation metrics 
should be determined. The experiment results should be assessed according to 
the metrics. This project will make tables and figures to show the comparisons 
between all the sequences, and therefore, the conclusion drawn from the project 
is reasonable and convincible. 
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Evaluation Metrics 
Normalised mean square error (NMSE), Negative log Predictive Density (NLPD) 
and the running time per iteration are three factor that account for the perfor-
mance. The mean squared error method, which calculates the average squared 
error between the estimated and real values, is perhaps the most popular way to 
determine the loss. When the prediction has a small range, the denominator of 
NMSE could still work as penalty terms. Moreover, the model could predict 
every data example with the same value. 

The normalised mean square error, also standardised mean square has the 
expressions as: 

( )
( )

2*

2NMSE mean_square_error mean_tase_variance i ii

ii

y y

y y

−
= =

−

∑
∑

  (3.9) 

In expression, y  denotes the mean value of y, y denotes the true output val-
ues, y* denotes the predicted value of y. 

Minimising the negative log predicted density is the same as maximising the 
log predicted density. People use the negative log predicted density (NLPD) as 
the loss function because they are used to minimising the loss function, and 
most work related to optimisation is done by minimising the result. The negative 
log predictive density (NLPD) is mainly used for a Gaussian predictive distribu-
tion to compute the negative log predictive of the test points. NLPD belongs to 
another type of performance measuring. It not only shows the accuracy of pre-
dictions but also shows the variance predictions of the posterior density. The 
expression of NLPD [38] is listed as below: 

( )( ) ( )

( )( ) ( )

( )( ) ( )

1

1

1

log d

log d
NLPD

log d
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p y p

p y p

p y p

θ θ θ

θ θ θ

θ θ θ

 
 
 
 =
 
 
  

∫
∫

∫


            (3.10) 

where yi denotes the predicted value of instance i, ppost denotes the posterior dis-
tribution. 

In simple, to compute the NLPD in this project, three inputs are needed which 
are: 

1) ytrue represents the true output values. 
2) ymu represents the predictive means. 
3) yvar represents the predictive variances. 
Therefore, the expression of the output can be obtained as: 

( ) ( )
2

1

1 1NLPD log 2
2

T
t t

t
t t

ytrye ymut
pi yvar

T yvar=

 −
 = + ∗ ∗
 
 

∑ .  (3.11) 

To conclude, a model with smaller NMSE and NLPD performs better in dis-
covering outputs. 
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4. Design 

In this chapter, this project designs the developing process according to the 
analysis referred in Chapter 3. In the first section, this part illustrates the Latent 
Force model, and the detailed models to run the experiments. Then, the qua-
si-random sequences to implement the QMC method will be decided. 

Finally, the project goes to the introduction of the developing platform. 

4.1. Experiment Models and Data Sets 

In this project, the first-order and second-order models described in Gao et al. [2] 
with the EQ kernel are approximated by the random Fourier response feature 
[3]. Besides, all the experiments are carried out with AMD ryzen 9 5900 HX 
@3.30 GHz. For the first order experiment, this project chooses the datasets 
about air temperature which include the measurements of air temperature at 
four different places which are Bramblemet, Cambermet, Sotonmet and Chimet 
[39]. The air temperatures from July 10 to July 15 in 2013 are measured for this 
project. The same experiment [3] [40] is adopted by this project, and the dataset 
is described in Table 1. 

This project prefers to sufficiently assess the performance of the new sam-
pling scheme, hence, the project carries out the experiments on the second-order 
model, which are more complex and computationally expensive. For the fol-
lowing experiments, this project considers the MOCAP datasets [41]. The data-
sets consist of measured actions, and one of the datasets is the movement of 
“Golf swing”, which is stored in subject 64 motion 1. The data in this set are 
with a sudden curve and very changeable. The other movement is “Walk”, 
which is stored in subject 02 motion 01. The data in this set are very smooth, 
which describe and record the movement of people’s walk. With the changeable 
dataset and smooth dataset, this project is able to sufficiently evaluate the 
performance of the random Fourier response features via the new sampling 
scheme. 

4.2. Experimental Sequences 

In this project, four kinds of low-discrepancy sequences are designed for ap-
proximations. The parameters and details are listed as follows. Notice that the 
radical inverse method has been introduced in Chapter 2. 
 
Table 1. Detailed number of data points used in the experiment. 

# Name Training Test 

1 Bramblemet 1425 0 

2 Cambermet 1268 173 

3 Chimet 1235 201 

4 Sotonmet 1097 0 
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4.2.1. Halton Sequence 
Halton sequences are mainly used in statistics, which are used to generate point 
sets for different sampling methods such as QMC and MC simulations. While 
these sequences are deterministic, their discrepancy are low. 

The definition of Halton sequence is: ( )( )1
: , ,i b nX bϕ ϕ= 

, where bi and bi 
are coprime numbers. For example, this project will take one dimension se-
quence based on 2 and 3. To generate the points, the interval (0, 1) will be di-
vided in half, then in fourths, etc., leading to the points: 

1 1 3 1 5 3 7 1, , , , , , , ,
2 4 4 8 8 8 8 16


 

To generate the sequence based on 3, the interval will be divided in thirds, 
then ninths, etc., leading to the points: 

1 2 1 4 7 2 5 8, , , , , , , ,
3 3 9 9 9 9 9 9


 

After the two points sets are generated, this project can get a sequence in a 
unit cube by pairing the above two point sets: 

1 1 1 2 3 1 1 4 5 7 3 4 7 5 1 8, , , , , , , , , , , , , , ,
2 3 4 3 4 9 8 9 8 9 8 2 8 9 16 9

               
               
               

 

While the standard Halton sequences do well in low dimensions, there are 
correlation problems when generating the sequences with high primes. One way 
to avoid correlation problems is to scramble Halton sequence. The function used 
to generate Halton sequences is haltonset(). The properties of the function are 
shown as follows: 

1) Dimensions means the number of dimensions. For example, the number 5 
represents a creationof five-dimensional point set. When using the haltonset() 
function to create the point set, the input argument decide the number of di-
mensions. 

2) Leap means the interval between points. The value of this input parameter is 
specified as a positivenumber. The property of the leap parameter decides the 
number of points that will be omitted and leapt over. Usually, the default value is 
0, which means this sequence takes its every point. To improve the quality of 
point sets, the leaping skill can be used. While, when choosing the leap values, pa-
tience should be paid on. Many leap values fail to be uniform quasirandom point 
sets because the sequences they create can not reach the sub-hyper-rectangles of 
the unit hyper cube [42]. There is a rule about choosing the leap values, as n is a 
prime number which is not be in use to generate the dimensions, then (n − 1) 
can be set to be the leap value. For instance, for a point set with d-dimensional, 
determine the (d + 1)th or greater primer number for n. 

1) Skip means the number of points will be omitted at the beginning. 
2) Scramble. The parameter controls the scrambling of the sequence, and it 

specifies the type and option of the scrambles. 
Hence, in this project, we will generate the points by the function. 
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4.2.2. Sobol Sequence 
The motivation for creating the Sobol sequence is to construct a sequence with a 
fast rate of convergence. Let RD = [0, 1]D be a d-dimensional unite hypercube, 
and f is a integral function in the interval RD. A sequence xn in Rd is applied in 
the expression showed below, 

( )
1

1lim D

N

n Rn n
f x f

N→∞ =

=∑ ∫                      (4.1) 

To make the sum has a convergence towards the integral, RD should be filled 
by the points xn to minimise the holes. The xn has a good property that its pro-
jections leave few holes on a low-dimensional space of RD. 

Different with Halton sequence, all the dimensions of Sobol sequence are con-
sists of radical inversion with base 2, but each dimension has a different gene-
rating matrix C. Hence, ( ) ( )( )12, 2,: , ,

ni C CX i iϕ ϕ= 

. 
Similar to the Halton sequence, the properties of the parameters are listed be-

low: 
1) Dimensions specify the number of dimensions. 
2) Leap denotes the interval between points. 
3) PointOrder specifies the rule of generating points. Usually, the default set-

ting is “graycode”. 
4) Scramble. The parameter controls the scrambling of the sequence, and it 

specifies the type andoption of the scrambles. 
5) Skip denotes the number of initial points to be omitted. 
In this project, the default settings are skip = 1000 and leap = 700. 
Considering the Sobol sequence need a generating matrix, this project refers 

to a tool [43] to obtain the generating matrix. 

4.2.3. Digital Nets 
Digital sequences are generated by a set of generating matrices rather than gen-
erated by an integer generating vector as is the case for lattice sequences. This 
project takes them as a vector of matrices which are with elements from a finite 
field. For instance, if a digital sequence is in base 2, then its finite field is simply 
Z2. 

Similar to the function introduce above, the function used to create Digital 
Nets sequences is p = digitalseqb2g(d, s). The function means the points are gen-
erated from the base 2 digit sequence in the reverse order of the grey-coded root. 
The input parameters are listed below: 

1) d denotes the number of dimensions per vector, 2) s denotes the number of 
samples. 

The output is x which denotes an array of sample vectors. 
The usages to generate the sequences are as followed: 
1) A point set with generating matrices should be prepared. The point set this 

project uses is generated by public available tools, and the sequence to generate 
the points is the “new-joe-kuo-6.21201” [44]. The detailed information for gen-
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eration points will be put on the appendix. 
2) The generator should be initialised first for a point set. There are three op-

tions to choose: init0 means the sequence keep as it is init1 means the first point 
initskip means the first point in the sequences is omitted 

3) Generate the next sd − vetors of the sequence, returning a d-by-s dimen-
sional array. 

p = digitalseqb2g(d, s) 4. Scramble. The parameter controls the scrambling of 
the sequence, and it specifies the type and option of the scrambles. 

4.2.4. Lattice Rules 
Similar with the Sobol sequence. The Lattice rules need a generating vector Z to 
build the sequences. 

According to the radical inverse introduced in Chapter 2, the sequence is giv-
en as: Xi = φb(i)Zmod [0, 1)n. In simple words, if the φb(i)Z is larger than 1, then 
the modulate of 1 is mapped back to the range of [0, 1). 

The properties of parameters are listed below: 
1) d denotes the number of dimensions per vector. 
2) s denotes the number of samples. 
The usages are also listed below: 
1) The generator should be initialised first, and there are three valid options: 

“init0”, “init1”, and “initskip”. The definitions of these three parameters are the 
same with Digit Nets. 

2) Generate the sequences, and the returned value is a d-by-s dimensional ar-
ray. In this project, the default parameter is “initskip”, latticeseqb2(0initskip0) 

4.3. Experiments Design 

The design is straightforward. After implementing four kinds of low discrepancy 
sequences, they will be tested with three data sets for a first-order and a second- 
order model to fully evaluate their performance in different situations. More de-
tailed information about implementations is in Chapter 5. 

4.4. Library and Environment 

The whole project is built by MATLAB. The additional toolbox which is Statis-
tics and Machine Learning Toolbox is required in this project. Besides, this 
project uses some tools in MATLAB and public implementation [43]. 

5. Implementation 

In this chapter, this project introduces some codes related parts. The project 
plans to use four sequences: Lattice Rules, Halton, Sobol, and Digit Nets. For the 
two simple sequences, Halton and Sobol sequence, the project will use the im-
plementation in MATLAB. While for Lattice Rules and Digit Nets, the scram-
bling and shifting technologies the project will use are adapted from QMC lite-
rature review [45]. 
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5.1. Preprocessing Data 

This project uses the Air experiment as an example. There are two steps to pre-
process the extracted data. 

1) Load data: load../datasets/weather/weatherdata.mat. 
2) This project split the training and testing data. The project will the data 

about Chimet and Cambermet where the testing set is chosen according to the 
time, and the remains are training set. 

test ind1 = xT{2} >= 10.2&xT{2} <= 10.8; 
test ind2 = xT{3} >= 13.5&xT{3} <= 14.2; 
outs = [2, 3]. 

5.2. Generating the Sequences 

According to the design in Chapter 4, this project will generate the sequence 
with the designed parameter. For example, the Halton sequence is generated 
with the Matlab tools, p = Haltonset((d, “Skip”, skip, “Leap”, leap);) and scram-
bling technologies is applied for it: (d, “Skip”, skip, “Leap”, leap);. Then, this 
project can get points = p(1: s, 1: d);. Finally, the points should be transformed: 
W = norminv(points, 0, 1). 

Besides, the generator of Lattice rules and Digital nets are different from the 
Sobol sequence. Lattice rules need a generating vector, and Digital nets need a 
generating matrix. According to the literature [43], this project uses an extra tool 
called MinGW in Windows. The steps for obtaining the points are listed below: 

g + + − osobolsobol.cc, 
./sobol 10 3new − jok − kuo, choose the size of the points. 
Then, the steps are similar to the Halton sequence. 

5.3. Options Setting 

After processing the extracted data, the next step is to set the kernel options. For 
example, some important parameters are listed below: 

1) kern.Type = “kffsim”. This project will selesct different kernels according to 
the datasets. 

2) model = dtcmgpOptimise(model, 2,500). This project will choose a differ-
ent number of iterations to explore the rate of convergence. Here, 500 is the 
number of iteration times. 

3) options.kern.S = 100. This project will decide the number of sampling 
points. Usually, the results get more accurate as the number of sampling points 
is bigger. 

Besides, it is necessary to select the sequence and sampling points. There are 
five different sampling points that can be generated in this project: “MC”, “Hal-
ton”, “Sobol”, “Lattice rules”, and “Digital nets”. In the file “kernParamInt”, this 
project chooses the sequences for experiments. For example, sequence = “Hal-
ton”. Once the sequences are determined, the scrambling skills are applied. 
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6. Results and Discussion 

In this section, this project carries out experiments based on two models and 
three datasets to sufficiently evaluate the performance of RFRF [3]. 

6.1. Experiment Results 

In this section, this project mainly shows the results by two methods. One of 
them is to show the Gaussian Processes (GPs) to show the figure about fitting 
data directly. The other method is to record the results in tables for further 
comparisons. 

As it is shown from the Figure 3, testing data are using blue dots, and training 
data are using pink dots. The black line in the figure represents the mean of the 
GP function, and the standard deviation is represented via the shaded areas. 

6.1.1. First-Order Model with Air Dataset 
In this model, this project will use the data set about air temperature 4.1. Five 
tables and their predictive GPs are listed below. 

The results of air temperature are shown in Table 2 obtained by Halton se-
quences. As the data shows above, when the sampling point is 10, the Halton 
sequence has already got an excellent result in the Cambermet dataset. On the 
other hand, when the project picked 50 sampling points, it has reached the low-
est NMSE and NLPD in Chimet output (See Figure 2). 

The results of air temperature are shown in Table 3 obtained by the MC sam-
pling method. As the data shows above, when the sampling points are 100, the 
MC sampling got an excellent result in Cambermet and Chimet datasets. 

 
Table 2. Results with Halton sequence. 

First-order model (Air) Cambermet Chimet  Time 

Sequence Samples NMSE NLPD NMSE NLPD [s] 

Halton+ S10 0.09 1.06 0.31 1.22 1.13 

Halton+ S20 0.13 1.26 0.30 1.19 1.30 

Halton+ S50 0.09 1.14 0.23 1.07 1.31 

Halton+ S100 0.10 1.17 0.32 1.16 1.76 

 
Table 3. Results with Monte Carlo method. 

First-order model (Air) Cambermet Chimet  Time 

Sequence Samples NMSE NLPD NMSE NLPD [s] 

MC+ S10 0.20 1.53 0.85 1.66 1.16 

MC+ S20 0.21 1.45 2.46 3.33 1.29 

MC+ S50 0.16 1.36 0.62 1.51 1.42 

MC+ S100 0.12 1.18 0.28 1.1 1.79 
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Figure 2. Predictive GPs with Halton sequence for the Air data set. 

 
The results of air temperature are shown in Table 4 obtained by Sobol se-

quence. As the data shows above, when the sampling points are 50, the Sobol 
sequence got an excellent result in Cambermet and Chimet data set (See Figure 
3). 

The results of air temperature are shown in Table 5 obtained by Lattice rules. 
As the data shows above, when the sampling points are 100, the Lattice rules got 
an excellent result in the Cambermet dataset, and when the project picked 50 
sampling points, the result of Chimet reached its lowest value (See Figure 4). 
Digital 

The results of air temperature are shown in Table 6 obtained by Digital nets. 
As the data shows above, when the sampling points are 100, the Digital nets got 
a good result in the Cambermet dataset, and the NLPD in Chimet reached its 
lowest value (See Figure 5). 

Compare the five tables, we have noticed that the best result of MC sampling 
is 0.12 and 1.18 in the Cambermet dataset when the project uses 100 sampling 
points. While for other low-discrepancy sequences, the Halton sequence got 0.09 
and 1.06 in Cambermet at a very early stage where the number of sampling 
points is 10. The Halton set performs much better than the traditional MC me-
thod. The table contains the best performance of each sequence in Cambermet is 
listed below (See Figure 6). 

As Table 7 shows, all the four low-discrepancy sequences have a better per-
formance compared to the MC method, where the NMSE and NLPD of the 
QMC method are smaller than that in the MC method. Besides, the Halton se-
quence has already reached its relative best performance as ten sampling points, 
and the Sobol sequence also has excellent NMSE and NLPD at 50 sampling 
points. Moreover, from the tables, the project has found that the running time 
per iteration of each sequence is very similar when the sequences have the same 
number of sampling points. Avron et al. (2016) [26] has pointed out these low- 
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discrepancy sequences are generated very fast. Therefore, in the experiments of 
the second-order model, this project will not record the running time per itera-
tion for comparison. 

 
Table 4. Results with Sobol sequence. 

First-order model (Air) Cambermet Chimet  Time 

Sequence Samples NMSE NLPD NMSE NLPD [s] 

Sobol+ S10 0.83 2.17 0.85 1.68 1.13 

Sobol+ S20 0.23 1.65 0.81 1.70 1.23 

Sobol+ S50 0.08 1.00 0.37 1.33 1.35 

Sobol+ S100 0.16 1.49 0.75 1.61 1.80 

 
Table 5. Results with Lattice rules. 

First-order model (Air) Cambermet Chimet  Time 

Sequence Samples NMSE NLPD NMSE NLPD [s] 

Lattice rules+ S10 0.22 1.56 1.67 2.06 1.26 

Lattice rules+ S20 0.25 1.61 0.84 1.65 1.30 

Lattice rules+ S50 0.14 1.45 0.24 1.30 1.39 

Lattice rules+ S100 0.10 1.14 0.65 1.57 2.12 

 
Table 6. Results with Digital nets. 

First-order model (Air) Cambermet Chimet  Time 

Sequence Samples NMSE NLPD NMSE NLPD [s] 

Digital nets+ S10 0.66 2.03 0.78 1.66 1.14 

Digital nets+ S20 0.28 1.69 0.67 1.62 1.04 

Digital nets+ S50 0.15 1.43 0.22 1.37 1.29 

Digital nets+ S100 0.12 1.17 0.37 1.25 1.9 

 
Table 7. Best results for each sequence for output Cambermet. 

First-order model (Air) Cambermet 

Sequence Samples NMSE NLPD 

Halton+ S10 0.09 1.06 

Sobol+ S50 0.08 1.00 

Lattice rules+ S100 0.10 1.14 

Digital nets+ S100 0.12 1.17 

MC+ S100 0.12 1.18 
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Figure 3. Predictive GPs with the MC method for the Air data set. 

 

 
Figure 4. Predictive GPs with Sobol sequence for the Air data set. 
 

 
Figure 5. Predictive GPs with Lattice rules for the air data set. 
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Figure 6. Predictive GPs with Digital nets for the Air data set. 

6.1.2. Second-Order Model with Swing Dataset 
In this model, this project will use the data set about Golf Swing movements, and 
it is carried out with the second-order model. Five tables and their GPs are listed 
below. 

The results of Swing movements are shown in Table 8 obtained by the Monte 
Carlo method. As the data shows above, when the sampling point is sixty, the 
Monte Carlo method gets a good result in both the root-Ypos and lowerback- 
Yrot outputs. 

The results of Swing movements are shown in Table 9 obtained by Lattice 
rules. As the data shows above, when the sampling point is sixty, the Lattice rules 
gets a good result in the root-Ypos output, and when the sampling points are 
100, the lowerback-Yrot has a good result. Notice that when the sampling points 
are 60, the Lattice rules have already reached a relatively good performance (See 
Figure 7). 

The Digital nets obtain the results of Swing movements in Table 10. As the 
data shows above, when the sampling point is sixty, the Digital nets got a good 
result in the root-Ypos dataset, and when the sampling point is 100, the se-
quence has its best results. Besides, we can notice that the Digital nets sequence 
has reached its relative best performance when the number of sampling points is 
20 (See Figure 8). 

The Sobol sequence obtains the results of Swing movements in Table 11. As 
the data shows above, when the sampling point is twenty, the Sobol sequence got 
a good result in the root-Ypos dataset, and NMSE in lowerback-Yrot has also 
minimised to lowest. Besides, when the sampling point is ten, the sequence has 
its best results in NLPD of the lowerback-Yrot output. Thus, in this experiment, 
the datasets of the Golf swing can be fitted by the proposed RFRF with few sam-
pling points and enough accuracy (See Figure 8). 

The results of Swing movements are shown in Table 12 obtained by the Hal-
ton sequence. As the data shows above, when the sampling point is sixty, the 
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Halton sequence got a good result in the root-Ypos dataset. Besides, when the 
sampling points are 100, the sequence has its best results in lowerback-Yrot 
output (See Figure 9). 

 
Table 8. Results with Monte Carlo method. 

Second-order model (Swing) root-Ypos lowerback-Yrot 

Sequence Samples NMSE NLPD NMSE NLPD 

MC+ S10 0.49 −2.13 1.74 3.65 

MC+ S20 0.17 −2.33 1.39 4.37 

MC+ S60 0.14 −2.39 0.93 2.6 

MC+ S100 0.22 −2.34 1.23 3.28 
 

Table 9. Results with Lattice rules. 

Second-order model (Swing) root-Ypos lowerback-Yrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Lattice rules+ S10 0.45 −2.17 1.92 4.74 

Lattice rules+ S20 2.04 −0.86 2.24 5.14 

Lattice rules+ S60 0.20 −2.38 0.24 1.18 

Lattice rules+ S100 0.28 −2.3 0.14 0.81 
 

Table 10. Results with Digital nets. 

Second-order model (Swing) root-Ypos lowerback-Yrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Digital nets+ S10 0.49 -2.13 4.04 6.88 

Digital nets+ S20 0.13 -2.41 2.33 4.87 

Digital nets+ S60 0.13 -2.42 0.85 2.75 

Digital nets+ S100 0.17 -2.40 0.39 1.48 
 

Table 11. Results with Sobol sequence. 

Second-order model (Swing) root-Ypos lowerback-Yrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Sobol+ S10 0.34 −2.27 1.69 3.00 

Sobol+ S20 0.12 −2.43 1.24 3.24 

Sobol+ S60 0.12 −2.40 1.4 4.05 

Sobol+ S100 0.28 −2.31 1.48 3.38 
 

Table 12. Results with Halton sequence. 

Second-order model (Swing) root-Ypos lowerback-Yrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Halton+ S10 0.21 −2.36 2.16 3.94 

Halton+ S20 0.51 −2.12 5.79 8.93 

Halton+ S60 0.12 −2.42 0.17 0.93 

Halton+ S100 0.17 −2.37 0.12 0.79 
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Figure 7. Predictive GPs with the MC method for the Swing data set. 

 

 
Figure 8. Predictive GPs with Lattice rules for the Swing data set. 
 

 
Figure 9. Predictive GPs with Digital nets for the Swing data set. 
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As the results are shown on Table 13, this project takes the output root-Ypos 
as an instance. Except for the Lattice rules, the Halton sequence, the Sobol se-
quence and the Digital nets all have smaller NMSE and NLPD. Besides, the re-
sults with 20 sampling points of the Sobol sequence and Digital nets are better 
than the MC method with 100 sampling points (See Figure 10). 

6.1.3. Second-Order Model with Walk Dataset 
In this model, the project will use the data set about Walk movements, which is 
carried out with the second-order model. Five tables of each sequence and their 
predictive GPs are listed below. 

The results of Swing movements are shown in Table 14 obtained by the Hal-
ton sequence. As the data shows above, when the sampling point is ten, the Hal-
ton sequence got its best performance in lowerback-Yrot. Besides, when the 
sampling points are 30, the sequence has its best results in Iradius-Xrot output. 
So in this situation, the Halton sequence can fit the data well at a stage with few 
sampling points. Moreover, the result in Iradius-Xrot is excellent (See Figures 
11-13). 

 
Table 13. Best results for each sequence for Swing dataset output root-Ypos. 

Second-order model (Swing) root-Ypos 

Sequence Samples NMSE NLPD 

Halton+ S60 0.12 −2.42 

Sobol+ S20 0.12 −2.43 

Lattice rules+ S60 0.20 −2.38 

Digital nets+ S60 0.13 −2.43 

MC+ S60 0.14 −2.39 

 
 

 
Figure 10. Predictive GPs with Sobol sequence for the Swing data set. 
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Figure 11. Predictive GPs with Halton sequence for the Swing data set. 

 

 
Figure 12. Predictive GPs with Halton sequence for walk data set. 
 

 
Figure 13. Predictive GPs with the MC method for walk data set. 
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Table 14. Results with Halton sequence. 

Second-order model (Walk) lowerback-Yrot Iradius—Xrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Halton+ S10 0.05 0.93 0.47 8.99 

Halton+ S30 0.66 11.08 0.01 2.25 

Halton+ S60 0.24 7.17 2.51 27.17 

Halton+ S100 0.67 9.21 0.11 5.56 

 
The results of Swing movements are shown in Table 15 obtained by the MC 

method. As the data shows above, when the sampling point is thirty, the Monte 
Carlo method got its best performance in lowerback-Yrot. Besides, when the 
sampling points are 100, the sequence has its best results in Iradius-Xrot output. 

The results of Swing movements are shown in Table 16 obtained by the Lat-
tice rules. As the data shows above, when the sampling point is thirty, the Monte 
Carlo method got its best performance in lowerback-Yrot. Besides, when the 
sampling points are 100, the sequence has its best results in Iradius-Xrot output. 

The results of Swing movements are shown in Table 17 obtained by the Sobol 
sequence. As the data shows above, when the sampling point is thirty, the Sobol 
sequence got its best performance in lowerback-Yrot. Besides, when the sam-
pling points are 100, the sequence has its best results in Iradius-Xrot output (See 
Figures 14-16). 

The results of Swing movements are shown in Table 18 obtained by the Digi-
tal nets. As the data shows above, when the sampling point is a hundred, the 
Digital nets get their best performance in lowerback-Yrot and Iradius-Xrot. Be-
sides, this project notices that when the sampling points are 30, the Digital nets 
can already have a relatively better performance than the MC method. 

Then, this project takes the results of output lowerback-Yrot as an instance. 
As the table shows the results of output lower-Yrot (Table 19), the Mont Carlo 
method ranks 4th in NMSE and ranks 5th in NLPD among the results of output 
lower-Yrot. Interestingly, the Halton sequence is the fastest to reach its best per-
formance with ten sampling points. Although its NMSE is a little bigger than the 
MC, its NLPD is smaller, so in this experiment, the Halton sequence’s perfor-
mance is similar to the MC method. For other sequences, their performance is 
better than the one of the MC method. 

6.1.4. Discussion 
This project has noticed that sometimes as the number of sampling points rises, 
the NMSE and NLPD get bigger. This situation is because this project is a ma-
chine learning project. When the complexity of the model is higher than the ac-
tual problems, the model learns the characteristics of the training set that is not 
suitable to the test set. For example, in the experiment of Air data set for the 
first-order model, most of the sequences need 100 sampling points to get a good 
performance in fitting the data. 
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Table 15. Results with MC method. 

Second-order model (Walk) lowerback-Yrot Iradius—Xrot 

Sequence Samples NMSE NLPD NMSE NLPD 

MC+ S10 0.12 2.43 0.69 7.29 

MC+ S30 0.04 1.09 0.98 17.95 

MC+ S60 0.21 2.43 0.16 6.43 

MC+ S100 0.12 1.42 0.11 4.82 

 
Table 16. Results with Lattice rules. 

Second-order model (Walk) lowerback-Yrot Iradius—Xrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Lattice rules+ S10 0.25 3.66 0.94 18.61 

Lattice rules+ S30 0.03 0.67 1.13 15.29 

Lattice rules+ S60 0.50 9.02 0.69 29.19 

Lattice rules+ S100 0.37 4.00 0.45 10.56 

 
Table 17. Results with Sobol sequence. 

Second-order model (Walk) lowerback-Yrot Iradius—Xrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Sobol+ S10 0.21 3.57 0.29 14.40 

Sobol+ S30 0.02 -0.28 0.21 3.86 

Sobol+ S60 0.13 1.95 0.67 15.59 

Sobol+ S100 0.13 3.49 0.08 3.37 

 
Table 18. Results with Digital nets. 

Second-order model (Walk) lowerback-Yrot Iradius—Xrot 

Sequence Samples NMSE NLPD NMSE NLPD 

Digital nets+ S10 0.53 9.74 2.15 30.47 

Digital nets+ S30 0.03 0.70 1.31 18.33 

Digital nets+ S60 0.37 6.39 0.38 10.99 

Digital nets+ S100 0.02 0.14 0.17 4.13 

 
Table 19. Best results for each sequence for Swing dataset output root Ypos. 

Second-order model (Swing) lower-Yrot 

Sequence Samples NMSE NLPD 

Halton+ S10 0.05 0.93 

Sobol+ S30 0.02 −0.28 

Lattice rules+ S30 0.03 0.67 

Digital nets+ S60 0.02 0.14 

MC+ S30 0.04 1.09 
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Figure 14. Predictive GPs with Lattice rules for walk data set. 

 

 
Figure 15. Predictive GPs with Sobol sequence for walk data set. 

 

 
Figure 16. Predictive GPs with Digital nets for walk data set. 
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On the other hand, in the Walk data set for the second-order model, the data 
set is smooth and easy to learn, while the second-order LFM is relatively com-
plex. Therefore, the data set usually only need 10 or 30 sampling points to fit, 
and more sampling points will lead to the overfitting problem. In this project, I 
mainly focus on the method to obtain good random Fourier features. The issue 
of overfitting or underfitting will not be in consideration. As a machine learning 
project, the purpose is to find a better solution for further use. Hence, each se-
quence’s best performance will be recorded for comparison. The overfitting 
problem caused by the rise in the number of sampling points will not be consi-
dered this time. 

For the experiments about the Swing data set, the smallest value for the MC 
method in lowerback-Yrot output is 0.93, which ranks 4th among the five se-
quences. In the root-Ypos output, the MC method also ranks 4th among them. 
This time, the Lattice rules in root-Ypos and the Sobol sequence in lower-
back-Yrot are not better than the MC method. The Halton sequence and Digital 
nets in this experiment need fewer points but more accurate predictions. Espe-
cially the Halton sequence in lowerback output, the NMSE of which is 0.12, is 
much smaller than the MC method, whose NMSE is 0.93. 

In the experiments about the Walk dataset, the model here is a second-order 
model, and the data set is smooth and regular. Hence, most of the sequences can 
have a good performance with few sampling points. Thus, for example, the result 
of the Halton sequence in lowerback-Yrot is 0.05, which is a litter higher than 
the MC method, whose NMSE is 0.04. But the result in Iradius-Xrot is different, 
and the Halton sequence got 0.01 while the MC method got 0.11. And the MC 
method in this experiment ranks both 4th in lowerback-Yrot and Iradius-Xrot 
output. Thus, the Sobol sequence has the best performance in the lower-
back-Yrot data set, and the Halton sequence has the best performance in Ira-
dius-Xrot output. 

In conclusion, because the sequences have different properties, and their per-
formance may change according to the models and data sets. But the MC me-
thod always ranks 4th or 5th among all the five sequences, and there is no situa-
tion that the MC method ranks 1st. Therefore, these experiments reveal that the 
QMC method is better than the original MC method in LFMs. 

6.2. Goals Achieved 

According to the analysis in Chapter3, this project has already implemented four 
kinds of low discrepancy sequences and obtained the random Fourier features. 
Moreover, via carrying out sixty experiments, the result is convincible and rea-
sonable to show that the QMC method can further minimise the NMSE and 
NLPD. 

7. Conclusions 

In this dissertation, this project aims to obtain random Fourier features via a 
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more efficient sampling scheme. Therefore, this project consider taking five se-
quences to carry out the experiments, where four of the sequences belong to 
QMC method and the other belong to MC method. 

In the experiments, they are evaluated according to NMSE and NLPD. Three 
datasets are used to sufficiently assess the performance for different kinds of data. 
Some datasets contain changeable data, while some datasets contain smooth data. 
For each dataset, each sequence is tested four times according to different num-
bers of sampling points. By a total of 60 experiments, the results are more rea-
sonable and general to show the QMC method is a more efficient sampling 
scheme than the MC method. 

This dissertation still has some shortcomings. More high-dimensional datasets 
can be applied in the experiment to test their performance in high-dimensional 
space. Besides, the project could also add more flexible and adaptive sequences 
to improve the performance even further. 
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