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Abstract 
For complex orebodies in which the valuable metal is carried by several min-
erals that respond differently to the concentration process, an ore block mod-
el should not be characterized solely with elemental assays, as this informa-
tion is not sufficient to anticipate the mill performances. Data from an iron 
ore concentrator is used to demonstrate the idea. A method is then proposed 
to estimate the mineral contents of ore samples from elemental assays. The 
method can readily be extended to combine the estimation of the mineral 
contents in the feed of the mill with an estimation of the recovery of these 
minerals into the products of the concentrator. These mineral recoveries can 
subsequently be incorporated into a block model to predict the concentrator 
response to the processing of an ore block. 
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1. Introduction 

The ore blocks of a mine block model are usually characterized by metal con-
tents such as gold (g/t), copper (%), or iron (%) grades. In some applications, 
information concerning ore hardness or grindability and mineral processing 
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responses is incorporated into the block model in order to use the block model 
for geometallurgical predictions [1] [2] [3]. However, few papers report that the 
ore of a block model should be characterized in terms of mineral contents and 
indices describing the way these minerals are separated by the concentrator. This 
is somehow surprising as mineral processing plants separate the minerals and 
not the elements. This paper describes with an example taken from an iron ore 
mine the advantages of describing an ore block by its mineral composition ra-
ther than its elemental composition and discusses approaches to estimate a min-
eral composition from the usual elemental assays of ore samples and to estimate 
the recovery of the minerals in a concentrator. 

The paper is divided into 4 sections. The first section discusses the research 
purposes, objectives and steps followed in the paper. The second section briefly 
describes the operation of the Quebec Iron Ore (QIO) iron ore mine in Canada, 
used to illustrate the discussion presented in the paper. The third section shows 
the advantage of using mineral assays for an ore block model rather than ele-
mental assays for the considered iron ore mine. The fourth section reviews me-
thods to estimate the mineral contents of an ore sample and the fourth section 
proposes an approach to estimate from daily production samples collected in the 
concentrator, the way minerals are separated in the concentration circuit. This 
last information complements the mineral characteristics of an ore block model 
for a geometallurgy application. 

2. Steps in the Development of a Geometallurgical Tool  
Based on the Ore Mineral Composition 

Figure 1 shows the two main steps followed here. The first step is the develop-
ment and testing of a tool to estimate the mineral contents of an ore sample us-
ing elemental assays as provided by an X-Ray fluorescence (XRF) analyzer. This 
tool can then be used by the geology department to estimate the mineral con-
tents of ore blocks from the XRF assays of exploration and production of core 
samples used to characterize the ore blocks of an orebody.  

The next step consists of the estimation of the way the minerals are separated 
by the concentrator. Knowing the mineral recoveries in the concentrator and the 
mineral composition of the ore, it is fairly straightforward to predict the mill 
performances associated with the processing of an ore block. 

The development and testing of the Mineral Content Estimation (MCE) tool 
are carried out using data obtained from the concentrator operation. Upon the 
commissioning of the global geometallurgy tool for the mine, the MCE tool will 
be applied to the assays of the core samples at the geology level (see Figure 1) to 
provide the mineral contents of the ore blocks. The estimation of the nominal 
mineral recoveries is also carried out with daily production data from the con-
centrator. These mineral recoveries will be used to predict the concentrator per-
formances in terms of metal recovery and concentrate grade as it is the purpose 
of a geometallurgical predictor. 
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Figure 1. Proposed approach to build a mineral-based ore block model for geometallurgy. 

3. Quebec Iron Ore Mine and Concentrators 

The Quebec Iron Ore (QIO) mine [4] [5] is located in the Labrador through 
northern Quebec, Canada (see Figure 2). The mine is a subsidiary of the Aus-
tralian Champion Iron company. The orebody called the Bloom Lake Deposit 
has been open pit mined by QIO since 2018.  

The Bloom Lake Iron Deposit lies within the Fermont Iron Ore District within 
the geological Greenville Province (see Figure 2). The high-grade metamor-
phism of the Greenville Province is responsible for recrystallisation of both iron 
oxides and silica in primary iron formation, producing coarse-grained sugary 
quartz, magnetite, specular hematite schists (meta-taconite), which are characte-
ristics that facilitate the concentration process [4] [6]. 

The main iron carrier mineral in the ore body is hematite (Fe2O3). Magnetite 
(Fe3O4) and the goethite-limonite (FeO∙nH2O) group are secondary iron miner-
als with concentrations varying according to the mined location of the orebody. 
The main gangue mineral is quartz with traces of apatite, carbonates, amphi-
boles and plagioclases minerals. Table 1 lists the minerals and their abundance 
in the ore. 

The mined ore is gyratory crushed to −20 cm (−8 inches). The crushed ore is 
conveyed or trucked to a stockpile from which the ore feeds two parallel lines of 
autogenous mills in a closed circuit with 5.0 mm and 0.85 mm screens. The ma-
terial passing the 0.85 mm screen feeds the iron concentration circuit. The con-
centration circuit is shown in Figure 3. The first part of the circuit uses only 
gravity based equipments, mainly spirals and hydraulic classifiers [6]. The ground 
ore assaying 30% - 35% Fe, is firstly processed by rougher spirals that yield a 
concentrate assaying more than 60% Fe, a middling stream (<15% Fe) and a reject  
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Figure 2. Location of the Bloom Lake deposit (52˚47'00'' north, 67˚05'00'' west). 
 

 

Figure 3. QIO concentration circuit. 
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Table 1. Identified minerals in the iron ore by QIO [4] [5] [7]. 

Mineral or group 
(abbreviation) 

Abundance 
(%) 

Formula 

Amphiboles (Amp) 0 - 2  

Actinolite  ( ) ( )2 8 225 2
Ca Mg,Fe Si O OH  

Cummingtonite  ( ) ( )8 227 2
Mg,Fe Si O OH  

Grunerite  ( )7 8 22 2
Fe Si O OH  

Hornblende  ( ) ( ) ( )8 222 5 2
Ca, Na,K Mg,Fe,Al Si O OH  

Apatite (Apt) 0 - 2 ( ) ( )5 4 3
Ca PO OH,F  

Carbonates (Carb) 0 - 2  

Ankerite  ( )( )3 2
Ca Fe,Mg,Mn CO  

Calcite  CaCO3 

Dolomite  CaMg(CO3)2 

Hematite (Hem) 30 - 50 Fe2O3 

Hydrated iron oxides (Goe) 0 - 3  

Goethite  FeO∙H2O 

Limonite  FeO(OH)∙nH2O 

Magnetite (Mag) 2 - 8 Fe3O4 

Mica (Mic) 0 - 2  

Biotite  ( ) ( )3 103 2
K Mg,Fe,Ti AlSi O OH,F  

Manganese oxides (MnO2) 0 - 1  

Pyrolusite  MnO2 

Plagioclases (Plg) 0 - 2 N/A 

Pyrite (Pyr) 0 - 1 FeS2 

Quartz (Qtz) 40 - 60 SiO2 

Titaniferous minerals (TiMin) 0 - 1  

Ilmenite  FeO∙TiO2 

 
(<9% Fe) that is directed toward the plant tailings ponds after thickening to re-
cover water that is recirculated back into the grinding circuit. The rougher spiral 
middling stream feeds a battery of middling spirals that give a concentrate as-
saying ~59% Fe and a reject (~10% Fe) directed to the tailing’s ponds. The 
rougher spirals concentrate joins the middling spirals concentrate to feed the 
hydraulic classifiers that produce a concentrate assaying more than 66% Fe (tar-
get % Fe > 66%) and a reject stream (~30% Fe) that feeds a battery of scavenging 
spirals. The scavenging spirals produce: 1) A concentrate (approx 60% Fe) that 
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joins the hydraulic classifier concentrate into the final concentrate, 2) A mid-
dling stream (~10% Fe) consisting of fine hematite, magnetite and quartz that is 
directed toward the magnetic separation part of the plant (see Figure 3) and, 3) 
A reject stream (<10% Fe and <7% w/w solids) that is reverted to the rougher 
spirals as a way to recover water. 

The middling stream of the scavenging spirals is firstly processed in Low In-
tensity Magnetic Separators (LIMS) to recover liberated magnetite that would 
otherwise overload the upstream WHIMS. The LIMS concentrate (~59% Fe) 
consists mainly of magnetite and is sent to the final iron concentrate. The LIMS 
reject that is depleted of magnetite feeds Wet High Intensity Magnetic Separa-
tors (WHIMS), whose purpose is to recover fine hematite and magnetite lost by 
the LIMS. The WHIMS reject is sent to the plant tails while the WHIMS con-
centrate feeds a battery of cleaning spirals whose concentrate is added to the fi-
nal concentrate whereas the reject is sent to the tailings. 

The final concentrate assays more than 66.2% Fe. The iron recovery in the fi-
nal concentrate is above 80% [5], with more than 77% of the iron minerals re-
covered in the gravity-based circuit, leaving a 3% to 5% Fe recovery in the mag-
netic based circuit. The circuit operation is controlled via chemical (elemental) 
assays of 2-hour samples collected from the rougher spiral feed (ASE), final 
concentrate stream (CON) and plant reject stream (ACY). These sample loca-
tions are shown in Figure 3. 

4. Advantages of Using a Mineral Composition for a Block  
Model 

Each ore block of the QIO orebody is currently characterized by its Fe and SiO2 
contents as measured by assaying exploration core samples. This section shows 
that for a complex ore such as the QIO one, in which iron is carried by three 
minerals that respond differently to the concentration process, the sole know-
ledge of the iron and silica contents is not sufficient to anticipate the metallur-
gical performances of the mill for a block of ore. 

4.1. Linking the Mill Performance to the Elemental Composition  
of the Ore 

In support of this last proposition, Figure 4(a) shows a plot of the iron recovery 
to the concentrate calculated using the two-products formula [6] [8] applied to 
the 2-hour assays of the feed, concentrate and reject samples collected on the 
circuit (See Figure 3). The observed iron and silica contents in the mill feed 
during the same period are also shown in Figure 4(b) and Figure 4(c), which 
consists of more than 8500 observations obtained from January 2019 to February 
2021. The period of low iron recovery between observations 3500 and 4000 can 
hardly be explained by changes in the iron or silica contents of the mill feed.  

This hardly observable dependency between recovery and mill feed composi-
tion is better shown by the X-Y plots in Figure 5. Since the objective of a geo-
metallurgy project is to predict the mill performances using assays of the ore  
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(a) 

 
(b) 

 
(c) 

Figure 4. Trends of iron recovery, iron grade and silica grade in the mill feed from 2019 
to 2021. (a) Iron recovery; (b) Iron grade in mill feed; (c) Silica grade in mill feed. 
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(a) 

 
(b) 

Figure 5. Absence of visual relationships between the iron recovery and iron/silica grade 
of the mill feed (8500 observations). (a) Iron grade in mill feed; (b) Silica grade in mill 
feed. 
 
block model or the mill feed composition, it is obvious that with correlation fac-
tors of 0.23 and −0.01 (see Figure 5), it will be unlikely possible to achieve the 
calibration of a robust empirical model to link the iron recovery to the iron and 
silica contents of an ore block. Indeed, a standard multiple regressions method 
on the data yielded the empirical model: 

2Fe Fe, SiO ,1.43 0.65 0.33mf mfR x x= + − , 2 0.18R =            (1.1) 

where FeR  is the iron recovery in the final concentrate, Fe,mfx  and 
2SiO ,mfx  

the iron and silica contents of the mill feed (mf). The very low R2 determination 
coefficient of 0.18 confirms that the model is not able to adequately predict the 
iron recovery. The introduction of additional assays (Al2O3, K2O, CaO, MgO, …) 
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of the mill feed did not improve the capability of the empirical prediction.  
The dispersion observed in Figure 5 found its origin in several sources, 

namely: 
 Unavoidable sampling and assaying errors [8]. 
 Possible mechanical and operational problems. 
 Variations of the iron concentrate grade which is not applicable here as the 

plant operation is adjusted to maintain a 66.2% Fe content in the final con-
centrate. 

 Ore characteristics that are not accounted for by only the iron and silica con-
tents of the mill feed. 

One of the ore disturbing characteristics is the ore texture that can be assessed 
by a visual examination of the core samples [9]. This texture characteristic can 
be added as information to the block model, although the challenge remains in 
the linking of the mill performances to the ore texture [9], a problem that is still 
awaiting an answer. Another disturbance that is partly accounted for by the ele-
mental assays of an ore block model is the mineral composition of the ore. The 
usefulness of a mineral characterization of the ore to anticipate the grindability 
of an ore block is also reported in [2]. 

4.2. Linking the Mill Performances to the Mineral Composition of  
the Ore 

This last idea applies well to the Quebec Iron Ore mine considered in this paper, 
in which iron is carried by hematite, magnetite and goethite-limonite whose 
proportions may vary depending of the location in the orebody. Since these 
minerals respond differently to the gravity concentration process, the plant iron 
recovery is intimately linked to the content of these minerals in the mill feed. 
Indeed, coarse and dense (SG = 5.0) hematite is well recovered in the spirals and 
hydraulic classifiers, while dense (SG = 5.0) but finer magnetite is less efficiently 
recovered in these separators. On its side, goethite-limonite tends to be broken 
into fine particles and the low specific gravity of this mineral (SG = 3.0) nega-
tively hampers its gravity recovery. Using the approach described in the follow-
ing section with additional measurements to the regularly measured assays it is 
possible to estimate the concentrations of hematite, magnetite and goethite in 
the mill feed. The usefulness of this additional information is illustrated with 
data from a 60-day operation period of the mill. 

Figure 6(a) and Figure 6(b) show the observed 60-day period trends for the 
iron and silica contents in the mill feed together with the iron recovery. The iron 
content of the mill feed shows a typical variation between 34% and 38%, which 
can hardly be used to explain the Fe recovery excursions away from the average 
80% recovery. During the low recovery periods indicated by a and b in Figure 
6(c), the mill operators may spend efforts and time trying to identify the sources 
of the problem. If the ore block model could provide the basic information on 
the contents of the critical minerals this information would allow the operators 
to rapidly make a diagnosis of the problem. 

https://doi.org/10.4236/gm.2022.124006


L. Boisvert et al. 
 

 

DOI: 10.4236/gm.2022.124006 79 Geomaterials 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Explaining periods of low recovery from the iron and silica grades of the mill 
feed. (a) Iron grade in mill feed; (b) Silica grade in mill feed; (c) Iron recovery to final 
concentrate. 

https://doi.org/10.4236/gm.2022.124006


L. Boisvert et al. 
 

 

DOI: 10.4236/gm.2022.124006 80 Geomaterials 
 

Indeed, in that particular case, the low recovery situations reproduced in Fig-
ure 7(c) overlap with periods of increase in the magnetite and goethite concen-
trations in the mill feed, as it can be observed in Figure 7(a) and Figure 7(b).  
 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Explaining periods of low recovery by the poorly gravity recoverable mineral 
contents of the mill feed. (a) Magnetite content in mill feed; (b) Goethite content in mill 
feed; (c) Iron recovery to final concentrate. 
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This example is representative of any ore in which the valuable metal is carried 
by different minerals behaving differently in the concentration process. 

5. Estimation of the Mineral Contents in the Ore 

The previous example shows the advantages of describing the ore in terms of 
mineral contents rather than metal contents. In practice, there are two ap-
proaches to estimating the mineral concentrations of a given ore: 
 The use of a Mineral Liberation Analyzer (MLA) [7] to obtain a direct mea-

surement of the mineral contents. However, few industrial plants have such 
equipment and the expertise to use it on the mine site. Also, MLA analysis is 
time demanding and costly and is not well suited to cope with the large pro-
duction number of exploration core samples from geology. Other approaches 
based on image analysis of core samples are currently investigated [9], but 
the focus of such analysis is more on the identification of the ore texture than 
on measuring the mineral concentrations. 

 The calculation of the mineral contents from elemental assays of the core 
samples. The geology core samples are usually assayed for building the ore 
block model; this approach is already more suitable than the MLA one for 
exploration samples. The key to success lies in the selection of the elements 
that should be assayed to maximize the data redundancy and the capacity 
of estimating or “observability” of the concentrations of the strategic min-
erals. 

5.1. Estimation of the Mineral Contents from Elemental Assays of  
the Ore 

The estimation of the mineral contents from elemental assays makes use of the 
stochiometric or transfer matrix of the ore [7]. The transfer matrix gives the 
concentration of each assayed element in each mineral or family of minerals (see 
Table 1) considered for the ore. The elements’ concentrations are usually meas-
ured by XRF. For the QIO ore, the assayed elements are Fe, SiO2, Al2O3, Na2O, 
CaO, TiO2, K2O, MgO, Mn and P2O5. Irregularly Satmagan measurements [10] 
are also carried out to follow the magnetite content of the samples; the magnetic 
content for this ore is entirely associated with magnetite (Fe3O4). The carbon and 
sulfur contents are also measured but not on a regular basis. Exceptionally, a 
Loss on Ignition at 400˚C (LOI400) measurement [11] is carried out. The min-
erals of the transfer matrix (φ) for the QIO ore are identified in Table 1. To 
maximize the observability [12] of the mineral contents, some minerals are 
grouped into families. This is the case for the carbonate family that includes cal-
cite, dolomite and ankerite, or for amphiboles (see Table 1). The definition of 
these families implies that only the total carbonate content can be estimated and 
not the concentrations of the individual carbonate minerals. The transfer matrix 
used for the QIO ore is given in Table 2. The values of the transfer matrix ele-
ments are either calculated from the composition of the minerals, when it is 
known (e.g., Fe in Hematite): 
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Table 2. Transfer matrix for the QIO ore (see Table 1 for abbreviations). 

Assaysa Mag Goe Pyr Carb Apt TiMin 
Mn 

Oxide 
Mic Plg Hem Amp Qtz 

Fe 0.72 0.51 0.47 0.01 - 0.52 0.24 0.05 - - 0.07 - 

Satmg 1.00 - - - - - - - - - - - 

SiO2 - 0.02 - - - 0.01 - 0.42 0.67 - 0.56 1.00 

Al2O3 - 0.02 - - - 0.002 - 0.17 0.19 - 0.02 - 

MgO - - - 0.05 - - 0.01 0.19 - - 0.20 - 

CaO - - - 0.49 0.55 0.01 - - 0.09 - 0.11 - 

Na2O - - - - - - - - 0.07 - 0.005 - 

K2O - - - - - - - 0.11 - - - - 

TiO2 - 0.01 - - - 0.23 - - - - 0.004 - 

Mn - 0.002 - - - - 0.43 - - - 0.002 - 

S - - 0.54 - - - - - - - - - 

C - - - 0.12 - - - - - - - - 

P2O5 - - - - 0.42 - - - - - - - 

LOI400 - 0.90 - - - - - - - - - - 

 

2 3

Fe
Fe

Fe OFe O

2 2 55.8 0.7
2 3 2 55.8 3 16

m
m m

ϕ ×
= = =

+ × + ×
            (1.2) 

where 
2 3

Fe
Fe O

ϕ  is the fraction of iron in hematite and Fem  and Om  the atomic 
mass of iron and oxygen) or measured by microprobe for complex minerals such 
as amphiboles or plagioclases. The Satmagan is an additional measurement that 
allows the estimation of the magnetite content, while the LOI400 can be directly 
linked to the goethite-limonite content as [11]: 

Goe 1.11 LOI400x = ×                      (1.3) 

where Goex  is the concentration of hydrated iron oxides (goethite-limonite) 
and the LOI400 is expressed in %. The Loss On Ignition at 400˚C (LOI400) is the 
weight that is lost by the sample when it is heated at 400˚C for 1 hour [13]. For 
goethite the mass loss is due to dehydration: 

( )2 3 2 g2FeOOH heat Fe O H O+ → +                (1.4) 

The transfer matrix of Table 2 includes rows to account for carbon and sulfur 
assays when available. When these assays are not available, the rows are removed 
from the matrix leading to a reduced observability of pyrite and carbonate con-
tents. Indeed, in the absence of a sulfur assay, the pyrite content estimate is 
poorly reproducible. The same comment applies to the carbonate content in the 
absence of a carbon assay. 

The problem of the estimation of the mineral contents can thus be stated as: 
“Given a set of elemental assays, Satmagan and LOI400 measurements for an 
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ore sample and the transfer matrix, find the corresponding mineral contents of 
the sample.” 

Whiten [12] examined various analytical solutions to the problem and applied 
them to a sulfide ore with a limited number (5) of sulfide minerals of well-known 
composition and thus for a well-defined transfer matrix. Levesque et al. [7] con-
sidered different approaches for the case of an iron ore consisting of more than 
10 minerals of complex composition and showed that the estimated mineral 
contents calculated from elemental assays are consistent with MLA measure-
ments. The approach followed here is similar to that of [9] but introduces the 
idea of weighing the measurements according to their reproducibility and takes 
advantage of the availability and ease of use of non-linear optimization algo-
rithms such as the Solver macro implemented in Microsoft ExcelTM. 

The estimation of the mineral contents starts with initial guesses for the con-
centration of 1mN −  minerals. The total number of minerals identified for the 
ore is noted mN  and the concentration of mineral m is noted my . Since the 

mN  minerals describe the ore in its entirety (or sum up to 100%), the concen-
tration of one mineral can be deduced from the other mineral contents, i.e.: 

1

1
ˆ ˆ100

m

m

N

N m
m

y y
−

=

= − ∑                         (1.5) 

where ˆmy  stands for the estimated concentration of mineral m in the sample. 
Estimated elemental assays are readily obtained from the estimated mineral 
concentrations and the transfer matrix by: 

( ),
1

ˆ ˆ 1, ,
mN

e e m m e
m

x y e Nϕ
=

= ∀ =∑                    (1.6) 

where ˆex  is the estimated value for measurement e (% Fe, % SiO2, …, % Mn, 
Satmagan, LOI400), eN  is the number of measurements available to estimate 
the mineral contents and ,e mϕ  is the concentration of element e in mineral m 
or transfer matrix { },e m  value. The optimal mineral concentrations should 
yield estimated elemental assays that are close to the measured values. This 
proximity is measured by the weighted least squares criterion: 

( )
2

1 2 1
ˆ

ˆ ˆ ˆmin , , ,
e

m
e

N
e e

N
e x

x x
J y y y

σ−

 −
=   

 
∑               (1.7) 

That should be minimum for the optimal mineral contents ( )1 2 1ˆ ˆ ˆ, , ,
mNy y y − . 

The variable ex  is the eth measurement and 
exσ  is the standard deviation of 

that measurement. A poorly reproducible measurement is characterized by a 
large standard deviation and reciprocally, a reproducible measurement receives a 
small standard deviation. The inverse of the standard deviation in the criterion 
will thus give more weight to reliable measurements and less to poorly reliable 
ones. 

The estimation of the mineral contents that minimize the criterion of Equa-
tion (1.7) is readily carried out using a non-linear optimization algorithm [14] 
such as the Solver macro implemented in Microsoft ExcelTM. 
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5.2. Results of the Application of the Mineral Estimation Method  
to Mill Feed Assays 

The technique is illustrated with data obtained from a sample of the rougher 
spiral feed stream considered by the mill operators as a good approximation for 
the fresh mill feed (see Figure 3). For that particular case, Satmagan and LOI400 
measurements were obtained in addition to the regular XRF chemical assays. 
The transfer matrix used is that of Table 2, for which the C and S rows are re-
moved. The available measurements are given in Table 3. A constant 10% rela-
tive standard deviation is assumed for all the measurements except those in a 
low concentration such as Na and P that are likely to be less reliable than the 
other ones because their concentrations are close to the detection limit of the 
XRF. Since the focus of the assaying laboratory is put on the assaying of iron and 
silica, a 1% relative standard deviation is used for these elements. The measure-
ments and the standard deviations are given in Table 3. The estimated mineral 
contents are given in Table 4, and the estimated values, ˆex , (Equation (1.6)) for 
the measurements are given in Table 3. Except for alumina (Al2O3) and potas-
sium (K2O) all the estimated values for the measurements are close to the cor-
responding measurements. If these departures from the measurements were to 
be systematically observed for Al2O3 and K2O upon repetitive applications of the 
mineral estimation applied to the QIO ore sample, it could be an indication of a 
calibration problem of the XRF or that the aluminum and potassium values in 
the transfer matrix may need an adjustment. This last option is likely as micro-
probe analyses are often carried out on a limited number of samples and esti-
mated mineral composition may not be representative of the average ore. 

Table 5 gives the statistics on the estimated mineral contents for the 8500 samples 
of the mill feed (see Figure 3) from 2019 to 2021. Since LOI400 measurements 
 
Table 3. Measured and estimated analyses for the rougher spiral feed. 

 Measured values (%) Standard deviation (%) Estimated values (%) 

Fe 30.42 0.304 30.66 

Satmg 2.500 0.250 2.496 

SiO2 52.10 0.521 52.59 

Al2O3 0.700 0.120 0.557 

MgO 0.810 0.131 0.830 

CaO 1.010 0.101 1.046 

Na2O 0.009 0.051 0.095 

K2O 0.100 0.060 0.177 

TiO2 0.112 0.061 0.119 

Mn 0.062 0.056 0.071 

P2O5 0.064 0.056 0.063 

LOI400 0.341 0.034 0.342 
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Table 4. Estimated mineral contents for the rougher spiral feed. 

 Mineral content (%) 

Mag 2.50 

Goe 0.38 

Carb 1.19 

Apt 0.15 

TiMin 0.45 

MnOx 0.15 

Mic 1.61 

Plg 1.26 

Hem 40.2 

Amp 2.38 

Qtz 49.7 

 
Table 5. Statistics on the estimated mineral contents for 8500 mill feed samples. 

Element or minerala Average Standard deviation Minimum Maximum 

FeT 30.0 2.97 12.5 41.7 

SiO2 57.1 5.53 36.0 90.6 

Amphiboles 1.908 2.39 0.00 17.6 

Apatite 0.12 0.06 0.00 0.61 

Carbonates 0.87 1.14 0.00 9.52 

Hematite Goethite 39.2 5.24 16.6 63.2 

Magnetite 3.34 2.69 0.00 26.7 

Mica 0.59 0.72 0.003 16.6 

Manganese oxides 0.097 0.078 0.00 1.03 

Plagioclases 0.62 0.59 0.001 8.33 

Pyrite 0.009 0.024 0.001 0.58 

Quartz 53.2 4.33 35.3 71.1 

Titaniferous minerals 0.067 0.15 0.00 2.58 

aRefers to mineral or group of minerals (see Table 1 from regroupees). 
 
are not available for this data, it is not possible to distinguish goethite-limonite 
group from hematite and these two minerals are lumped into a goethite-limo- 
nite-hematite group. The data in Table 5 shows that over the 2-year period, 
the concentrations of apatite, plagioclase and biotite in the mill feed remain on 
average below 1%, allowing us to discard the hypothesis that these minerals 
may be problematic for the operation of the mill. However, the amphibole 

https://doi.org/10.4236/gm.2022.124006


L. Boisvert et al. 
 

 

DOI: 10.4236/gm.2022.124006 86 Geomaterials 
 

content shows a significant variability, a result that supports the intuition of 
the mill operators that suspect amphiboles to be responsible for periods of dif-
ficult operation. The possibility of calculating the ore mineral contents from 
elemental assays could thus be an asset to ease the diagnosis of operating 
problems.  

Since the mill feed is the mined ore, the same Mineral Content Estimation 
(MCE) method can be applied to assays of the exploration core samples in order 
to have a block model consisting of mineral contents rather than elemental as-
says. 

The mineral estimation procedure is also used to estimate the mineral con-
tents in the 8500 samples of the iron concentrate produced from 2019 to 2021. 
Table 6 gives the statistics on the results. Quartz is the main contaminant of the 
concentrate followed by carbonates. The other non-Fe minerals do not appear to 
pose difficulties. This information may help the plant operators to identify 
which minerals contaminate the concentrate in case of difficulties in maintain-
ing the targeted 66.2% Fe in the concentrate. 

6. Prediction of the Mineral Behavior in a Concentration  
Circuit 

Since the goal of geometallurgy is to link the concentrator performances to the 
ore composition of the ore block, it is then a pre-requisite to have an estimate of 
the mineral recoveries by the concentrator. The above MCE procedure could be  
 
Table 6. Statistics on the estimated mineral contents for the 8500 concentrate samples 
collected. 

Element or minerala Average Standard deviation Minimum Maximum 

FeT 66.5 0.73 58.4 69.0 

SiO2 4.33 0.83 1.47 13.6 

Amphiboles 0.11 0.29 0.00 4.56 

Apatite 0.054 0.015 0.00 0.14 

Carbonates 0.25 0.27 0.00 3.71 

Hematite Goethite 86.9 7.15 36.1 98.0 

Magnetite 8.14 6.86 0.00 57.14 

Mica 0.031 0.034 0.00 0.82 

Manganese oxides 0.075 0.070 0.00 1.10 

Plagioclases 0.11 0.13 0.00 2.53 

Pyrite 0.019 0.054 0.001 1.45 

Quartz 4.22 0.86 1.35 13.5 

Titaniferous minerals 0.072 0.19 0.00 3.33 

aRefers to mineral or group of minerals (see Table 1 from regroupees). 
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combined with a material balance procedure to obtain, in addition to the miner-
al contents of the feed, reject and concentrate streams, the recoveries of the 
minerals in the payable product of the plant. This approach takes advantage of 
the fact that estimated mineral contents in the products of the concentrator 
should verify the mass conservation. Indeed, the minerals in the mill feed should 
be conserved in the mill reject and concentrate, i.e.: 

, , ,ˆ ˆ ˆ 0 1, ,mf m mf rej m rej con con mf mW y W y W y m N− − = ∀ =           (1.8) 

where W stands for a solid flow rate. The subscripts mf, rej and con indicate the 
mill feed, final reject, and final concentrate. The approach of combining the 
MCE with a Material Balance (MCE-MB) benefits from the fact that some min-
erals are selectively separated in the plant. For instance, apatite and biotite that 
are in low concentrations in the mill feed will exhibit larger concentrations in 
the mill rejects where they are selectively directed and thus yield larger and pos-
sibly more reproducible elemental assays of the gangue elements carried by these 
minerals than those obtained for the mill feed. This combined mineral content 
estimation-mass balance, implying that the assays of three samples are linked by 
a mass conservation constraint, increases the redundancy [15] [16] of the prob-
lem compared to the application of MCE to single ore samples. The principle of 
the MCE-MB is to simultaneously estimate the mineral contents in the mill feed 
and the proportion ( m̂P ) of each mineral going to the concentrate or mineral 
recovery into the concentrate. This data is sufficient for a single node separator 
as the one shown in Figure 8 to calculate the mineral contents in the concentrate 
and reject streams. Indeed, assuming a unitary ore mass feed rate ( 1.0mfW = ) to 
the circuit, the mass flowrates of the mN  minerals in the concentrate stream are 
given by: 

, , ,
ˆ ˆˆ ˆ 1.0m con mf m m mf m m mf mfW W P y P y W= = =              (1.9) 

where ,ˆm mfy  is the concentration of mineral m in the mill feed stream (sub-
script mf). The mass split to the concentrate is: 

,
1

mN

con m con
m

W w
=

= ∑                       (1.10) 

The concentrations of the minerals in the concentrate are readily deduced us-
ing: 
 

 

Figure 8. Node separator. 
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,
,ˆ 1, ,m con

m con m
con

w
y m N

W
= ∀ =                  (1.11) 

The mineral concentrations in the plant reject are obtained from mass bal-
ance: 

, ,
,

ˆ ˆ
ˆ 1, ,

1
m mf con m con

m rej m
con

y W y
y m N

W
−

= ∀ =
−

             (1.12) 

The application of Equation (1.6) to the mineral contents in the reject and 
concentrate streams gives estimated values for the elemental assays, Satmagan 
and LOI400 in these streams: 

, , ,
1

, , ,
1

, , ,
1

ˆ ˆ 1, ,

ˆ ˆ 1, ,

ˆ ˆ 1, ,

m

m

m

N

e mf e m m mf e
m
N

e con e m m con e
m
N

e rej e m m rej e
m

x y e N

x y e N

x y e N

ϕ

ϕ

ϕ

=

=

=

= ∀ =

= ∀ =

= ∀ =

∑

∑

∑







              (1.13) 

The estimated mineral contents in the mill feed ( ,ˆm mfy ) and the proportions of 
minerals directed to the concentrate ( m̂P ) should yield estimates ( , , ,ˆ ˆ ˆ, ,e mf e con e rejx x x ) 
that are close to the measurements obtained for the three streams or minimize 
the weighed least squares criterion: 

( )

, , ,

1, 1, 1

2 22

, , , ,, ,

1

ˆ ˆˆ ˆmin , , ; , ,

ˆ ˆˆ

m m

e

e mf e con e rej

mf N mf N

N
e mf e mf e rej e reje con e con

e x x x

J y y P P

x x x xx x
σ σ σ

−

=

     − −−     = + +
           

∑

 

     (1.14) 

A non-linear optimization algorithm estimates the values of  

1, 1, 1̂
ˆˆ ˆ, , ; , ,

m mmf N mf Ny y P P−   that minimize the criterion of Equation (1.14). The 
whole procedure can be programmed within one Microsoft ExcelTM sheet. In ad-
dition to yield estimate of the mineral contents of the mill feed, the MCE-MB 
gives the recovery of each mineral to the concentrate of the separator, informa-
tion that can subsequently be used in an ore block model as discussed previously 
(see Figure 1). 

The application of the method to the 8500 sets of measurements for the QIO 
mill feed, concentrate and reject samples yielded the average mineral recoveries 
given in Table 7.  

As indicated earlier, in the absence of LOI400 measurements, it is not possible 
to distinguish hematite from goethite-limonite group, and the estimated recov-
ery for that group is a weighted average of the two mineral recoveries. The 80% 
recovery for the hematite-goethite group underestimates the hematite recovery 
that is expected to be efficiently recovered in the process compared to goethite 
[4]. Magnetite recovery is good at 83.8%, while it was expected that finer magne-
tite should be less efficiently recovered than hematite in the gravity separation 
equipments; the better than anticipated magnetite recovery is obviously due to  
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Table 7. Statistics on the estimated mineral recoveries in the plant concentrate (8500 
samples). 

Element or minerala Average Standard deviation Minimum Maximum 

FeT 80.1 4.89 43.5 91.4 

SiO2 2.87 0.65 0.87 6.74 

Amphiboles 11.7 29.4 0.00 65.0 

Apatite 23.4 21.4 0.33 89.0 

Carbonates 31.5 32.7 0.00 90.0 

Hematite Goethite 80.0 4.97 43.1 91.7 

Magnetite 83.8 14.7 0.00 93.9 

Mica 2.76 6.44 0.00 55.0 

Manganese oxides 28.0 11.5 0.00 82.0 

Plagioclases 7.31 9.32 0.00 60.0 

Pyrite 62.1 15.8 14.2 93.2 

Quartz 2.87 0.64 0.86 6.61 

Titaniferous minerals 33.1 39.8 0.00 87.0 

aRefers to mineral or group of minerals (see Table 1 from regroupees). 
 
the LIMS and WHIMS contributions. Low SG minerals such as quartz and bio-
tite are efficiently rejected from the concentrate, while carbonates, apatite and 
amphiboles may become problematic if their contents in the mill feed increase.  

The application of MCE-MB to collected samples of the feed, reject and con-
centrate streams of each separator (spirals, hydraulic classifiers, LIMS, WHIMS) 
of the circuit of Figure 3 should yield a better picture of the sources of valuable 
mineral losses and contamination of the concentrate by gangue minerals. 

7. Integration of Mineral Information into an Ore Block  
Model 

The systematic application of the MCE-MB to plant data and MCE to assays of 
geology samples would allow the generation of the data for an ore block based 
on ore mineral composition following the approach shown in Figure 9. Addi-
tional measurements (e.g., LOI400, C and S assays) may need to be obtained 
from the regular plant samples to maximize the observability of the concentra-
tions of the strategic minerals. The systematic application of the MCE-MB data 
processing to the plant sample assays could also allow to fine tune the values of 
the transfer matrix used by the MCE for the core samples (see Figure 9). 
MCE-MB typical values for the mineral recoveries will serve to predict the plant 
performance indices (Fe recovery and concentrate grade) for the ore mineral 
composition estimated from geology samples (see Figure 9). 
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Figure 9. Proposed approach to build a mineral-based ore block model for geometallurgy purposes. 
 

The method is not yet implemented at QIO as detailed sampling [17] [18] 
shows that the separation of the minerals in the spirals and hydraulic classifiers 
is not only dependent on the mineral density but also on the mineral particle 
size. Work is thus on-going to predict the size distribution of the minerals in the 
ground ore of the concentrator feed. The advantage of introducing particle size 
into a geometallurgical model is discussed in [3] and [19]. This information will 
be combined with the gravity separators size-recovery curves [17] [18] to predict 
the plant operation using a simulator of the whole concentration process. 

8. Conclusion 

For complex orebodies in which the valuable metal is carried by several minerals 
that respond differently to the concentration process, an ore block model should 
not be characterized solely with elemental assays, as this information is not suf-
ficient to anticipate the mill performances while processing the ore block. With a 
good selection of elemental analyses to be conducted on the production samples, 
it would not be financially very demanding to add the ore mineral composition 
into the block model using the mineral content estimation method proposed in 
the paper. This information could be combined with data on the mineral recove-
ries observed from daily mill samples used to characterize and control the con-
centrator operation. A block model providing the mineral composition of the 
ore, combined with mineral recovery data, could be used to anticipate the mill 
response to the ore of a block model and facilitate the work of the mill operators, 
that could then be alerted in advance of periods of difficult ores rather than 
spending time and energy in trying to identify the causes of poor concentrator 
performances due to the ore composition. 
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