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Abstract: Starting from the backlund transformation and using Cole-Hopf transformation, we reduce the 
(2+1)-dimensional modified dispersive water-wave system to a simple linear evolution equation with two ar-
bitrary functions of  ,x t  and  ,y t  in this paper. And we can obtain some new solutions of the original 
equations by investigating the simple linear evolution equation which include the solutions obtained by the 
variable separation approach. 
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1. Introdution 

Many dynamic problems in physics and other fields are 

usually characterized by nonlinear evolution partial dif-

ferential equations which are often called governing 

equations. To understand the physical mechanism of 

these problems one has to study the solutions to the as-

sociated governing equations. Looking for analytical 

solutions to nonlinear physical models has long been a 

major concern for both mathematicians and physicists 

since they can provide much physical information and 

more insight into the physical aspects of the problem and 

thus lead to further applications Much work has been 

done over the last years on the subject of obtaining spe-

cial solutions of a nonlinear partial differential equation 

(PDE). Some of the most important methods are the in-

verse scattering transformation (IST), bilinear method, 

symmetry reductions, backlund and Darboux transforma-

tions and so on[4, 6, 7, 11, 20, 21]. In comparison with the lin-

ear case, it is known that IST is an extension of the Fou-

rier transformation in the nonlinear case. In addition to 

the fourier transformation, there is another powerful tool 

called the variable separation method in the linear case. 

Recently, two kinds of “variable separating” procedure 

have been established. The first method is called the 

formal variable separation approach (FVSA) [14], or 

equivalently the symmetry constraints or nonlineariza-

tion of the Lax pairs [2,3,8]. The independent variable of 

a reduced filed in FVSA have not totally been separated 

though the reduced field satisfies some 

lower-dimensional equations. The second type of vari-

able separation method has been established for some 

types of nonlinear models like the DS equation, the NNV 

equation[12,13,15,18,19,22,23,25], and a non-integrable 

(2+1)-dimensional Kdv equation[24].For the DS equa-

tion, the NNV ansatz, some special types of exact solu-

tions can be obtained from two (1+1)-dimensional vari-

able separated fields. 

In this paper, starting from the backlund transforma-

tion and using Cole-hopf transformation, we reduce the 

(2+1)-dimensional modified dispersive water-wave sys-

tem [1,5] to a simple linear evolution equation with two 

arbitrary functions of {x,t} and {y,t}. To find out some 

special solutions of this equation, similar to Lou’s 

variable separation approach, we look for the solutions 

in the form  
       0 1 2 3, , , , ,f a a p x t a q y t a p x t q y t     

and  

   , , .f p x y q y t   

By doing so, we can avoid solving bilinear equation or 

higher multi-linear equation of the original models and 

obtain some new variable separation solutions. 

2. New Solutions 
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Let us consider the (2+1)-dimensional modified dis-

persive water-wave system 

 22 0yt xxy xx xy
u u v u   

 2 0,v v uv  
,       (1) 

t x x x
         (2) 

which was used to model nonlinear and dispersive long 

gravity waves traveling in two horizontal directions on 

shallow water of uniform depth, and can also be derived 

from the celebrated Kadomtsev-Petviashvili (KP) equa-

tion by the symmetry constraint[16,17]. It is worth while 

mentioning that the system has been widely applied in 

many branches of physics like plasma physics, fluid dy-

namics, nonlinear optics, etc. So a good understanding of 

more solutions (1) and (2) is very helpful, especially for 

coastal and civil engineers to apply the nonlinear water 

model in a harbor and coastal design. Meanwhile, find-

ing more types of solutions of system (1) and (2) is of 

fundamental interest in fluid dynamics. 

To solve the (2+1)-dimensional modified dispersive 

water-wave system, we take the following backlund 

transformations of Eqs. (1) and (2): 

 0 2
, , ,xy x yx

f f ff
u u x t v

f f f
         (3’) 

which can be obtained from the standard Painleve trun-

cation expansion with u0(x,t), an arbitrary function of 

{x,t}. 

It is easy to deduce from (3’) that 

                           (3) yv u
which leads to a simple transformation from u to v. Sub-

stituting (3) into system (1)-(2). We can change system 

(1)-(2) into a single differential equation: 

 2 0yt xxy xy
u u u               (4) 

Substituting the first term of (3’) into (4), we have  

0
0 0 0

2
2t xx x

t xx

f f u f
y x u u u

f

          
  

0,


   (5) 

it corresponds to making a Cole-hopf transformation for 

. 0u u
It is obvious that (5) is equivalent to  

    0 1 22 , ,t xx x ,f f u f h x t h y t f        (6) 

where h1(x,t) and h2(y,t) are arbitrary functions of the in 

dicated variables. 

To find out some special solutions of the Eq. (6), simi-

lar to Lou’s variable separation approach, we look for the 

solutions in the form  

0 1 2 3 ,f a a p a q a pq            (7) 

where a0,a1,a2 and a3 are arbitrary constants, p=p(x,t) and 

q=q(y,t) are arbitrary functions of the indicated variables. 

In fact we have  

Theorem 1. Suppose a0, a1, a2 and a3 are arbitrary con-

stants, and p=p(y,t) and q=q(y,t) are arbitrary 

non-constant functions of the indicated variables that 

satisfy the following conditions: 

(i) 0 1 2 3 0;a a p a q a pq      

(ii)  ,q q y t satisfies  

   0 2tq c t q a a q    

with  being a arbitrary function. Then  ( )c t

 0 ,xfu u x
f

  t  

and 

2

xy x yf f f
v

f f
   

are just solutions of Eqs. (1) and (2),where f is given by 

(7) and 

   0 1
0 .

2
t xx

x

p p c t p a a p
u

p

  
  

Proof. According to the discussion,we only need to 

prove that there exist functions h1(x,t) and h2(y,t) such 

that (6),(7) hold for arbitrary functions p(x,t) and q(y,t) 

which satisfy the conditions (i) and (ii). In fact,  
0

1

( , )
a

p x t
a

   

and  

0

2

( , )
a

q x t
a

  , 

because p(x,t) and q(y,t) are non-constant functions. We 

can choose  

     1 0, ,h x t c t a a p  1         (8) 

     2 0, ,h y t c t a a q   2        (9) 

with c(t) being an arbitrary function. We take  

0 1
0

( ) ( )

2
t xx

x

p p c t p a a p
u

p

  
 , 

where p=p(x,t) and q=q(y,t) are arbitrary functions men-

tioned above. For such h1(x,t), h2(x,t),p,q and u0, it si 

easy to verify that Eq. (6) holds by direct computation. 

Hence  

 0 2
, , xy xx yf f ff

u u x t v
f f f

     

are just solutions of Equations (1) and (2) This completes 

387 978-1-935068-06-8 © 2009 SciRes. 

Proceedings of 2009 Conference on Communication Faculty



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the proof. 

Remark 1.From the point of view of mathematics, we 

need to improve some restrictions on the smoothness of 

the functions in this paper. For convenience, we assume 

that all the functions have sufficient smoothness in the 

paper. 

Taking  in (4), we have 1 0( , , ) ( , )u u x y t u y t 

 1 1 1 1 0 1 02 2t x xx x yty u u u u u u u      0.   (10) 

And setting  we get  1 (ln ),u x f 

0
0

2
0.t xx x

yt

f f u f
y x u

f

  
    

 
     (11)  

From the above discussion, we know that in order to 

obtain the solutions of (1)and(2), it suffices to find a so-

lution to Eq.(11). 

Theorem 2. Assume that  and C1(y),C2 

(y),C3(y) are arbitrary functions. Let functions f=f(x,y,t) 

be given by 

0 0( , ) ( )u y t u y

           2
0 0

5 1

4 2
1 2 3 .

u y t u y x u y x
f C y e C y e C y e


  

0
5

2


 

Then 

  0ln , yu x f u v u     

are solutions of Equation.(1) and Equation.(2) 

Proof. Note that  it follows that from 

(11) 
0 0( , ) ( ),u y t u y

02
0.t xx xf f u f

y x
f

 
  

 




 ,

         (12) 

Clearly, (12) is equivalent to 

   0 1 22 , ,t xx xf f u f h x t h y t f      (13) 

where and  are arbitrary functions of the 

indicated variables. 
1( , )h x t 2 ( , )h y t

Setting      2
1 2 0

5
, 0, ,

4
h x t h y t u y    

in (13). Our aim is to seek for the solutions of the form: 

   , , .f p x y q y t              (14)  

To this end, substituting (14) i nto (13), we derive 

     2
0 0

5
2 , ,

4t xx xq p u p u y p x y q y t       .    (15) 

Equation (15) leads to 

   2
0

5
, ,

4tq u y q y  t  

   2
0 0

5
2 ,

4xx xp u p u y p x y    0.     (16) 

Solving system (16) we derive 

         2
0 0

1 5

2 2
2 3, ,

u y x u y x
p x y C y e C y e


   

     2
0

5

4
1,

u y t
q x y C y e


            (17) 

Substituting (17) into (14) yields: 
2

0 0
5 1

( ) ( ) ( )
4 2

1 2 3( ) ( ) ( ) .
u y t u y x u y x

f C y e C y e C y e
 

   0
5

2  

This completes the proof. 

Remark 2. Obviously, the solutions obtained by Theo-

rem 1 are similar to those obtained by using the separa-

tion variables approach in [12, 13, 15, 18, 19, 22, 23, 24, 

25]. Yet, our method has some merits. Firstly, the condi-

tion to determine q is much simple. In fact, we only need 

to solve a Riccati equation with an arbitrary function, 

while in [12, 13, 15, 18, 19, 22, 23, 24, 25] the Riccati 

equation is one that includes three arbitrary functions, 

which leads to a difficult task. Secondly, we need not to 

dal with a complex bilinear equation or higher 

multi-linear equation of the original models while [12, 13, 

15, 18, 19, 22, 23, 24, 25] has to. Thirdly, those solutions 

obtained by Theorem 2 haven’t been reported in the 

above mentioned literature. 

It is well known that there don’t exist a unified method 

to solve the differential equation, especially for nonlinear 

differential equation. Since there exist infinity solutions 

for the solution equations, it is natural to consider that: 

do there exist solutions with some other forms to equa-

tions (1) and (2) and how to seek for them if they exist? 

For the former, the authors obtained a class of solu-

tions that are determined by a function F1 in t and three 

functions F2, F3 F4 in y in [9] through the tanh-function 

method. We have obtained forthrightly the same type of 

explicit exact solutions for the (2+1)-dimensional modi-

fied dispersive water-wave system in [10] through im-

proving some procedures of the tanh-function method. 

Those solutions cannot be obtained by the variable sepa-

ration approach and the method in this paper, which 

means that the tanh-function method is still a independ-

ent method. 

3 Conclusions and Discussion 

In summary, starting from the Backlund transformation 

and using Cole-Hopf transformation, we reduce the 

(2+1)-dimensional modified dispersive water-water-wa- 

ve system to a simple linear evolution equation with two 
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arbitrary functions of {x, t} and {y, t} in this paper. And 

we can obtain some new solutions of the original equa-

tions by investigating the simple linear evolution equa-

tion which include the solutions obtained by the variable 

separation approach. Meanwhile, by the results of this 

paper, we can obtain the solutions which describe some 

new natural phenomena of equations (1) and (2) by the 

fashions given in[12, 13, 15, 18, 19, 22, 23, 24, 25]. The 

method used in this paper can also be applied to deal 

with many (2+1)-dimensional nonlinear evolution equa-

tions, some results will be given in another paper. 

Acknowledgement 

This work is supported by the National Key Basic Re-

search Development of China (Grant No. 1998030600) 

and the National Nature Science Foundation of China 

(Grant No.10072013). 

References 
[1] M. Boiti, Inv. Prob. 3 (1987), 37. 
[2] C.W.Cao, Sci. China 33 (1990), 528. 
[3] Y.Chen and Y. S. Li, Phys. Lett. A 175 (1991)22. 
[4] P. A Clarkson and M. D. Kruskal, J. Math. Phys. 30 (1989), 

2201. 
[5] V. G. Durovsky and E.G. Konopelchenko, J. Phys.27 (1994), 

4619.  
[6] C. S. Gardner, J, M. Green, M. D. Kruskal and R. M. Miura, 

Phys. Rev. Lett. 19(1967), 1095. 
[7] R. Hirota, Phys. Rev. Lett. 27 (1971), 1192. 
[8] B. G. Konopelchenko, J. Sidorenko and W, Strampp, Phys, Lett. 

A 175 (1991), 17. 
[9] D. S Li and H. Q. Zhang, Chaos, Solitons Fractals 18 (2003), 

193. 
[10] D. S. Li and H. Q. Zhang, The soliton-like solutions to the 

(2+1)-dimensional medified dispersive water-wave system, Chin, 
Phys. (2004), accepted for publication. 

[11] S. Y. Lou, Phys. Lett. A 151 (1990), 133. 
[12] S. Y. Lou, Phys. Lett. A 277 (2000), 94. 
[13] S. Y. Lou, Physica Scripta 65 (2002), 7. 
[14] S. Y. Lou, and L. L. Chen, J. Math. phys. 40 (1996), 6491. 
[15] S. Y. Lou, J. Z. Lu, J. Phys. A: Math. Gen. 29 (1996), 4209. 
[16] S. Y. Lou, and X. B. Hu, J. Math. Phys. A 38(1997), 6401. 
[17] S. Y. Lou, and X. B Hu, J. Commun. Theor. Phys. 29 (1998),145. 
[18] S. Y. Lou, and X. Y. Ruan, J. Phys. A: Math. Gen. 30 (2001), 

305. 
[19] S. Y. Lou, C. L. Chen and X. Y. Tang, J. Math. Phys .43 (2002), 

4078. 
[20] V. B. Matveev and M. A. Salle, Darbous Transformations and 

Solitons, Springer, Berlin, 1991. 
[21] P. J. Olver, Application of Lie Group to Differential Equation, 

Springer, New, York, 1986. 
[22] H.Y. Ruan and Y. X. Chen, Acta. Phys. Sin. 8(1999), 241. 
[23] X. Y. Tang and S.Y. Lou, Chaos, Solitons. Fractals 14 (2002), 

1451. 
[24] X. Y. Tang and S. Y. Lou, Commun. Theor. Phys. 38 (2002), 1. 
[25] X. Y. Tang and S. Y. Lou and Y. Zhang, Phys. Rev. E 66 (2002), 

046601. 

 
 
 

389 978-1-935068-06-8 © 2009 SciRes. 

Proceedings of 2009 Conference on Communication Faculty




