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Abstract 
The problem of classification in situations where the assumption of normality 
in the data is violated, and there are non-linear clustered structures in the da-
taset is addressed. A robust nonparametric kernel discriminant classification 
function, which is able to address this challenge, has been developed and the 
misclassification rates computed for various bandwidth matrices. A compar-
ison with existing parametric classification functions such as the linear dis-
criminant and quadratic discriminant is conducted to evaluate the perfor-
mance of this classification function using simulated datasets. The results 
presented in this paper show good performance in terms of misclassification 
rates for the kernel discriminant classifier when the correct bandwidth is se-
lected as compared to other identified existing classifiers. In this regard, the 
study recommends the use of the proposed kernel discriminant classification 
rule when one wishes to classify units into one of several categories or popu-
lation groups where parametric classifiers might not be applicable. 
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1. Introduction 

Application of discriminant analysis has gained interest in various fields of social 
science, economics, education, finance and engineering. For instance, in routine 
banking or commercial finance, an officer or analyst may wish to classify loan 
applicants as low or high credit risks on the basis of the elements of certain ac-
counting statements [1]. According to [2], the problem of discriminant analysis 
is one of assigning an unknown observation to a group with a low error rate. The 
function or functions used for the assignment may be identical to those used in 
the multivariate analysis of variance. Related to this [3], defined discriminant 
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analysis and classification as multivariate techniques concerned with separating 
distinct sets of objects or observations, and with allocating new objects (observa-
tions) to previously defined groups. 

Therefore, the problem of classification arises when an investigator makes a 
number of measurements on an individual and wishes to classify the individual 
into one of several categories or population groups on the basis of these mea-
surements [4]. In all these problems it is assumed that there are two populations, 
say P1 and P2, one representing the population of individuals fit, and the other 
the population of individuals unfit for the purpose under consideration. The 
problem is that of classifying an individual into one of the populations P1 and P2 
on the basis of test scores based on some statistical data from past experience. 

To minimize the failures of the parametric techniques, this paper presents a Ro-
bust Nonparametric Kernel Discriminant function that is a better choice whenever 
a non-linear classification model is needed. This is because non-parametric esti-
mators are more robust and are useful especially when there exists auxiliary in-
formation on finite population parameters which is often used to increase preci-
sion of estimators of the parameters [5]. 

2. Discriminant Functions and Classification 

Suppose we have a set of v populations or groups that correspond to density 
functions 1 2, , , vf f f� . The intention is to assign all points x from the sample 
space to one of these groups or densities. We compare the weighted heights of 
the density functions to obtain the Bayes discriminant rule 

( )0 0 1, ,
is allocated to group if arg max j jj v

x j j f xπ
∈

=
�

          (1) 

where jπ  is the prior probability of drawing from density jf . Enumerating 
for all x from the sample space, a partition { }1 2, , , vP P P P= �  of the sample 
spaceis produced using 

if is allocated to groupjx P x j∈  

The discriminant rule defined in Equation (1), contains the unknown density 
functions and the (possibly) unknown prior probabilities. When data is col-
lected, this abstract rule can be modified into a practical one. 

The training data { }1 2, , ,
jj j j jnX X X X= � , is collected which is drawn from 

jf , for 1,2, ,j v= � . (The sample sizes jn  are known and non-random). 
A priori there is a class structure in the population since it’s known which da-

ta points are drawn from which density function. From these training data, a 
practical discriminant rule and subsequent partition can be developed. 

Using this discriminant rule/partition, the test data 1 2, , , mY Y Y� , drawn from 

( )
v

i j j
i s j i

f T y f xπ
∈ =

= = +∑ ∑
 

can be classified. 
In this case, it’s not clear which populations generated which data points. 
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The usual approach is to estimate these density functions and substitute into 
the discriminant rule. Parametric approaches that are well-known and widely 
used are linear and quadratic discriminant techniques. However, these suffer 
from the restrictive assumption of normality. With non-parametric discriminant 
analysis, this assumption can be relaxed and thus be able to tackle more complex 
cases. The study will focus on kernel methods for discriminant analysis. The 
monographs [6] [7] and [8] (Chapter 7) contain summaries of kernel discrimi-
nant analysis while [9] contains more detailed and lengthy expositions on this 
subject. 

2.1. Parametric Discriminant Analysis 

The two parametric methods that are reviewed in more detail here are the linear 
and quadratic discriminant analysis, being the most commonly used. Their ease 
of computation is a result from the underlying normality assumption, which 
does not necessarily hold for most datasets. 

2.1.1. Linear Discriminants 
Assume that the densities jf  are normal with different mean vectors jµ  and 
with common variance matrix Σ . The key assumption is that ( )~ ,j jf N µ Σ . 
The discriminant rule, Equation (1), reduces to (after taking logarithms of jf ) 

{ }
( ) ( ) ( )T 1

0 0 1, ,

1is allocated to group if arg max log
2j j jj v

x j j x xπ µ µ−

∈
= − − Σ −

�
 (2) 

From this equation, it can be observed that the resulting partition is obtained by 
intersections of ellipsoids with different centres and with the same orientation. This 
yields partition boundaries that are hyperplanes. Figure 1 is obtained using the 
sample mean jX  as estimate of jµ  and ( ) 1 v

i j ji s j iS n v y n S−

∈ =
= − +∑ ∑  for 

Σ  where jS  is the sample variance, forthe case of Linear Discriminant Rule. 

2.1.2. Quadratic Discriminant Function 
For Quadratic Discriminants, the densities are assumed to be normal with different 

 

 
Figure 1. Partition from linear discriminant analysis. 
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means jµ  and different variances jΣ . The assumption of common variance of 
linear discriminant analysis is relaxed. That is, ( )~ ,j jf N µ Σ . The discrimi-
nant rule, Equation (1), reduces to (after taking logarithms of jf ) 

{ }
( ) ( ) ( )

0 0

T 1

1, ,

is allocated to group if
1 1arg max log log
2 2j j j jj v

x j j

x xπ µ µ−

∈
= − Σ − − Σ −

�

        (3) 

This discriminant rule yields a partition defined by intersections of ellipsoids 
with differing centres and orientations. The boundaries are thus piecewise para-
boloidal curves, as is illustrated in Figure 2, obtained by replacing the means 
and variances with their sample statistics. 

To effectively use the parametric discriminant rules, one has to replace the 
unknown parameters with their usual sample estimates. 

2.2. Proposed Kernel Discriminant Function 

The parametric methods can be generalized to a non-parametric one in a 
straightforward way. Instead of assuming a normal (or any other parametric) 
form for the densities, we simply estimate the densities nonparametrically. In 
this study, the kernel density estimators constructed from the training data is 
used. 

Kernel density estimation [6] [10], is a popular method for nonparametric 
density estimation, and it has one well known application in kernel discriminant 
analysis (KDA) [11]. In a J class classification problem, if we have a training 
sample ( ) ( ){ }, ; , 1, 2, , , 1, 2, ,d

i i i iS x c x C J i n= ∈ ∈ =� �  of n observations, 
the kernel estimate for the density function ( )1,2, ,jf j J= �  can be expressed 
as 

( ) ( )
:

1 1ˆ
i

jb id
i c j

f x K x x
bnb =

 = − 
 

∑                   (4) 

where jn  is the number of observations from the jth class jn n=∑  K is a 
d-dimensional density function symmetric around 0, and b is the associated  

 

 
Figure 2. Partition from quadratic discriminant analysis. 
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smoothing parameter known as the bandwidth. These kernel density estimates 
are used to construct the kernel discriminant rule (KDR) given by 

{ }
( )0 0 1, ,

ˆˆ: is allocated to group if arg max ,j j jj v
KDR j j f x Bπ

∈
=

�
       (5) 

where ( )ˆ ,j jf x B  is the kernel density estimate corresponding to the jth group 
and where jπ  is the prior probability of the jth group. If these priors are not 
known, one usually estimates them using training sample proportions  

( )ˆ , 1, 2, ,j
j

n
j J

n
π = = �  of different groups. Many choices for the kernel function  

K are available in the literature [6] [10]. Equation (5) forms our proposed classi-
fication rule. 

To illustrate its implementation, the resulting partition is in Figure 3 where 
the plug-in bandwidth selectors for jB  has been used. 

Now that the kernel density estimators for discriminant analysis are being 
used, selection of appropriate bandwidths is crucial. On one hand, one can at-
tempt to find optimal bandwidths for optimal individual kernel density esti-
mates. On the other hand, optimal bandwidths which directly optimise the mis-
classification rate (MR), as [11] attempt for the two can be found. 

2.3. Misclassification Rate (MR) 

This rate is the proportion of points that are assigned to an incorrect group 
based on a discriminant rule. Then we have 

( )
{ }

{ } 1 2

1 is classified correctly

1 is classified correctly

= 1 is classified correctly | , , ,

1

Y

X Y v

MR P Y

E Y

E E Y X X X

TP TN
TP FP TN FN

− =

=   
    

+
= −

+ + +

�       (6) 

where YE  is expectation with respect to Y or 
1

v
j jj fπ

=∑ , and XE  is expecta-
tion with respect to 1 2, , , vX X X�  or 1 1 2 2, , v vf f fπ π π . 

 

 
Figure 3. Partition from kernel discriminant analysis. 
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• True positive (TP): Observation is predicted positive and is actually positive. 
• False positive (FP): Observation is predicted positive and is actually negative. 
• True negative (TN): Observation is predicted negative and is actually negative. 
• False negative (FN): Observation is predicted negative and is actually positive. 

[9] recommends the former approach for three reasons. First, accurate esti-
mates of the individual density functions are useful in their own right; second, 
accurate density estimates can be used in other, more complex discriminant 
problems which look at measures other than the misclassification rate; and third, 
direct optimisation with respect to a misclassification rate poses many difficult 
mathematical obstacles. 

Whilst we will not use the misclassification rate to select bandwidths, we will 
still use it as our performance measure of a discriminant rule. So we need to es-
timate it. The most appropriate estimate depends on whether we have test data 
or not. If we do, as is the usual case for simulated data, then a simple estimate is 
obtained by counting the number of jY  that are assigned to an incorrect group, 
divided by the total number of data points m. On the other hand, if we do not 
have test data, as is the usual case for real data, then we use the cross validation 
estimate of MR, as recommended by [6] and [9]. This involves leaving out each 

jiX , constructing a corresponding leave-one-out density estimate and subse-
quent discriminant rule. We then compare the label assigned to jiX  based on 
the leave-one-out discriminant rule to its correct group label. These counts are 
then summed and divided by n. 

2.4. Algorithm for Proposed Kernel Discriminant Analysis 

The algorithm for the proposed kernel discriminant analysis is given below. The 
algorithms for linear and quadratic discriminant analysis are similar except that 
any kernel methods are replaced by the appropriate parametric methods. We put 
these algorithms into practice with both simulated and real data. 

1) For each training sample { }1 2, , , , 1, 2, ,
jj j j jnX X X X j v= =� � , compute 

a kernel density estimate 

( ) ( )1

1

ˆ ;
j

j

n

j j B ji
i

f x B n K x X−

=

= −∑                   (7) 

We can use any sensible bandwidth selector jB . 
2) If prior probabilities are available then use these. Otherwise estimate them 

using the training sample proportions ˆ j jn nπ = . 
3a) Allocate test data points 1 2, , , mY Y Y�  according to KDR/Equation (5) or 
3b) Allocate all points x from the sample space according to KDR/Equation 

(5). 
4a) If we have test data then the estimate of the misclassification rate is 

{ }1

1

ˆ 1 1 is classified correctly using
v

K
k

MR m Y KDR−

=

= − ∑          (8) 

4b) If we do not have test data the cross validation estimate of the misclassifi-
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cation rate is 

{ }1

1 1

ˆ 1 1 is classified correctly using
jnv

CV ji ji
j i

MR n X KDR−

= =

= − ∑∑       (9) 

where jiKDR  is similar to KDR except that ( )ˆ .;j jf B  and ˆ jπ  are replaced 
by their leave one out estimates obtained by removing jiX  that is 

( )ˆ 1ji jn nπ = −  and 

( ) ( ) ( ),

1
,

1, 1

ˆ ; 1
j

j i

n

j i j j B ji
i i

f x B n K x X
−

−

′−
′ ′= ≠

= − −∑             (10) 

That is, we repeat step 3 to classify all jiX  using jiKDR . 

2.5. Bandwidth Selection 

The bandwidth of a kernel is a free parameter which exhibits a strong influence 
on the resulting estimate. Kernel smoothing requires the choice of a bandwidth 
parameter. This choice is critical, as under- or over-smoothing can substantially 
reduce precision. To illustrate its effect, we take a simulated random sample 
from a random sample of 100 points from a standard normal distribution as 
shown in Figure 4. The grey curve is the true density (a normal density with 
mean 0 and variance 1). In comparison, the red curve is under-smoothed since it 
contains too many spurious data artifacts arising from using a bandwidth b = 
0.05, which is too small. The green curve is over-smoothed since using the 
bandwidth b = 2 obscures much of the underlying structure. The black curve 
with a bandwidth of b = 0.337 is considered to be optimally smoothed since its 
density estimate is close to the true density. 

The most common optimality criterion used to select this parameter is the 
expected L2 risk function, also termed the mean integrated squared error: 

 

 
Figure 4. Kernel Density Estimate (KDE) with different bandwidths of a random sample. 
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( ) ( ) ( )( )2
dbMISE b E f x f x x = −  ∫

 

Under weak assumptions on f and K, ( ) ( ) 41MISE b AMISE b o b
nb

 = + + 
 

 

where o is the little o notation. The AMISE is the Asymptotic MISE which con-
sists of the two leading terms 

( ) ( ) ( ) ( )2 4
2

1
4

R K
AMISE b m K b R f

nb
′′= +

 
where ( ) ( )2R g g x= ∫  a function g 

( ) ( )2
2 dm K x K x x= ∫  

To be able to prove the theoretical results, the following assumptions are 
made; and f ′′  is the second derivative of f. The minimum of this AMISE is the 
solution to this differential equation 

( ) ( ) ( ) ( )2 3
22

d 0
d

R K
AMISE b m K b R f

b nb
′′= − + =

 
or 

( )

( ) ( )

1
5

12 1
55 52

AMISE

R K
b

m K R f n
=

′′  
Neither the AMISE nor the AMISEb  formulas can be used directly since they 

involve the unknown density function f or its second derivative f ′′ , so a variety 
of automatic, data-based methods have been developed for selecting the band-
width. Many review studies have been carried out to compare their efficacies, b 
with the general consensus that the plug-in selectors and cross validation selec-
tors are the most useful over a wide range of data sets. 

Substituting any bandwidth b which has the same asymptotic order 
1

5n
−

 as 

AMISEb  into the AMISE gives that ( )
4

5AMISE b O n
− 

=   
 

, where O is the big O  

notation. It can be shown that, under weak assumptions, there cannot exist a 
non-parametric estimator that converges at a faster rate than the kernel estima-

tor. Note that the 
4

5n
−

 rate is slower than the typical 1n −  convergence rate of 
parametric methods. 

If the bandwidth is not held fixed, but is varied depending upon the location 
of either the estimate (balloon estimator) or the samples (pointwise estimator), 
this produces a particularly powerful method termed adaptive or variable band-
width kernel density estimation. 

Further, the bandwidths vary with the kernel function chosen. An optimal 
bandwidth of one kernel function cannot be regarded in the same way for 
another function. Because of this, many researchers have been carrying out stu-
dies aimed at determining techniques of obtaining bandwidths that minimize 
MSE or AMSE functions that can be used with the different kernel functions. 
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Two methods, the “plug-in” and “cross validation” are the common ways in 
which this problem can be tackled. The plug-in method simply involves the re-
placement of the unknown functions in the expression of interest. The AMISE 
optimal bandwidth equation (13) depends on the unknown roughness 1R . A 
simple choice is a normal scale estimate. if f σφ=  

( ) ( )( ) ( )
2 21 2

1 3 3

1 1
4

R y y yσφ φ
σ σ

∞ ∞

−∞ −∞
= =

π
=∫ ∫

 
Thus, a reference bandwidth is 

( )
1 1
3 3

0̂ ˆ 4b nσ σψ
−

=                       (11) 

where σ̂  is the sample standard deviation. In particular, for the normal kernel 

K φ=  then 
1
3

1̂ ˆ1.59b nσ
−

= . The reference bandwidth, however, may work 
poorly for distributions which are far from the normal. As shown by Jones 

(1990) if 
1
2bn →∞  as n →∞  then 

( ) ( ) ( )( ) ( )
42 41ˆ d
4b

b RV bAMISE b E F y F y y O b
n n

ψ∞

−∞
= − = − + +∫     (12) 

where, ( ) ( )( )2
1 dV F y F y y

∞

−∞
= −∫ , ( ) ( )2 d 0xK x k x xψ

∞

−∞
= >∫  is a constant 

which depends only on the kernel. For example, if ( ) ( )k x xφ=  then 
1ψ =
π

. 

The AMISE is minimized by setting b equal to 

1
13
3

0
1

b n
R
ψ − 

=  
 

. The optimal 

AMISE is 

( )
3
8

0 13
84

1

3VAMISE b
n

n R

ψ
= −                     (13) 

3. Empirical Study 

Sometimes in survey sampling, we do not usually observe all the survey informa-
tion. That is, the survey variable is not observable for all the population units. 
Auxiliary variable X is often used to estimate the unobserved survey variables. 
One way of overcoming the above problem is the super population approach in 
which the working model relating the auxiliary variables to the response variable 
is assumed. 

We conduct a similar comparison to the simulation studies contained in [9], 
examining the performance of the following discriminant analysers: 

1) Linear discriminant (LD). 
2) Quadratic discriminant (QD). 
3) Kernel discrinant with 2-stage AMSE diagonal bandwidth matrices (KDD2). 
4) Kernel discrinant with 2-stage SAMSE full bandwidth matrices (KDS2). 
5) Kernel discrinant with 1-stage SCV full bandwidth matrices (KDSC). 
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The R code for kernel discriminant analysers is based on the bandwidth ma-
trix selection and density functions in the ks library. The R code for LDA and 
QDA are supplied within the MASS library in the R software by the function 
lda() and qda() respectively. 

We simulate from the following normal mixture densities for 500 trials, using 
training sample sizes 100n =  and 1000n =  and test data sample size 1000k = . 
The target densities D and E are used from previous studies except that we keep 
track of which mixture component an observation is drawn from. Density D 
contains fairly distinct components discriminant analyser are expected to per-
form well here. Density E has three components of various shapes and sizes, 
therefore, is more challenging case than density D. Density K is a pair of bimod-
al normal mixtures, with alternating modes. Density L is a large mode separating 
a bimodal density with narrower modes. For these two latter densities it is ex-
pected that, the linear and quadratic discriminant analysers to perform poorly 
since it is difficult to distinguish the different components using only linear or 
quadratic cuts. Alternatively, densities K and L are viewed as being highly 
non-normal so the assumptions of normality for the parametric methods are 
invalid. Thus it is expected that the kernel methods will demonstrate their effi-
ciency here. The formulas for these target densities are in Table 1 and their cor-
responding contour plots are in Figure 5. 

 
Table 1. Formulas for target densities D, E, K & L. 

Target density Formular 

D 

1 1 2 2

4 14 4 01 11 19 45 9~ , ; , ,
1 14 4 1 42 2 0

45 9 9

f N f Nπ π

      
      −      = = =      −         
              

E 

1 1 2 2

9 63 91 013 325 250 25~ , ; , ,2
0 63 49 497 7 03250 100 100

f N f Nπ π

             −      = = =                              
 

3 3

91 0
1 25~ ,2

497 03 100

f Nπ

       =   −           

K 

1 1

4 1 4 13 1
1 1 15 2 5 22 2~ , ,

3 1 4 1 1 42 2 2
2 2 5 2 2 5

f N Nπ

         − −−         
   = +      
         − − −                   ; 

 

2 2

4 1 4 13 1
1 1 15 2 5 22 2~ , ,

3 1 4 1 1 42 2 2
2 2 5 2 2 5

f N Nπ

         − −−         
   = +      
         − − −                   ; 
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Figure 5. Contour plots for the target densities D, E, K, L for discriminant analysers: solid 
contours- 1 1fπ , dashed lines- 2 2fπ  and dotted lines- 3 3fπ . 

Misclassification Rates Using Simulated Data 

The average and standard deviation of misclassification rates are in Table 2. 
From this table, for density D and E, the LD performed poorly compared to QD 
and the kernel discriminant analysers. For density K, our expectations are con-
firmed: KDD2, KDS2, KDSC all outperform the linear and quadratic counter-
parts. For density L, the advantage of the kernel methods over the linear method 
is maintained while it is reduced compared to the quadratic method. The increased  
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Table 2. Misclassification rates for discriminant analysers. 

Target density 
Misclasifcation rate 

 KDD2 KDS2 KDSC LD QD 

  n = 100, k = 1000 

D mean 0.0793 0.00600 0.0050 0.0101 0.0050 

 SD 0.0013 0.0013 0.0013 0.0042 0.0014 

E mean 0.00798 0.0719 0.0798 0.0703 0.0701 

 SD 0.0120 0.0110 0.0071 0.0082 0.0081 

K mean 0.3008 0.2810 0.17989 0.6125 0.5998 

 SD 0.0152 0.01320 0.0128 0.0396 0.0324 

L mean 0.1615 0.1517 0.1607 0.4010 0.2115 

 SD 0.0156 0.0124 0.0146 0.0167 0.0189 

  n = 1000, k = 1000 

D mean 0.0048 0.0050 0.0044 0.0059 0.039 

 SD 0.0015 0.0015 0.0013 0.0014 0.0016 

E mean 0.0499 0.0499 0.0489 0.0509 0.0498 

 SD 0.00146 0.0014 0.0014 0.0016 0.0013 

K mean 0.0498 0.0501 0.0498 0.0498 0.0497 

 SD 0.0015 0.0016 0.0015 0.0014 0.0013 

L mean 0.4998 0.4996 0.4500 0.5189 0.4984 

 SD 0.0154 0.0155 0.0154 0.0121 0.0164 

 
performance of the kernel discriminant analysers for the latter two densities is 
apparent for both sample sizes. Moreover, even with the increased burden of se-
lecting an increased number of bandwidths which comprise the bandwidth ma-
trix, the full matrix selectors overall produce smaller standard deviations. 

The differences between the diagonal matrix KDD2 and the full matrix KDSC 
and KDS2 are more subtle than the differences between the kernel methods and 
the parametric methods. We can see that both full bandwidth matrix methods 
KDS2 and KDSC in the majority of cases considered here have lower mean mis-
classification rates than KDD2. 

4. Conclusions and Recommendation 

In this paper, a nonparametric Kernel discriminant classifier has been proposed 
and studied. The classification rates and classification algorithm has been devel-
oped and computed for the case of datasets through a simulation and the find-
ings compared with those of existing classifiers such linear discriminant and 
quadratic discriminant classifier that have continued to be used in practice. 

From the results, the following observations and conclusions have been made. 
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1) The kernel methods, with appropriately chosen bandwidth matrices, out-
perform the parametric methods; and the kernel methods with full bandwidth 
matrices outperform those with diagonal bandwidth matrices. 

2) Both full bandwidth matrix methods KDS2 and KDSC in the majority of 
cases considered here have lower mean misclassification rates than KDD2. 

3) The parametric discriminant classifiers perform poorly especially where the 
underlying structure of the model and the data do not obey the assumption of 
normality. 

The main conclusion is therefore that the classification estimator based on the 
nonparametric kernel discriminant function has proved to yield results with 
great precision and therefore it is recommended for classification problems. The 
paper recommends other classification techniques which can handle the high 
dimensional spaces such Neural Networks to be considered in future studies so 
as to see if efficiency of classification can be improved. 
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