
Int. J. Communications, Network and System Sciences, 2022, 15, 126-148
https://www.scirp.org/journal/ijcns

ISSN Online: 1913-3723
ISSN Print: 1913-3715

DOI: 10.4236/ijcns.2022.158010 Aug. 9, 2022 126 Int. J. Communications, Network and System Sciences

Cross-Site Scripting Attacks and Defensive
Techniques: A Comprehensive Survey*

Sonkarlay J. Y. Weamie

Independent Researcher, College of Computer Science & Electronic Engineering, Hunan University, Changsha, China

Abstract
The advancement of technology and the digitization of organizational func-
tions and services have propelled the world into a new era of computing ca-
pability and sophistication. The proliferation and usability of such complex
technological services raise several security concerns. One of the most critical
concerns is cross-site scripting (XSS) attacks. This paper has concentrated on
revealing and comprehensively analyzing XSS injection attacks, detection,
and prevention concisely and accurately. I have done a thorough study and
reviewed several research papers and publications with a specific focus on the
researchers’ defensive techniques for preventing XSS attacks and subdivided
them into five categories: machine learning techniques, server-side tech-
niques, client-side techniques, proxy-based techniques, and combined ap-
proaches. The majority of existing cutting-edge XSS defensive approaches
carefully analyzed in this paper offer protection against the traditional XSS
attacks, such as stored and reflected XSS. There is currently no reliable solu-
tion to provide adequate protection against the newly discovered XSS attack
known as DOM-based and mutation-based XSS attacks. After reading all of
the proposed models and identifying their drawbacks, I recommend a com-
bination of static, dynamic, and code auditing in conjunction with secure
coding and continuous user awareness campaigns about XSS emerging at-
tacks.

Keywords
XSS Attacks, Defensive Techniques, Vulnerabilities, Web Application
Security

1. Introduction

XSS (Cross-Site Scripting) is a programming-related flaw [1] that occurs when

*Cross-site scripting attacks.

How to cite this paper: Weamie, S.J.Y.
(2022) Cross-Site Scripting Attacks and
Defensive Techniques: A Comprehensive
Survey. Int. J. Communications, Network
and System Sciences, 15, 126-148.
https://doi.org/10.4236/ijcns.2022.158010

Received: June 20, 2022
Accepted: August 6, 2022
Published: August 9, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ijcns
https://doi.org/10.4236/ijcns.2022.158010
https://www.scirp.org/
https://doi.org/10.4236/ijcns.2022.158010
http://creativecommons.org/licenses/by/4.0/

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 127 Int. J. Communications, Network and System Sciences

user input data is not correctly sanitized. The attacker exploits this vulnerability
to inject unfiltered scripting code into the web application, resulting in account
takeover, session or cooking stealing, and rerouting to the attacker’s website
when the parser processes the script [2] [3]. XSS attack can be initiated on any
susceptible website written in any programming language.

A thorough analysis of Cross-Site Scripting vulnerabilities has been presented
in detail. We talked about what XSS is, the numerous forms of XSS assaults, how
an attacker may exploit this weakness, the results of an XSS attack, and the pro-
tective strategies established by the research community to fight against XSS at-
tacks. On the other hand, we examined those defensive strategies and identified
the shortcomings in how they were defended against particular XSS attacks.

However, despite researchers’ efforts, XSS attacks [4] can still disrupt web ap-
plications at a larger skill irrespective of the fact that various tactics and ap-
proaches for preventing vulnerabilities have been established. Due to the vir-
tually unchanged browser behavior, it is difficult to detect XSS attacks and diffe-
rentiate between malicious JavaScript and legitimate online content.

Several sections of the paper are precisely organized according to their respec-
tive topics: The definition and classification of XSS, as well as the injection me-
thods utilized by XSS and the damage it causes to web-based applications, are
covered in Segment 2. Segment 3 describes the research data composition and
compares the CWE Names using the software development vulnerability data
for analysis. Segment 4 presents the related work. Segment 5 discusses the XSS
prevention and defense mechanism along with the researchers’ defensive tech-
niques for XSS attacks (advantages & disadvantages). Segment 6 describes the
challenges associated with detecting and defending against XSS attacks along
with the precise precautionary measures that should be implemented in response
to a given episode. The current issues are broken down into their parts, and then
the perspective for the future is presented.

2. Background of the Cross-Site Scripting Attack
2.1. Categories of XSS Attacks

A cross-site scripting attack generally occurs when an attacker compromises a
website by inserting malicious JavaScript code into the client-side input para-
meters. Figure 1 depicts a comprehensive perspective of the four XSS attack
scenarios covered in this paper.

XSS vulnerability exploits [5] the fact that web applications execute scripts in
user browsers. If a user tampers with or alters a dynamically generated script, it
puts an online application in danger. Although there are four categories of XSS
attacks mentioned in this paper, as illustrated in Figure 1, most contemporary
web application developers and researchers are familiar with only three of them
since they are more common in the research community [6] [7]. Organizations
such as the Open Web Application Security Project (OWASP) [1] [8] have rec-
ognized these three types of XSS attacks as the most common XSS attack vectors
on the web.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 128 Int. J. Communications, Network and System Sciences

Figure 1. A brief overview of the four categories of cross-site scripting vulnerabilities.

Although each of the four categories of attacks takes a somewhat different ap-
proach to exploiting web applications, they are still geared toward the same end
goal of collecting user account information as generally illustrated in Figure 2.

However, if you’re not familiar with XSS attacks, this should help put things
into perspective. As indicated in Figure 1 regarding the four categories of XSS
assaults and also displayed in Figure 2 depicting the typical circumstances of
XSS attack vector, the following details about the aforementioned categories are
explained respectively.

2.2. Stored Cross-Site Scripting (XSS) Attack

This form of XSS vulnerability is sometimes referred to as a persistent XSS. This
is due to the fact that the malicious script is still present on the server after the
attack has been completed [9]. During this type of attack, the attacker injects
code that has been maliciously written onto the server in such a way that it can-
not be removed. As shown in Figure 3, the scenario I used to illustrate a stored
XSS attack [10] injected a script tag directly into the Document Object Model
(DOM) and subsequently executed a malicious script using JavaScript hypothet-
ically. However, while this is the most popular method of exploiting XSS, it is
also the most common approach neutralized by advanced security professionals
and security-conscious software developers [11]. A user uploads a malicious XSS
script to a database, requested and viewed by other users, resulting in script ex-
ecution on their systems as described in Figure 3.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 129 Int. J. Communications, Network and System Sciences

Figure 2. Injection methods of a typical cross-site scripting attacks.

Figure 3. Stored XSS attack scenario.

2.3. Reflected Cross-Site Scripting (XSS) Attack

A reflected XSS attack, which is also known as a non-persistent attack, is where
the attacker generates a URL that injects arbitrary scripts into the target web ap-
plication [12]. Most publications and academic resources introduce reflected
XSS before moving on to stored XSS concepts. I feel that reflected XSS attacks
are frequently more difficult for newly inexperienced programmers to discover
and exploit than stored XSS attacks [13].

A stored XSS attack is relatively straightforward to comprehend from a de-
veloper’s perspective. The client provides a resource to the server, which is
commonly done through the HTTP protocol. The server inserts the requested
resource into a database after receiving it from the client. The malicious script

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 130 Int. J. Communications, Network and System Sciences

will then be executed unintentionally inside the client’s internet browser if other
clients later access that resource, as shown in Figure 3.

On the other hand, reflected XSS attacks work like stored XSS attacks but
don’t require a database or a server. No server is involved in a reflected XSS at-
tack because the client code is affected directly in the browser, as demonstrated
in Figure 4. Web applications can be vulnerable to this type of attack (see Figure
4) because of actions taken by a user that executes an unstored (interconnected)
script on the user’s computer.

Figure 4. Reflected cross-site scripting scenario.

2.4. Document Object Model-Based Cross-Site Scripting (XSS)
Attack

The DOM-based XSS attack [12] [14] is obviously a client-side attack. The DOM-
based XSS attack type is depicted in Figure 5 as the third important classification
for XSS attacks.

Figure 5. Dom-based cross-scripting attack scenario.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 131 Int. J. Communications, Network and System Sciences

The implementation of the DOM in different browsers may make some
browsers vulnerable, while others may not. Compared to typical reflected or
stored XSS attacks (Figure 3 & Figure 4), these XSS attacks require an extensive
understanding of the browser’s DOM and JavaScript to be discovered and ex-
ploited.

The DOM-based XSS attacks [15] are principally distinct from other types of
XSS in that they do not necessitate communication with a server in any way. As
a matter of convention, the source is typically a DOM object that can store text,
and the sink generally is a DOM API that can execute a script that has been
stored as text.

Both the “source” and the “sink” must be present in the browser’s DOM in
order for DOM XSS [16] to work because there’s no server involvement. In most
cases, the sink is a DOM API that can run a script stored in the source as text.
It’s nearly impossible to detect DOM XSS with static analysis tools or other pop-
ular scanners because it never touches a server [17].

2.5. Mutation-Based Cross-Site Scripting (mXSS) Attack

Dr. Mario Heiderich unveiled six (6) new mXSS attack sub-classes in his publi-
cation [18]. In mXSS attack, the DOM can be avoided entirely by using In-
nerHTML, which enables automatic changes to be made to the HTML content.
mXSS is sometimes referred to as mutated XSS or mutation-based XSS. This is
due to the fact that it is difficult to predict and involves recursion. When the
HTML script is loaded into the browser’s Document Object Model, the data is
mutated, which causes an error. However, the content loaded into the browser’s
DOM is mutated to verify that it is error-free and does not include any improper
markup. This is accomplished by using the element.innerHTML attribute. The
fundamental downside of this form of XSS attack is its ability to circumvent
server-side defenses and client-side filters. Figure 6 depicts a potential scenario
for mutation-based XSS attacks.

Figure 6. Mutation-based cross-site scripting (mXSS) attack scenario.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 132 Int. J. Communications, Network and System Sciences

When an external actor injects something that appears safe, as shown in Fig-
ure 6, the browser rewrites and modifies it while processing the HTML, result-
ing in a mutated XSS attack [19]. This makes it incredibly difficult to find and
sanitize bugs in application logic. Despite its novelty and widespread misinter-
pretation, mXSS attacks have been utilized to bypass the most sophisticated XSS
filters available. mXSS has been used to circumvent solutions such as DOMPu-
rify [20], OWASP AntiSamy, and Google Caja, and a large number of popular
web apps (especially email clients) have been discovered to be vulnerable [21]
[17]. At its foundation, mXSS works by employing filter-safe payloads that mu-
tate into insecure payloads after filtration. All major browsers are vulnerable to
mXSS attacks. Developers must understand how browsers handle optimizations
and conditional expressions when rendering DOM nodes.

3. Composition of XSS Comparative Research Data Sources

This research utilizes a subset of the Global dataset containing CVE and CWE
Security vulnerability database [22]. However, I concentrated only on the soft-
ware development component of the information comprising CVE details for
XSS vulnerability evaluation, as shown in Figure 7. The data consists of the vul-
nerability’s CVE-ID, CWE-ID, Explanation, severity, and CVSS and the CWE
names under which the vulnerability falls.

However, the abbreviation and acronyms used in this survey are carefully ex-
plained in Section 3.1.

As shown in Figure 7, these were the category of the dataset used from a pro-
gramming perspective. The results from this survey were thoroughly analyzed to
determine the annual trends in XSS vulnerability.

Figure 7. A brief overview of the dataset used for analyzing XSS vulnerability.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 133 Int. J. Communications, Network and System Sciences

3.1. Abbreviations and Acronyms

XSS = Cross-Site Scripting;
DOM = Document Object Model;
mXSS = Mutation-Based Cross-Site Scripting;
NVD [23] [24] = National Vulnerability Database;
CVE [25] = Common Vulnerabilities and Exposures;
CWE [26] = Common Weakness Enumeration;
CVSS = Common Vulnerability Scoring System.

3.2. Comparative of the Top 20 Software Development
Vulnerabilities

The pie charts below illustrate the number of the top 20 Software Development
Vulnerabilities based on CWE Name from 2014 to 2022. Over the last nine
years, the most frequent report of a cross-site scripting (XSS) vulnerability has
been alarmingly received, as shown in Figure 8. I used python Jupiter Notebook
[27] to analyze the data.

Figure 8. Comparative analysis of XSS vulnerability’s yearly trends.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 134 Int. J. Communications, Network and System Sciences

4. Related Works

Different security organizations have revealed that XSS has been prevalent in in-
ternet security threats in the past years. Cross-Site Scripting (XSS) vulnerability
has infiltrated approximately 70% [28] of web applications, including MySpace,
Cisco, NASA, Facebook, Twitter, Google, YouTube, eBay, ads.tiktok.com [29],
etc. Its emergence is primarily due to security flaws in web application develop-
ment and incorrect input validation submitted by users in website input fields.
The Samy MySpace worm in 2005 brought the XSS vulnerability to the notice of
a wider audience globally [30]. So far, a wide variety of XSS attacks have been
discussed. Interestingly, after conducting a comprehensive survey and reading
over sixty research papers and publications, I have provided in this paper as
Protective Approaches the defensive mechanisms revealed by previous research-
ers concerning XSS vulnerabilities. These defensive measures assist us in identi-
fying and categorizing the articles based on the model employed to resolve the
web application security problems.

5. XSS Prevention and Defense Mechanism

The XSS prevention and defense mechanism are explicitly explained in the fol-
lowing sections:

5.1. Preventive Measures and Standard Procedures for Cross-Site
Scripting Attack

This section emphasizes most of the standard solutions that can be adopted to
significantly reduce the impact of XSS attacks [31] [32]. It emphasizes on de-
scribing the XSS mitigation rules that developers can implement to prevent XSS
attacks from occurring. It’s evident that these techniques aren’t magic; they’re
ineffectual without adequate awareness of users.

It is illustrated from Figure 8 that just two vulnerabilities are dominating the
field of web application security attacks, specifically XSS and SQL injection vul-
nerabilities. Developers can now use numerous preventive measures to keep
themselves safe from XSS attacks. Data entered by the user that isn’t trusted is
protected using a combination of filtering, escape, and sanitization procedures.
The following Table 1 and Table 2 describe each technique:

There are two varieties of escaping: input escaping and output escaping. Prac-
tical input escaping requires detecting the context of the untrusted data inserted
correctly. In contrast, output escaping is performed to the response web page’s
written data. This also considers the data’s context, which is essential for miti-
gating stored XSS attacks.

5.2. Researchers’ Defensive Techniques for XSS Attacks
(Advantages & Disadvantages)

The proliferation of XSS vulnerabilities attracts the interest of researchers and
developers of security solutions. The variety of XSS attacks that each solution is

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 135 Int. J. Communications, Network and System Sciences

Table 1. General methods for preventing XSS attacks.

Technique Explanation

Filtering

This implies that any unsafe user input must be filtered
to remove dangerous phrases like the <script> tags,
and event handlers in HTML that appear to be suspicious like
onActivate() and onClick(), JavaScript workings,
style sheet tags, etc. [33].

Escaping

Escape or encode to avoid XSS [34]. This prevents dangerous
browser scripts from running. This signifies that the browser will
simply store the data entered by the user without taking any
further action with it.

HTML
Entity Encoding

HTML [35] body tags are used to escape suspicious
data like div, p, td, etc. I gave HTML entity escaping
examples in Table 2.

Attribute
Value Escaping

This prevents untrusted data from being directly entered into
suspected attributes such as “href,” “src,” “style,” and so on.
Characters containing ASCII values below 256 are encoded using
& #HH, where HH = hexadecimal value, leaving alphanumeric
characters alone [36].

JavaScript
Escaping

Script blocks and event handlers in JavaScript are more vulnerable
to the XSS flaw. As a result, they use uxxxx, or Unicode escaping
format, to process data entered using these methods,
where x = integer [37].

URL Escaping
Because the untrusted data can only be found in parameter
values, the encoding is applied to them.
The escaping format is % HH [38].

CSS Escaping
For injection reasons, style sheets can also be used.
As a result, this encoding employs the
\HH and & \HHHH escaping formats [39].

Sanitization

It is another strategy for preventing an XSS attack.
This guarantees that the data supplied matches the format
anticipated for that particular input field on the website.
HtmlSanitizer by OWASP, Ruby on Rails SanitizeHelper,
DOMpurify, PHP HTML purifier, Python Bleach,
and others do sanitization [40].

Content
Security Policy

Mozilla suggested a security prototype called Content Security
Policy (CSP) to address web application security vulnerabilities
like XSS [41]. This permits a website developer to designate where
to access external online resources.

Data Validation

This technique ensures that the submitted data adheres to the
syntactical limitations set for that site, preventing unwanted and
dangerous content. In different languages, such as PHP, functions
such as is numeric(), preg match(), and others are defined to
validate the data, or you can use regular expressions to validate
the data technically [42].

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 136 Int. J. Communications, Network and System Sciences

Table 2. HTML entity encoding [43] [44] [45] [46].

Character Encoded Format

/ / or & #47

‘ ‘ or & #39

“ & quot; or & #34

> > or & #62

< < or & #60

& & amp; or & #38

& #35

) & #41

(& #40

designed to defend against has inspired the development of a wide variety of
countermeasures. Based on the measures of their implementation model, I have
grouped these solutions or techniques into five categories: client-side techniques,
server-side techniques, machine learning techniques, and proxy-based tech-
niques. In the following subsections, I have emphasized the most significant and
effective methods proposed by the researchers as advantages and observed limi-
tations to those approaches as disadvantages. In the appendix, you can find more
information about the researchers’ techniques.

6. Conclusions and Suggestions

This paper presents a comprehensive and in-depth survey on XSS attacks and
the defensive techniques emphasized in the previous and current research lite-
rature. I have provided a global dataset combining CVE and CWE Security vul-
nerability information, taking into account the risk of XSS and how it is rapidly
limiting the scientific endeavors of researchers worldwide. The author also of-
fered a graphical representation of the annual trends of XSS attacks based on a
comparative investigation of CWE names.

As indicated in Section 5.2, I have highlighted the impact of XSS attacks and
the interminable effort given by the research community to combat XSS attacks.
Along with its advantages and disadvantages, XSS defensive approaches to prior
and recent efforts in various fields have been broadly classified. Existing XSS de-
fensive techniques were separated into the following categories: machine learn-
ing technique, client-size technique, proxy-side technique, server-size technique,
and combined technique. However, the vast majority of the cutting-edge XSS
defensive techniques available in this paper protect against the more common
types of XSS vulnerabilities, such as stored and reflected XSS. Presently, no de-
pendable solution can provide appropriate protection against the recently found
form of XSS attack known as DOM and mutation-based XSS attacks. These at-

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 137 Int. J. Communications, Network and System Sciences

tacks have been identified as a potential security risk. This study recommenda-
tion emphasizes the importance of developing solutions capable of offering ef-
fective defense against the newly identified variant of XSS. Using the survey re-
sults, we believe that the research community can better understand XSS protec-
tion measures and that this survey can also guide the development of more inte-
grated and pragmatic security solutions. This survey suggested an efficient and
robust XSS defensive architecture for future research. This study significantly
contributes to the development of effective defensive mechanisms to limit the
effects of such attacks on rapidly expanding web application platforms. Evalua-
tion of existing XSS attack defensive solutions at the client-side, proxy-side, and
server-side levels, as well as a machine learning technique that will undoubtedly
aid in the evaluation of the impact of such an advanced level attack.

Combining static testing, dynamic testing, code auditing with secure coding,
and ongoing initiatives to educate users about XSS developing vulnerabilities is
critical. XSS will persist unless internet users become more aware of their secu-
rity and privacy and software developers construct secure programs. According
to this survey, XSS attacks can seize control of vital services and sensitive data if
these safeguards are not established and maintained regularly.

Acknowledgements

This publication was made possible by the direction of the research laboratory of
Hunan University’s College of Computer Science and Electronic Engineering. I
am grateful for the opportunity to utilize the facility and necessary electronic
equipment to complete the data analysis task for this research.

I would like to express my gratitude to the entire research community for
pointing me in the right direction and providing clarity regarding the principles
that support web application security through the use of papers, books, surveys,
online articles, and blogs.

Conflicts of Interest

The author states that there are no competing interests involved. This article’s
structure, as well as its contents and authorship, are solely the author’s responsi-
bility.

References
[1] Kirsten, S. (2016) Cross Site Scripting (XSS) Software Attack.

https://owasp.org/www-community/attacks/xss/

[2] Agrawal, D.P. and Wang, H. (2018) Computer and Cyber Security. Auerbach Pub-
lications, New York. https://doi.org/10.1201/9780429424878

[3] Jiang, F., Fu, Y., Gupta, B.B., Liang, Y., Rho, S., Lou, F., et al. (2020) Deep Learning
Based Multi-Channel Intelligent Attack Detection for Data Security. IEEE Transac-
tions on Sustainable Computing, 5, 204-212.
https://doi.org/10.1109/TSUSC.2018.2793284

[4] Baş Seyyar, M., Çatak, F.Ö. and Gül, E. (2018) Detection of Attack-Targeted Scans from

https://doi.org/10.4236/ijcns.2022.158010
https://owasp.org/www-community/attacks/xss/
https://doi.org/10.1201/9780429424878
https://doi.org/10.1109/TSUSC.2018.2793284

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 138 Int. J. Communications, Network and System Sciences

the Apache HTTP Server Access Logs. Applied Computing and Informatics, 14, 28-36.
https://doi.org/10.1016/j.aci.2017.04.002

[5] Chen, H.-C., Nshimiyimana, A., Damarjati, C. and Chang, P.-H. (2021) Detection and
Prevention of Cross-Site Scripting Attack with Combined Approaches. 2021 Interna-
tional Conference on Electronics, Information, and Communication (ICEIC), Jeju, 31
January-3 February 2021, 1-4. https://doi.org/10.1109/ICEIC51217.2021.9369796

[6] Gan, J.-M., Ling, H.-Y. and Leau, Y.-B. (2021) A Review on Detection of Cross-Site
Scripting Attacks (XSS) in Web Security. International Conference on Advances in
Cyber Security, Penang, 8-9 December 2020, 685-709.
https://link.springer.com/chapter/10.1007/978-981-33-6835-4_45

[7] Wibowo, R.M. and Sulaksono, A. (2021) Web Vulnerability Through Cross Site
Scripting (XSS) Detection with OWASP Security Shepherd. Indonesian Journal of
Information Systems, 3, 149-59. https://doi.org/10.24002/ijis.v3i2.4192

[8] Dora, J.R. and Nemoga, K. (2021) Ontology for Cross-Site-Scripting (XSS) Attack in
Cybersecurity. Journal of Cybersecurity and Privacy, 2021, 319-339.
https://doi.org/10.3390/jcp1020018

[9] Nirmal, K., Janet, B. and Kumar, R. (2018) Web Application Vulnerabilities—The
Hacker’s Treasure. 2018 International Conference on Inventive Research in Com-
puting Applications (ICIRCA), Coimbatore, 11-12 July 2018, 58-62.
https://doi.org/10.1109/ICIRCA.2018.8597221

[10] Cui, Y., Cui, J. and Hu, J. (2020) A Survey on XSS Attack Detection and Prevention
in Web Applications. Proceedings of the 2020 12th International Conference on
Machine Learning and Computing, Shenzhen, 15-17 February 2020, 443-449.
https://doi.org/10.1145/3383972.3384027

[11] Khazal, I. and Hussain, M. (2021) Server Side Method to Detect and Prevent Stored
XSS Attack. Iraqi Journal for Electrical and Electronic Engineering, 17, 58-65.
https://doi.org/10.37917/ijeee.17.2.8

[12] Revyakina, Y., Cherckesova, L., Safaryan, O., Korochentsev, D., Boldyrikhin, N. and
Ivanov, Y. (2020) Possibilities of Conducting XSS-Attacks and the Development of
Countermeasures. E3S Web of Conferences, 224, Article No. 01040.
https://doi.org/10.1051/e3sconf/202022401040

[13] Maurel, H., Vidal, S. and Rezk, T. (2022) Statically Identifying XSS Using Deep
Learning. Science of Computer Programming, 219, Article ID: 102810.
https://doi.org/10.1016/j.scico.2022.102810

[14] Hickling, J. (2021) What Is DOM XSS and Why Should You Care? Computer Fraud
& Security, 2021, 6-10. https://doi.org/10.1016/S1361-3723(21)00040-3

[15] Ninawe, S. and Wajgi, R. (2020) Detection of DOM-Based XSS Attack on Web Ap-
plication. Intelligent Communication Technologies and Virtual Mobile Networks
2019, Tirunelveli, 14-15 February 2019, 633-641.
https://link.springer.com/chapter/10.1007/978-3-030-28364-3_65

[16] Wang, P., Bangert, J. and Kern, C. (2021) If It’s Not Secure, It Should Not Compile:
Preventing DOM-Based XSS in Large-Scale Web Development with API Harden-
ing. 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), Madrid, 22-30 May 2021, 1360-1372.
https://doi.org/10.1109/ICSE43902.2021.00123

[17] Hoffman, A. (2020) Web Application Security: Exploitation and Countermeasures
for Modern Web Applications. O’Reilly Media, Inc., Sebastopol.
https://books.google.com/books?hl=en&lr=&id=3R3UDwAAQBAJ&oi=fnd&pg=P
R2&dq=Web+application+security%E2%80%AF:+exploitation+and+countermeasu

https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1016/j.aci.2017.04.002
https://doi.org/10.1109/ICEIC51217.2021.9369796
https://link.springer.com/chapter/10.1007/978-981-33-6835-4_45
https://doi.org/10.24002/ijis.v3i2.4192
https://doi.org/10.3390/jcp1020018
https://doi.org/10.1109/ICIRCA.2018.8597221
https://doi.org/10.1145/3383972.3384027
https://doi.org/10.37917/ijeee.17.2.8
https://doi.org/10.1051/e3sconf/202022401040
https://doi.org/10.1016/j.scico.2022.102810
https://doi.org/10.1016/S1361-3723(21)00040-3
https://link.springer.com/chapter/10.1007/978-3-030-28364-3_65
https://doi.org/10.1109/ICSE43902.2021.00123
https://books.google.com/books?hl=en&lr=&id=3R3UDwAAQBAJ&oi=fnd&pg=PR2&dq=Web+application+security%E2%80%AF:+exploitation+and+countermeasures+for+modern+web+applications&ots=PGdlEp9ORy&sig=0EKCDxN_UPA9rpVKQvwPPjvzmyk#v=onepage&q=Web%20application%20security%E2%80%AF%3A%20exploitation%20and%20countermeasures%20for%20modern%20web%20applications&f=false
https://books.google.com/books?hl=en&lr=&id=3R3UDwAAQBAJ&oi=fnd&pg=PR2&dq=Web+application+security%E2%80%AF:+exploitation+and+countermeasures+for+modern+web+applications&ots=PGdlEp9ORy&sig=0EKCDxN_UPA9rpVKQvwPPjvzmyk#v=onepage&q=Web%20application%20security%E2%80%AF%3A%20exploitation%20and%20countermeasures%20for%20modern%20web%20applications&f=false

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 139 Int. J. Communications, Network and System Sciences

res+for+modern+web+applications&ots=PGdlEp9ORy&sig=0EKCDxN_UPA9rpV
KQvwPPjvzmyk#v=onepage&q=Web%20application%20security%E2%80%AF%3A
%20exploitation%20and%20countermeasures%20for%20modern%20web%20applic
ations&f=false

[18] Remya, S. and Praveen, K. (2016) Protecting the Augmented Browser Extension
from Mutation Cross-Site Scripting. Proceedings of the 2nd International Confe-
rence on Computer and Communication Technologies, Vol. 1, Hyderabad, 24-26
July 2015, 215-223.
https://link.springer.com/chapter/10.1007/978-81-322-2517-1_22

[19] Kaur, J. and Garg, U. (2021) A Detailed Survey on Recent XSS Web-Attacks Ma-
chine Learning Detection Techniques. 2021 2nd Global Conference for Advance-
ment in Technology (GCAT 2021), Bangalore, 1-3 October 2021, 1-6.
https://doi.org/10.1109/GCAT52182.2021.9587569

[20] Pazos, J.C., Légaré, J.S. and Beschastnikh, I. (2021) XSnare: Application-Specific
Client-Side Cross-Site Scripting Protection. Proceedings of 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER 2021),
Honolulu, 9-12 March 2021, 154-165.
https://doi.org/10.1109/SANER50967.2021.00023

[21] Mohammadi, M., Chu, B. and Richter Lipford, H. (2019) Automated Repair of
Cross-Site Scripting Vulnerabilities through Unit Testing. Proceedings of 2019 IEEE
30th International Symposium on Software Reliability Engineering Workshops,
(ISSREW 2019), Berlin, 27-30 October 2019, 370-377.
https://doi.org/10.1109/ISSREW.2019.00098

[22] Wang, Y., Zhou, Y., Zou, X., Miao, Q. and Wang, W. (2020) The Analysis Method
of Security Vulnerability Based on the Knowledge Graph. 2020 10th International
Conference on Communication and Network Security, Tokyo, 27-29 November
2020, 135-145. https://doi.org/10.1145/3442520.3442535

[23] Williams, M.A., Dey, S., Barranco, R.C., Naim, S.M., Hossain, M.S. and Akbar, M.
(2018) Analyzing Evolving Trends of Vulnerabilities in National Vulnerability Da-
tabase. 2018 IEEE International Conference on Big Data (Big Data), Seattle, 10-13
December 2018, 3011-3020. https://doi.org/10.1109/BigData.2018.8622299

[24] Forain, I., de Oliveira Albuquerque, R. and de Sousa Júnior, R.T. (2022) Towards
System Security: What a Comparison of National Vulnerability Databases Reveals.
2022 17th Iberian Conference on Information Systems and Technologies (CISTI),
Madrid, 22-25 June 2022, 1-6. https://doi.org/10.23919/CISTI54924.2022.9820232

[25] Guo, H., Xing, Z., Chen, S., Li, X., Bai, Y. and Zhang, H. (2021) Key Aspects Aug-
mentation of Vulnerability Description based on Multiple Security Databases. 2021
IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC),
Madrid, 12-16 July 2021, 1020-1025.
https://doi.org/10.1109/COMPSAC51774.2021.00138

[26] Wang, T., Qin, S. and Chow, K.P. (2021) Towards Vulnerability Types Classifica-
tion Using Pure Self-Attention: A Common Weakness Enumeration Based Ap-
proach. 2021 IEEE 24th International Conference on Computational Science and
Engineering (CSE), Shenyang, 20-22 October 2021, 146-153.
https://doi.org/10.1109/CSE53436.2021.00030

[27] Mantha, B.R.K., Jung, Y. and Garcia De Soto, B. (2020) Implementation of the
Common Vulnerability Scoring System to Assess the Cyber Vulnerability in Con-
struction Projects. Creative Construction E-Conference 2020, Online, 28 June-1 July
2020, 117-124.

[28] Fangohr, H., Kluyver, T. and DiPierro, M. (2021) Jupyter in Computational Science.

https://doi.org/10.4236/ijcns.2022.158010
https://link.springer.com/chapter/10.1007/978-81-322-2517-1_22
https://doi.org/10.1109/GCAT52182.2021.9587569
https://doi.org/10.1109/SANER50967.2021.00023
https://doi.org/10.1109/ISSREW.2019.00098
https://doi.org/10.1145/3442520.3442535
https://doi.org/10.1109/BigData.2018.8622299
https://doi.org/10.23919/CISTI54924.2022.9820232
https://doi.org/10.1109/COMPSAC51774.2021.00138
https://doi.org/10.1109/CSE53436.2021.00030

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 140 Int. J. Communications, Network and System Sciences

Computing in Science & Engineering, 23, 5-6.
https://doi.org/10.1109/MCSE.2021.3059494

[29] Pradeepa, P.K. (2022) A Survey on an Investigation of Detection & Prevention Me-
thods for Cross-Site Scripting (XSS) Attacks. International Journal of Advanced
Research in Science, Communication and Technology, 405-413.

[30] Kaur, J. and Garg, U. (2021) A Detailed Survey on Recent XSS Web-Attacks Ma-
chine Learning Detection Techniques. 2021 2nd Global Conference for Advance-
ment in Technology (GCAT 2021), Bangalore, 1-3 October 2021, 1-6.
https://doi.org/10.1109/GCAT52182.2021.9587569

[31] Sahoo, S.R. and Gupta, B.B. (2019) Classification of Various Attacks and Their De-
fence Mechanism in Online Social Networks: A Survey. Enterprise Information
Systems, 13, 832-864. https://doi.org/10.1080/17517575.2019.1605542

[32] Kaur, G., Pande, B., Bhardwaj, A., Bhagat, G. and Gupta, S. (2018) Efficient Yet
Robust Elimination of XSS Attack Vectors from HTML5 Web Applications Hosted
on OSN-Based Cloud Platforms. Procedia Computer Science, 125, 669-675.
https://doi.org/10.1016/j.procs.2017.12.086

[33] Xu, G., Xie, X., Huang, S., Zhang, J., Pan, L., Lou, W., et al. (2020) JSCSP: A Novel
Policy-Based XSS Defense Mechanism for Browsers. IEEE Transactions on De-
pendable and Secure Computing, 19, 826-878.
https://doi.org/10.1109/TDSC.2020.3009472

[34] Lala, S.K., Kumar, A. and Subbulakshmi, T. (2021) Secure Web Development Using
OWASP Guidelines. Proceedings of 5th International Conference on Intelligent
Computing and Control Systems (ICICCS 2021), Madurai, 6-8 May 2021, 323-332.
https://doi.org/10.1109/ICICCS51141.2021.9432179

[35] Sahin, M., Ünlü, T., Hébert, C., Shepherd, L.A., Coull, N. and Lean, C.M. (2022)
Measuring Developers’ Web Security Awareness from Attack and Defense Perspec-
tives. 2022 IEEE Security and Privacy Workshops (SPW), San Francisco, 22-26 May
2022, 31-43.

[36] Gupta, S. and Gupta, B.B. (2016) XSS-SAFE: A Server-Side Approach to Detect and
Mitigate Cross-Site Scripting (XSS) Attacks in JavaScript Code. Arabian Journal for
Science and Engineering, 41, 897-920. https://doi.org/10.1007/s13369-015-1891-7

[37] Gupta, S. and Gupta, B.B. (2018) XSS-Secure as a Service for the Platforms of On-
line Social Network-Based Multimedia Web Applications in Cloud. Multimedia
Tools and Applications, 77, 4829-4861.
https://link.springer.com/article/10.1007/s11042-016-3735-1

[38] Gupta, B.B., Gupta, S. and Chaudhary, P. (2017) Enhancing the Browser-Side Con-
text-Aware Sanitization of Suspicious HTML5 Code for Halting the DOM-Based
XSS Vulnerabilities in Cloud. International Journal of Cloud Applications and
Computing, 7, 1-31. https://doi.org/10.4018/IJCAC.2017010101

[39] Caliwag, J.A., Pagaduan, R.A., Castillo, R.E. and Ramos, W.V.J. (2019) Integrating
the Escaping Technique in Preventing Cross Site Scripting in an Online Inventory
System. Proceedings of the 2019 2nd International Conference on Information
Science and Systems, Tokyo, 16-19 March, 110-114.
https://doi.org/10.1145/3322645.3322696

[40] Stritter, B., Freiling, F., König, H., Rietz, R., Ullrich, S., et al. (2016) Cleaning up
Web 2.0’s Security Mess-At Least Partly. IEEE Security and Privacy, 14, 48-57.
https://doi.org/10.1109/MSP.2016.31

[41] Singh, N., Meherhomji, V. and Chandavarkar, B.R. (2020) Automated versus Manual
Approach of Web Application Penetration Testing. 2020 11th International Confe-

https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/GCAT52182.2021.9587569
https://doi.org/10.1080/17517575.2019.1605542
https://doi.org/10.1016/j.procs.2017.12.086
https://doi.org/10.1109/TDSC.2020.3009472
https://doi.org/10.1109/ICICCS51141.2021.9432179
https://doi.org/10.1007/s13369-015-1891-7
https://link.springer.com/article/10.1007/s11042-016-3735-1
https://doi.org/10.4018/IJCAC.2017010101
https://doi.org/10.1145/3322645.3322696
https://doi.org/10.1109/MSP.2016.31

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 141 Int. J. Communications, Network and System Sciences

rence on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, 1-3 July 2020, 1-6. https://doi.org/10.1109/ICCCNT49239.2020.9225385

[42] Calzavara, S., Rabitti, A. and Bugliesi, M. (2018) Semantics-Based Analysis of Content
Security Policy Deployment. ACM Transactions on the Web, 12, Article No, 10.
https://doi.org/10.1145/3149408

[43] Breck, E., Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. (2019) Data Valida-
tion for Machine Learning.
https://proceedings.mlsys.org/book/2019/file/5878a7ab84fb43402106c575658472fa-
Paper.pdf

[44] Serrano, M. and Prunet, V. (2016) A Glimpse of Hopjs. ACM SIGPLAN Notices,
51, 180-192. https://doi.org/10.1145/3022670.2951916

[45] Rose, F., Toher, C., Gossett, E., Oses, C., Nardelli, M.B., Fornari, M., et al. (2017)
AFLUX: The LUX Materials Search API for the AFLOW Data Repositories. Com-
putational Materials Science, 137, 362-370.
https://doi.org/10.1016/j.commatsci.2017.04.036

[46] Argyros, G., Stais, I., Kiayias, A. and Keromytis, A.D. (2016) Back in Black: Towards
Formal, Black Box Analysis of Sanitizers and Filters. 2016 IEEE Symposium on Se-
curity and Privacy (SP), San Jose, 22-26 May 2016, 91-109.
https://ieeexplore.ieee.org/abstract/document/7546497

[47] Pham, T.T.T., Hoang, V.N. and Ha, T.N. (2018) Exploring Efficiency of Charac-
ter-Level Convolution Neuron Network and Long Short Term Memory on Mali-
cious URL Detection. Proceedings of the 2018 VII International Conference on
Network, Communication and Computing, Taipei, 14-16 December 2018, 82-86.
https://doi.org/10.1145/3301326.3301336

[48] Zhang, Q., Chen, H. and Sun, J. (2010) An Execution-Flow Based Method for De-
tecting Cross-Site Scripting Attacks. The 2nd International Conference on Software
Engineering and Data Mining, Chengdu, 23-25 June 2010, 160-165.
https://ieeexplore.ieee.org/abstract/document/5542934

[49] Scholte, T., Robertson, W., Balzarotti, D. and Kirda, E. (2012) Preventing Input Va-
lidation Vulnerabilities Inweb Applications through Automated Type Analysis.
Proceedings of International Computer Software and Applications Conference, Iz-
mir, 16-20 July 2012, 233-243. https://doi.org/10.1109/COMPSAC.2012.34

[50] Xiao, W., Sun, J., Chen, H. and Xu, X. (2014) Preventing Client Side XSS with Re-
write Based Dynamic Information Flow. Proceedings of International Symposium
on Parallel Architectures, Algorithms and Programming (PAAP), Beijing, 13-15 Ju-
ly 2014, 238-243. https://doi.org/10.1109/PAAP.2014.10

[51] Stock, B., Pfistner, S., Kaiser, B., Lekies, S. and Johns, M. (2015) From Facepalm to
Brain Bender: Exploring Client-Side Cross-Site Scripting. Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
12-16 October 2015, 1419-1430. https://doi.org/10.1145/2810103.2813625

[52] Parameshwaran, I., Budianto, E., Shinde, S., Dang, H., Sadhu, A. and Saxena, P.
(2015) DexterJS: Robust Testing Platform for DOM-Based XSS Vulnerabilities.
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing, Bergamo, 30 August-4 September 2015, 946-949.
https://doi.org/10.1145/2786805.2803191

[53] Usha, G., Kannimuthu, S., Mahendiran, P.D., Shanker, A.K. and Venugopal, D.
(2020) Static Analysis Method for Detecting Cross Site Scripting Vulnerabilities.
International Journal of Information and Computer Security, 13, 32-47.
https://doi.org/10.1504/IJICS.2020.108123

https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1109/ICCCNT49239.2020.9225385
https://doi.org/10.1145/3149408
https://proceedings.mlsys.org/book/2019/file/5878a7ab84fb43402106c575658472fa-Paper.pdf
https://proceedings.mlsys.org/book/2019/file/5878a7ab84fb43402106c575658472fa-Paper.pdf
https://doi.org/10.1145/3022670.2951916
https://doi.org/10.1016/j.commatsci.2017.04.036
https://ieeexplore.ieee.org/abstract/document/7546497
https://doi.org/10.1145/3301326.3301336
https://ieeexplore.ieee.org/abstract/document/5542934
https://doi.org/10.1109/COMPSAC.2012.34
https://doi.org/10.1109/PAAP.2014.10
https://doi.org/10.1145/2810103.2813625
https://doi.org/10.1145/2786805.2803191
https://doi.org/10.1504/IJICS.2020.108123

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 142 Int. J. Communications, Network and System Sciences

[54] Wang, R., Jia, X., Li, Q. and Zhang, D. (2015) Improved N-Gram Approach for
Cross-Site Scripting Detection in Online Social Network. 2015 Science and Infor-
mation Conference (SAI), London, 28-30 July 2015, 1206-1212.
https://doi.org/10.1109/SAI.2015.7237298

[55] Mokbal, F.M.M., Wang, D., Imran, A., Jiuchuan, L., Akhtar, F. and Wang, X. (2019)
MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications
Using Multilayer Perceptron Technique. IEEE Access, 7, 100567-100580.
https://doi.org/10.1109/ACCESS.2019.2927417

[56] Moniruzzaman, M., Bagirov, A., Gondal, I. and Brown, S. (2018) A Server Side Solu-
tion for Detecting WebInject: A Machine Learning Approach. Pacific-Asia Confe-
rence on Knowledge Discovery and Data Mining, Melbourne, 3 June 2018, 162-167.
https://doi.org/10.1007/978-3-030-04503-6_16

[57] Tariq, I., Sindhu, M.A., Abbasi, R.A., Khattak, A.S., Maqbool, O. and Siddiqui, G.F.
(2021) Resolving Cross-Site Scripting Attacks through Genetic Algorithm and
Reinforcement Learning. Expert Systems with Applications, 168, Article ID: 114386.
https://doi.org/10.1016/j.eswa.2020.114386

[58] Fang, Y., Huang, C., Xu, Y. and Li, Y. (2019) RLXSS: Optimizing XSS Detection
Model to Defend Against Adversarial Attacks Based on Reinforcement Learning.
Future Internet, 11, Article 177. https://doi.org/10.3390/fi11080177

[59] Fang, Y., Li, Y., Liu, L. and Huang, C. (2018) DeepXSS: Cross Site Scripting Detec-
tion Based on Deep Learning. Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence, Chengdu, 12-14 March 2018, 47-51.
https://doi.org/10.1145/3194452.3194469

[60] Kaur, G., Malik, Y., Samuel, H. and Jaafar, F. (2018) Detecting Blind Cross-Site
Scripting Attacks Using Machine Learning. Proceedings of the 2018 International
Conference on Signal Processing and Machine Learning, Shanghai, 28-30 Novem-
ber 2018, 22-25. https://doi.org/10.1145/3297067.3297096

[61] Lekies, S., Stock, B. and Johns, M. (2013) 25 Million Flows Later: Large-Scale Detec-
tion of DOM-Based XSS. Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, Berlin, 4-8 November 2013, 1193-1204.
https://doi.org/10.1145/2508859.2516703

[62] Van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W. and Piessens, F. (2012) Fla-
shOver: Automated Discovery of Cross-Site Scripting Vulnerabilities in Rich Inter-
net Applications. Proceedings of the 7th ACM Symposium on Information, Com-
puter and Communications Security, Seoul, 2-4 May 2012, 12-13.
https://doi.org/10.1145/2414456.2414462

[63] Vishnu, B.A. and Jevitha, K.P. (2014) Prediction of Cross-Site Scripting Attack Us-
ing Machine Learning Algorithms. Proceedings of the 2014 International Confe-
rence on Interdisciplinary Advances in Applied Computing, Amritapuri, October
2014, Article No. 55. https://doi.org/10.1145/2660859.2660969

[64] Rocha, T.S. and Souto, E. (2014) ETSSDetector: A Tool to Automatically Detect
Cross-Site Scripting Vulnerabilities. 2014 IEEE 13th International Symposium on
Network Computing and Applications, Cambridge, 21-23 August 2014, 306-309.
https://doi.org/10.1109/NCA.2014.53

[65] Khan, N., Abdullah, J. and Khan, A.S. (2015) Towards Vulnerability Prevention
Model for Web Browser Using Interceptor Approach. 2015 9th International Con-
ference on IT in Asia (CITA), Sarawak, 4-5 August 2015, 1-5.
https://doi.org/10.1109/CITA.2015.7349842

[66] Ruse, M.E. and Basu, S. (2013) Detecting Cross-Site Scripting Vulnerability Using

https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1109/SAI.2015.7237298
https://doi.org/10.1109/ACCESS.2019.2927417
https://doi.org/10.1007/978-3-030-04503-6_16
https://doi.org/10.1016/j.eswa.2020.114386
https://doi.org/10.3390/fi11080177
https://doi.org/10.1145/3194452.3194469
https://doi.org/10.1145/3297067.3297096
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2414456.2414462
https://doi.org/10.1145/2660859.2660969
https://doi.org/10.1109/NCA.2014.53
https://doi.org/10.1109/CITA.2015.7349842

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 143 Int. J. Communications, Network and System Sciences

Concolic Testing. 2013 10th International Conference on Information Technology:
New Generations, Las Vegas, 15-17 April 2013, 633-638.
https://doi.org/10.1109/ITNG.2013.97

[67] Dong, G., Zhang, Y., Wang, X., Wang, P. and Liu, L. (2014) Detecting Cross Site
Scripting Vulnerabilities Introduced by HTML5. 2014 11th International Joint
Conference on Computer Science and Software Engineering (JCSSE), Chon Buri,
14-16 May 2014, 319-323. https://doi.org/10.1109/JCSSE.2014.6841888

[68] Gupta, M.K., Govil, M.C., Singh, G. and Sharma, P. (2015) XSSDM: Towards De-
tection and Mitigation of Cross-Site Scripting Vulnerabilities in Web Applications.
2015 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Kochi, 10-13 August 2015, 2010-2015.
https://doi.org/10.1109/ICACCI.2015.7275912

[69] Duchene, F., Rawat, S., Richier, J.-L. and Groz, R. (2014) KameleonFuzz: Evolutio-
nary Fuzzing for Black-Box XSS Detection. Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, Association for Computing Machi-
nery, San Antonio, March 2014, 37-48. https://doi.org/10.1145/2557547.2557550

[70] Lalia, S. and Sarah, A. (2018) XSS Attack Detection Approach Based on Scripts
Features Analysis. 2018 World Conference on Information Systems and Technolo-
gies, Naples, 27-29 March 2018, 197-207.
https://link.springer.com/chapter/10.1007/978-3-319-77712-2_19

[71] Steinhauser, A. and Tůma, P. (2019) DjangoChecker: Applying Extended Taint
Tracking and Server Side Parsing for Detection of Context-Sensitive XSS Flaws.
Software: Practice and Experience, 49, 130-148. https://doi.org/10.1002/spe.2649

[72] Gupta, S. and Gupta, B.B. (2018) A Robust Server-Side JavaScript Feature Injec-
tion-Based Design for JSP Web Applications Against XSS Vulnerabilities. In: Bok-
hari, M.U., Agrawal, N. and Saini, D., Eds., Cyber Security, Springer, Singapore,
459-465. https://link.springer.com/chapter/10.1007/978-981-10-8536-9_43

[73] Gupta, S., Gupta, B.B. and Chaudhary, P. (2018) Hunting for DOM-Based XSS
Vulnerabilities in Mobile Cloud-Based Online Social Network. Future Generation
Computer Systems, 79, 319-336. https://doi.org/10.1016/j.future.2017.05.038

[74] Nadji, Y., Saxena, P. and Song, D. (2009) Document Structure Integrity: A Robust Ba-
sis for Cross-Site Scripting Defense. National Down Syndrome Society, New York, 20.
http://webblaze.cs.berkeley.edu/papers/nadji-saxena-song.pdf

[75] Panja, B., Gennarelli, T. and Meharia, P. (2015) Handling Cross Site Scripting At-
tacks Using Cache Check to Reduce Webpage Rendering Time with Elimination of
Sanitization and Filtering in Light Weight Mobile Web Browser. 2015 1st Confe-
rence on Mobile and Secure Services (MOBISECSERV), Gainesville, 20-21 February
2015, 1-7. https://ieeexplore.ieee.org/abstract/document/7072878

[76] Chaudhary, P., Gupta, B.B. and Gupta, S. (2018) Defending the OSN-Based Web
Applications from XSS Attacks Using Dynamic JavaScript Code and Content Isola-
tion. In: Kapur, P.K., Kumar, U. and Verma, A.K., Eds., Quality, IT and Business
Operations: Modeling and Optimization, Springer, Singapore, 107-119.
https://doi.org/10.1007/978-981-10-5577-5_9

[77] Gupta, S., Gupta, B.B. and Chaudhary, P. (2019) A Client-Server JavaScript Code Re-
writing-Based Framework to Detect the XSS Worms from Online Social Network.
Concurrency and Computation: Practice and Experience, 31, Article No. e4646.
https://doi.org/10.1002/cpe.4646

https://doi.org/10.4236/ijcns.2022.158010
https://doi.org/10.1109/ITNG.2013.97
https://doi.org/10.1109/JCSSE.2014.6841888
https://doi.org/10.1109/ICACCI.2015.7275912
https://doi.org/10.1145/2557547.2557550
https://link.springer.com/chapter/10.1007/978-3-319-77712-2_19
https://doi.org/10.1002/spe.2649
https://link.springer.com/chapter/10.1007/978-981-10-8536-9_43
https://doi.org/10.1016/j.future.2017.05.038
http://webblaze.cs.berkeley.edu/papers/nadji-saxena-song.pdf
https://ieeexplore.ieee.org/abstract/document/7072878
https://doi.org/10.1007/978-981-10-5577-5_9
https://doi.org/10.1002/cpe.4646

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 144 Int. J. Communications, Network and System Sciences

Appendix

A. Proxy-Based XSS prevention techniques

Table A1. Advantages and disadvantages of proxy-based XSS defensive techniques.

Advantages Disadvantages

[47] presents a research paper in which the authors proposed that XSS attacks can be
identified by investigating the implementation flow of an AJAX application. The
JavaScript code is inspected on the browser side at the very beginning in order to
generate a finite state machine for the typical mode of operation of the applications.
The scripts that are encoded in the response web page are then monitored by this
machine in conjunction with a proxy. Malicious flow and XSS attacks can take place if
the machine’s execution path does not match the machine’s finite state machine.

This method is ineffective against
XSS attacks based on the Document
Object Model.

IPAAS is an input validation approach proposed by the authors [48]. After first
interfering with the page containing the answer and retrieving all of the parameters, it
then analyzes the context of those parameters. This leads to the development of input
validation policies, which are subsequently applied to every page of reappearance on
the internet for examination. If the requirements are not satisfied, the request will be
denied; in any other case, it will not be. Failures in type learning are possible when
bespoke query string formats are used.

The IPAAS parameter extractor may
be unable to parse parameter
key-value pairs in this approach.

The authors [49] proposed that this strategy employs the use of dynamic analysis of
JavaScript code that is embedded within a web page. By using this method, an abstract
syntax tree will be constructed for the internal representation of JavaScript code.
Following that, the tree is transferred to the taint engine, which analyzes the JS code to
determine whether or not it attempts to access the private data.

Performing its functions, however,
incurs significant performance
overhead and requires a substantial
amount of processing time.

Essentially, the researchers [50] proposed that the objective of this approach is to detect
any questionable JavaScript code. Tainted-browsing technology is used. A set of metrics
is then established to help measure the impact of each attacking flow on the system.

This method cannot detect suspicious
flow, for example, flows dependent on
certain specified conditions, such as
the value of a parameter in a URL.

The researchers [51] proposed that DOM-based XSS attack can no longer be carried
out using this technique, thanks to its robustness. Taint tracking and exploit reporting
are the foundations of this strategy. To a large extent, it gets rid of the JavaScript code
that can’t be trusted and then examines it on its own, following its execution flow, to
determine whether or not it has been contaminated. It generates XSS test payloads
based on the log information it receives.

Exploits are reported to the client
after all vulnerabilities have been
discovered. In terms of security, it
does not guard against non-scripting
code and has a negative impact on
performance.

B. Machine learning XSS prevention techniques

Table A2. Advantages and disadvantages of machine learning XSS defensive techniques.

Advantages Disadvantages

The researchers [52] proposed a data mining and static analysis approach for
eliminating XSS vulnerabilities. The approach seeks to discover and eliminate
harmful links from the source code. Their technique outperforms the upgraded
ngram model. Following a discussion of the subclasses of XSS attacks,
the paper briefly addresses the risks and concerns posed by XSS.

This approach cannot adequately
prevent XSS against mXSS and
DOM-based cross-site scripting (XSS)
attacks.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 145 Int. J. Communications, Network and System Sciences

Continued

The authors [53] proposed combining the machine-learning technique of classifiers
with an upgraded n-gram approach to protect the social networking platform from
XSS attacks.

If characteristics and examples are
insufficient, it is possible that
malicious pages won’t be
recognized, which will make the
training effort for this strategy
difficult.

The researchers [54] proposed a method for preventing cross-site scripting that utilizes
ANN-Multilayer Perceptron in conjunction with dynamic feature extraction. When
compared to other machine-learning algorithms, this strategy outperforms others.

For XSS assaults, it has not been
tested on actual web applications
that are used in the world today.

In [55] web page content can be distinguished from injected data using a technique
proposed by the authors. This machine-learning-based approach is exclusive to
banking websites. The model is trained using data from the DOM tree.

This approach takes more time since
it involves removing features
from the web page before sending it
back to the server where it originated.

The researchers [56] Proposed a hybrid solution for preventing XSS in web
applications. They claim that their method is the first of its kind since it blends a
metaheuristic algorithm (the Genetic Algorithm) with a framework for machine
learning. This combination distinguishes their methodology. They used a threat
intelligence model and reinforcement learning in addition to GA and statistical
inference to protect them from XSS attacks.

This strategy has not been put through
any kind of proof-of-concept testing
on real-world mission-critical web
applications.

The authors [57] presented RLXSS, a method for detecting cross-site scripting attacks
dependent on reinforcement learning, and uses both adversarial and retraining
models. This method made use of XSS detection technologies like SafeDog and
XSSChop in addition to DDQN (dueling deep Q networks), an escape technique,
and a reward mechanism. The adversarial samples that were obtained from the
adversarial model were included in the retraining model so that optimization
could be performed on them.

This approach cannot work against
mXSS attack that usually employs
filter-safe payloads and mutate them
into insecure payloads after filtration.

The authors [58] proposed a deep learning approach to the Cross-site scripting
identification in which the original data is first decoded, and then the word2vec
algorithm is used to acquire information regarding the qualities of XSS payloads.
The input is then placed into a Model of the LSTM neural network. Cross-validation
of the tenfold test is utilized in the last step of this analysis to see how well the
proposed method compares to the ADTree and AdaBoost methods.

This approach is ineffective against
DOM-based XSS attacks.

The authors [59] proposed a supervised machine learning method for detecting
potentially hazardous links before they execute on the victim’s computer. Their
solution makes use of a Linear Support Vector Machine classifier to detect blind XSS
attacks and differentiate between the primary characteristics of reflected and stored
XSS attacks. JavaScript events were run during the features extraction process,
which attackers use to inject malicious payloads. For testing purposes,
a linearly separable dataset was used. Mutillidae, a free vulnerable website,
was used to mimic a blind XSS attack.

This approach is entirely limited to
handling DOM-base and mXSS
attacks.

The authors [60] proposed a model for the detection of XSS that makes use of a
metaheuristic approach known as a Genetic Algorithm.

This approach has not been tested on
real-world, mission-critical web
applications.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 146 Int. J. Communications, Network and System Sciences

C. Client-side XSS prevention techniques

Table A3. Advantages and disadvantages of client-side XSS defensive techniques.

Advantages Disadvantages

The researchers [61] have proposed a method for detecting DOM-based XSS
attacks that employ dynamic taint tracking and context-sensitive sanitization.

This method is ineffective against
stored XSS attacks.

The authors proposed that this [62] method is intended to minimize XSS attacks
when used with Adobe Flash. This method also uses static analysis to detect
suspicious input fields and dynamic analysis to test the suspect areas.

If the testing payload is executed, it
leaves the system open to XSS attacks.
When it comes to detecting XSS
vulnerability sources, static analysis is
only effective in a limited number of
cases. Furthermore, it is only effective
against malicious JavaScript code.

The researchers [63] proposed Machine-learning classifiers in the process.
The set of data is then used in training classifiers to recognize XSS attacks once it
has been extracted, examined, and prepared by taking the value of the URL
parameter and the value of the JavaScript.

There is no automatic updating of a
prepared dataset. As a result, a new
attacking payload may be bypassed.

The researchers [64] proposed a method that operates by imitating the browser’s
behavior. It interacts with the website in issue and detects any potentially risky
places before injecting a payload for testing the system’s level of security.
If the code executes, It is vulnerable to XSS attacks.

This approach cannot identify
DOM-based XSS attacks.

The researchers [65] proposed a technique that operates as an intermediary between
the client and the server who acts as an interceptor during the processing of a web
page to detect the injection of malicious code. This method differentiates between
static and dynamic websites. Vulnerabilities can be identified by injecting an attack
payload into dynamic web pages. XSS attacks are possible in the event that the
content is shown on the page.

This method is unable to identify
DOM-based XSS attacks.

D. Server-side XSS prevention techniques

Table A4. Advantages and disadvantages of server-side XSS defensive techniques.

Advantages Disadvantages

This method [66], according to the researchers, is intended for JSP-based web-related
applications and is a jCute concolic testing. They employ static analysis and real-time
monitoring. When an XSS attack is attempted, it helps to establish the relationship
between input and output values that facilitate the attack.

Since this method relies on jCute
concolic testing, output variables with
more than three of the characters
cannot be recognized.

The researchers [67] proposed that in addition to being able to detect XSS attack
vectors constructed utilizing new HTML5 features, this approach is targeted for
webmail applications. Five injection points in the webmail system are used to inject
attack vectors for the purpose of testing. As the last step, it is determined whether or
not an attack vector was thoroughly sanitized.

In this method, HTML5 tags and
attributes are the sole attack vectors it
considers, ignoring other potentially
dangerous circumstances.

In [68], the authors have taken precautionary measures against XSS attacks by
employing static analysis, pattern matching, and context-aware sanitization
techniques.

In order to use this method, sanitized
code must be manually entered
into the website.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 147 Int. J. Communications, Network and System Sciences

Continued

The researchers [69] who conducted the study hypothesized that fuzz testing activates
XSS vulnerabilities. Fuzz testing is a black-box detection method that makes use of
malicious payload injection into web applications. It’s more accurate to think of it as a
two-step extension of the LigRE model: first, the production of malicious input, and
then the taint analysis in order to find the vulnerability. For instance, it avoids a
cross-site scripting attack that is stored as well as reflected.

This would necessitate an application
reset for live applications, which is not
an option. Additionally, human
interpretation is essential to the
process of developing attack vectors.

In [70] script characteristics can be used to detect malicious script injection, according
to the authors. These features are taken and then evaluated to see how they are used to
create harmful scripts in this case. Once the malicious script and benign script are
detected, they can be utilized to identify an XSS attack and prevent further damage.

Partially injected scripts and
obfuscated script injection are
ineffective with this strategy.

In [71] Django Checker is a dynamic taint analysis tool proposed by the authors. This
method determines whether the primitives of the sanitizers that are already in use in
the web application are proper. It also determines the context in which these attributes
are used and assesses the appropriateness of implementing sanitization. It determines
whether or not sanitization is context-sensitive.

This technique is limited to
Django-based web applications and
cannot detect DOM-based XSS attacks.

Researchers [72] have proposed a method based on discovering the discrepancies
between inserted values and previously established values. Each site extracts JS code
and tests to see if it differs from the known value. As a result, code injection flaws like
XSS can be detected more easily.

However, if the Javascript context is
ignored, XSS can also take advantage
of other contexts, such as URL
parameters and style sheet features.
Attack vectors such as these can’t be
stopped by this method.

E. Combined XSS prevention techniques

Table A5. Advantages and disadvantages of combined XSS defensive techniques.

Advantages Disadvantages

The researchers [73] have presented defensive strategies against DOM-based XSS
attacks. Under normal circumstances, the DOM tree is constructed, scripting nodes
are extracted, and a whitelist is created for future use. The DOM tree is generated for
malicious websites, and the nodes of the DOM tree are parsed for injected script code.
Any differences found between the whitelist and the XSS attack are viewed as
suspicious compared to each other.

This technique may block the
execution of harmless JavaScript code
if the whitelist is not matched.

The researchers [74] proposed the usage of a client-server model to ensure the
integrity of the document structure. This approach uses combined runtime tracking
and randomization to prevent XSS attacks. As a result of this method, harmful data
cannot affect web application content by manipulating the document structure.

This method, which needs
modifications on both the client and
the server, is unusable in preventing a
DOM-based XSS attack.

As shown in [75] to identify and mitigate Cross-site Scripting (XSS) vulnerabilities on
mobile browsers, the authors presented a method that is known as Buffer Based Cache
Check. By utilizing a cache, you can avoid the time-consuming and resource-intensive
process of continually transmitting the script whitelist to the web page. Instead, the
server saves confirmed scripts that correspond to the last time the web page was
browsed. If any deviations are discovered, it suggests suspicious activities such as XSS.

Code modifications on both the client
and server sides are required for this
method, which leads to a decrease in
overall performance.

https://doi.org/10.4236/ijcns.2022.158010

S. J. Y. Weamie

DOI: 10.4236/ijcns.2022.158010 148 Int. J. Communications, Network and System Sciences

Continued

The researchers [76] have proposed a new approach to data cleaning using
context-sensitive sanitization. Here, the server-side and client-side contexts are
determined statically and dynamically. After this, sanitizers’ primitives are applied to
the vulnerable variable in accordance with its context.

This technique does not defend
against malicious script code
obtained from a third party.

The researchers [77] have proposed a client-server approach that extracts JavaScript
code and analyzes it on the client-side. After decoding JS, the injected values are
eventually matched with the suspicious variable contexts. As recommended by the
authors, the presence of a match indicates an XSS assault.

The matching between requesting
parameters and response parameters
used in this technique is not capable of
detecting DOM-based XSS attacks,
which are client-side vulnerabilities.

https://doi.org/10.4236/ijcns.2022.158010

	Cross-Site Scripting Attacks and Defensive Techniques: A Comprehensive Survey
	1. Introduction
	2. Background of the Cross-Site Scripting Attack
	2.1. Categories of XSS Attacks
	2.2. Stored Cross-Site Scripting (XSS) Attack
	2.3. Reflected Cross-Site Scripting (XSS) Attack
	2.4. Document Object Model-Based Cross-Site Scripting (XSS) Attack
	2.5. Mutation-Based Cross-Site Scripting (mXSS) Attack

	3. Composition of XSS Comparative Research Data Sources
	3.1. Abbreviations and Acronyms
	3.2. Comparative of the Top 20 Software Development Vulnerabilities

	4. Related Works
	5. XSS Prevention and Defense Mechanism
	5.1. Preventive Measures and Standard Procedures for Cross-Site Scripting Attack
	5.2. Researchers’ Defensive Techniques for XSS Attacks (Advantages & Disadvantages)

	6. Conclusions and Suggestions
	Acknowledgements
	Conflicts of Interest
	References
	Appendix

