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Abstract 

There exists an infinite number of quarks u(∞) and anti-quarks ( )u ∞  at an 
infinite sub-layer level. These particles are considered as the ultimate building 
blocks of the universe, since they are structure-less and absolutely stable. 
These particles are also regarded as the non-baryonic dark matter, since the 
baryon number is zero and the Rp-parity is −1. It is emphasized that super-
symmetric particle, neutralino has also the Rp-parity of −1 and well known 
good cold dark matter candidate. In modern particle physics, all ordinary 
particles have the Rp-parity of +1, while both the ultimate quark u(∞) and 
neutralino have the Rp-parity of −1. This means that these particles can only 
be created or annihilated in pairs in reactions of ordinary particles. From 
electron-positron annihilation experiments at high energies, it is shown that 
the prediction value from the ultimate quark u(∞) is in good agreement with 
many ring-storage collider experiments. 
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1. Introduction 

In some previous papers [1] [2] [3] [4], the present author showed that there ex-
ists an infinite number of quark u(∞) and its anti-quark ( )u ∞  as the ultimate 
buiding blocks of the universe. The dark matter. leptons, quarks, gauge bosons 
and Higgs bosons are also composed of u(∞) and ( )u ∞  quarks. The u(∞) and 
( )u ∞  quarks are good candidates for non-baryonic dark matter, since baryon 

number is zero and the Rp-parity is negative, that is, −1. The recent astronomical 
observations imply that the universe consists of 0.5% luminous matter like stars 
and galaxies, 4% ± 0.4% baryonic dark matter, 23% ± 3% non-baryonic dark 
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matter and 73% ± 3% dark energy [5]-[10]. Thus the present universe is made of 
non-baryonic matter rather than baryonic dark matter. There are some models 
for dark matter [11]. For example, the candidate of baryonic dark matter is black 
holes, neutron stars and white dwarfs. As the non-baryonic dark matter, neutri-
no, axion and neutralino are considered [12]. Neutralino is derived from super-
symmetric counterpart of neutrino. The lightest neutralino is the leading cold 
dark matter candidate, since it is absolutely stable and Rp-parity [13] is con-
served. Rp-parity is defined with baryon number B, lepton number L and spin S, as 

( ) ( ) ( )3 2 3 2
p 1 1B L S B L SR + + − +− −= ≡                    (1) 

Supersymmetic particle has the Rp-parity of −1. The ultimate quark u(∞) has 
also the Rp-parity of −1, since B = 0, L = 0 , S = 1/2 and the standard quark u has 
the Rp-parity of +1, because of B = 1/3, L = 0 and S = 1/2.  

Thus all ordinary particles of the standard model have the Rp-parity of +1, 
while neutralino, superpartner of neutrino in supersymmetry has the negative 
Rp-parity of −1.  

Rp-parity is a conserved multiplicative quantum number, therefore, the par-
ticle can only appear quadratically in the Lagrangian. This means the super-
symmetric particles can only be produced in pairs. This particle is absolutely 
stable and there is no charged particle into which it can decay. 

This fact is what makes the supersymmetric particle a good dark matter can-
didate. 

Now, consider the ultimate quark u(∞) and its anti-quark ( )u ∞  as non-bar- 
yonic dark matter candidates, since they are absolutely stable, similar to neutra-
lino and the non-baryonic particles with the baryon number 0. A pair of an infi-
nite number of u(∞) and ( )u ∞  quarks would be produced in the early un-
iverse of the Big Bang and leave the right relic abundance to explain the ob-
served dark matter. In the following, we will construct the infinite sub-layer 
quark model. 

2. An Infinite Sub-Layer Quark Model 

This is derived as follows: The proton (p) and the neutron (n) are made up of 
u(1) and d(1) quarks, so that p = u(1) u(1) d(1) and n = u(1) d(1) d(1). Further-
more, u(1) and d(1) quarks are made up of u(1) = u(2) u(2) d(2) and d(1) = u(2) 
d(2) d(2), etc. In summary, u(N) and d(N) quarks at level N are made up of u(N 
+ 1) and d(N + 1) quarks at level N + 1, such as u(N) = (u(N + 1), u(N + 1), d(N 
+ 1)) and d(N) = (u(N + 1), d(N + 1), d(N + 1)) where 1,2,3, ,N = ∞� .  

Here, the u(N) and d(N) quarks have quantum numbers of spin S = 1/2, isos-
pin I = 1/2, third component of isospin 3 1 2I = ± , fractional electric charge 

( ) ( )3 21 3N NQ e± × =   , and baryon number 1 3NB = . This is shown in Ta-
ble 1. 

3. Six Quarks at an Infinite Sub-Layer Quark Model 

In the standard qurk model, there are six quarks, that is, up(u), down(d), strange(s), 
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charm©, bottom(b) and top(t). Standard 6 quark quantum numbers are shown 
in Table 2. 

Quantum numbers at an infinite sub-layer level are shown in Table 3. 
In Table 2, it is shown that baryon number B = 1/3, Rp-parity = +1, electric 

charge Q = −1/3 or 2/3, while, in Table 3, B = 0, Rp-parity = −1 and Q = ±1/2. 
Thus, at an infinite sub-layer level, all quantum numbers are just one-half.  

 
Table 1. Infinite sub-layer quark quantum numbers from N = 0 to N = ∞. 

Level (N) Symbol Combination S B I I3 Q 

0 

p(proton) u(1) u(1) d(1) 1
2

 1 
1
2

 1
2

 e+  

n(neutron) u(1) d(1) d(1) 1
2

 1 
1
2

 1
2

−  0 

1 

u(1) u(2) u(2) d(2) 1
2

 
1
3

 
1
2

 
1
2

 
2
3

e  

d(1) u(2) d(2) d(2) 1
2

 
1
3

 1
2

 1
2

−  1
3

e−  

…
 

u(N) u(N + 1) u(N + 1) d(N + 1) 1
2

 
1

3N  
1
2

 
1
2

 
2 3
1 3N

N e+
×

 

N d(N) u(N + 1) d(N + 1) d(N + 1) 
1
2

 
1

3N  
1
2

 
1
2

−  
2 3
1 3N

N e−
×

 

…
 

u(∞) Structure-less 1
2

 0 
1
2

 1
2

 1
2

e  

∞ ( ) ( )d u∞ = ∞  Structure-less 1
2

 0 
1
2

 1
2

−  1
2

e−  

 
Table 2. Additive quantum numbers of the quarks in the standard model. The subscript 
“L” indicates the left-handed particle. 

 First family Second family Third family 

Flavors d u s c b t 

Rp-parity +1 +1 +1 +1 +1 +1 

Baryon number B 1/3 1/3 1/3 1/3 1/3 1/3 

Electric charge Q −1/3 2/3 −1/3 2/3 −1/3 2/3 

Isospin I 1/2 1/2 0 0 0 0 

Third component of isospin I3 −1/2 1/2 0 0 0 0 

Strangeness number S 0 0 −1 0 0 0 

Charm number C 0 0 0 1 0 0 

Bottomness number   0 0 0 0 −1 0 

Topness number T 0 0 0 0 0 1 

Third component of  
weak isospin (t3)L 

−1/2 1/2 −1/2 1/2 −1/2 1/2 

https://doi.org/10.4236/jhepgc.2022.83054


M. Sekine 
 

 

DOI: 10.4236/jhepgc.2022.83054 803 Journal of High Energy Physics, Gravitation and Cosmology 
 

Table 3. Additive quantum numbers at an infinite sublayer level. All quantum number is 
just one-half.  

 
First family Second family Third family 

Flavors at an infinite sublayer  
level N → ∞ 

d (∞) u (∞) s (∞) c (∞) b (∞) t (∞) 

Rp-parity −1 −1 −1 −1 −1 −1 

Baryon number B 0 0 0 0 0 0 

Electric charge Q −1/2 1/2 −1/2 1/2 −1/2 1/2 

Isospin I 1/2 1/2 0 0 0 0 

Third component of isospin I3 −1/2 1/2 0 0 0 0 

Strangeness number spin S/2 0 0 −1/2 0 0 0 

Charm number spin C/2 0 0 0 1/2 0 0 

Bottomness number spin 2  0 0 0 0 −1/2 0 

Topness number spin T/2 0 0 0 0 0 1/2 

Third component of  
weak isospin (t3)L 

−1/2 1/2 −1/2 1/2 −1/2 1/2 

4. Electron-Positron Annihilation into Muon Pairs and  
Quark Pairs 

Now consider electron-positron annihilation via a virtual photon (γ). 
This Feynman diagram is shown in Figure 1. 
The lowest order QED differential cross-section for the process via a virtual 

photon (γ) 

e e γ µ µ+ − + −→ →  gives 

( )
( ) ( )

2
2

2d 1 cos d cos
2 s

ασ θ θπ
= +                  (2) 

where θ is the angle of emission of muons in the CMS(center of mass) system,α 
is the fine structure constant, and s  is the center-of-mass energy [14]. 

The total cross-section is written as 

( )
2

2

4

3 s

ασ π
=                            (3) 

We neglected the lepton masses. An e e+ −  annihilation can produce hadrons 
through a virtual photon (γ) and ( ) ( ) hadronsf fe e q qγ+ − → → ∞ ∞ → . 

We obtain the total cross-section  

( )
2

2
2

4

3
f cQ N

s

ασ π
=                         (4) 

Here Qf are quark charges for the flavors f = u, d, s, c, b and t. Nc are the color 
charges c = red, green and blue and Nc = 3. 
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Figure 1. Electron-positron annihilation into quark 
pairs ( ( ) ( )f fe e q qγ+ − → → ∞ ∞ ) and muon pairs 

( e e γ µ µ+ − + −→ → ) via virtual photon γ. 
 

The cross-section ratio R is written as 

( ) ( )( )
( ) ( )

( )

23
f

f

f f
q

q

e e q q
R Q

e e

σ

σ µ µ

+ −

∞+ − + −
∞

→ ∞ ∞
= =

→
∑              (5) 

We consider the following generalized Gell-Mann-Nishijima formula [16],  

( )3
1
2

I TB S CQ + + + += + .                   (6) 

From the standard quark model in Table 2, we obtain the following cross- 
section ratio R for u, d, s, c and b quarks: 

2 2 2 2 2

2 2 2 2 2

3

2 1 1 2 13
3 3 3 3 3

11
3

u d s c bR Q Q Q Q Q = × + + + 
          = × + − + − + −          
           

=

+

+  

for u, d, s, c, b quarks. 
The prediction value R = 11/3 was already compared with various experi-

ments [15]-[20]. 
Now consider u(∞), d(∞), s(∞), c(∞) and t(∞) quarks at an infinite sub-layer 

level. 
From Table 3, we obtain the following theoretical branching ratio R = 15/4 = 

3.75 
2 2 2 2 2

2 2 2 2 2

3

1 1 1 1 13
2 2 2 2 2

15 3.75
4

u d s c bR Q Q Q Q Q = × + + + 
          = × + − + − + −      

+

+    
           

= =
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Figure 2. Various experimental values R from 10.49 GeV to 43.46 GeV versus prediction value R = 15/4 = 
3.75. 

 
This prediction value is compared with various storage-ring collider experi-

ments from the CELLO [21], CLEO [22], JADE [23], MARK J [24], PLUTO [25] 
and TASSO [26] Collaborations. This is shown in Figure 2. 

For clarity, all data in the references are not appearing in the figure.  
Thus, the prediction value from the ultimate quark u(∞) agrees well with 

many ring-storage collider experiments. 
The third order QCD radiation correction formula is written as 

( ) ( ) ( )2 3
23 1 1.4092 12.8046

ff

s s s
qq

s s s
R Q

α α α     
= + + −     

π π π

 
 
       

∑    (7) 

and gives 
( ) ( )34 GeV 11 3 1.056 0.008 3.87 0.03R = ± = ± , thus the QCD (Quantum 

Chromodynamics) correction increases the predicted value by ~5% [27] which 
agrees with our predicated value R = 15/4 = 3.75 better than the naïve 5 quark 
value R = 11/3 = 3.67. 

5. Conclusions and Discussions 

As the ultimate building blocks of the universe, there exists an infinite number 
of structure-less quarks u(∞) and anti-quarks ( )u ∞  at an infinite sub-layer 
level. These particles have the Rp-parity of −1, since the baryon number is zero. 
Similarly, supersymmetric particles have also Rp-parity of −1. They are created 
and annihilated in pairs. For all ordinary particles, the Rp-parity is +1. u(∞) and 
( )u ∞  quarks and the lightest supersymmetric particle, especially, neutralino are 

good candidates for non-baryonic dark matter, since they are absolutely stable.  
The ultimate u(∞) and ( )u ∞  quarks are regarded as partons [28] [29] and 

non-baryonic dark matter [3]. 
To validate our model, we examined electron-positron annihilation into 

muon pairs and quark pairs in high-energy physics. As shown in Figure 1, the 
prediction value is in good agreement with the experiments. A pair of u(∞) and 
( )u ∞  quarks would be produced in the first and early universe after the Big 
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Bang and then remains abundantly as the non-baryonic dark matter for all time , 
stable against decay. It is emphasized that CP is violated in the hot early universe 
of the Big Bang to account for the asymmetry of the number of particles and an-
ti-particles [30]. This is explained by an SU(2) non-commutative geometry [30] 
[31] [32]. As shown in Table 2 and Table 3, there are three families. In a pre-
vious paper, we showed that there are just four families [33]. This is derived 
from Charge, Parity and Time(CPT) transformation and the SU(2)LxU(1) gauge 
theoty. We assumed that the second, third and fourth families are the excited 
states of the first family. Therefore, the u(∞) and ( )u ∞  quarks are the ultimate 
particles in the universe. It is interesting to note that in Table 3, all quntum 
nmbers are just one-half including the electric charge. Thus, “Nature is simple 
and beautiful. The truth lies in its beauty”. CP violation in β decay and preon 
model was also discussed in the references [34] [35] [36] [37]. We showd that 
gauge bosons, leptons and Higgs bosons are composed of the u(∞) and ( )u ∞  
[4]. Especially, if the electron is made up of the u(∞) and ( )u ∞  quarks and CP 
is violated, then the self-energy of the electron is removed. It is not necessary to 
consider renormalization theory [38]. 

Higgs bosons are also made of the ultimate quarks, and we replace the Higgs 
potential with the gravitational potential. it was shown that the masses are pro-
duced and Einstein’s cosmological constant was derived [39]. By considering the 
n-th order T product Green’s function in the path-integral representation, we 
can construct a quantization theory including the cosmological constant without 
the gravitational field [40] [41]. 

Recently, there has been great interest in gravitational waves, dark matter and 
dark energy. The dark matter effects were discussed within the framework of the 
extended gravity theories [42] [43].  

The problem of future gravitational waves in astronomy was also discussed 
[44]. 

We proposed theoretically the possibility of gravitational wave lasers [45]. 
Finally, it is concluded that an infinite number of u(∞) and ( )u ∞  quarks 

was created in the early universe after the Big Bang, and leaves the right relic 
abundance to account for the observed non-baryonic dark matter. We compared 
it with high-energy experimental results to obtain validation of our model. 

As can be seen from Figure 2, the existence of non-baryonic dark matter has 
been confirmed. 
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