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Abstract 
The performance of two widely used chaos synchronization approaches, ac-
tive control and backstepping control, is investigated in this study. These two 
methods are projected to synchronize two chaotic systems (Master/Drive of 
Rucklidge Systems) that are identical but have different initial conditions. 
The paper’s significant feature is that based on error dynamics, controllers are 
designed using the appropriate variable and the time synchronization be-
tween master Rucklidge and drive Rucklidge systems using both methods. 
The control function of the active control method is designed on the proper 
selection of matrices. The chaotic behavior is controlled using a recursive 
backstepping design based on the Lyapunov stability theory with a validated 
Lyapunov function. The effectiveness of the controller in eradicating the 
chaotic behavior from the state trajectories is also revealed using numerical 
simulations with Matlab. The backstepping method is superior to the active 
control method for synchronization of the measured pair of systems, as it 
takes less time to synchronize while exhausting the first one than the second 
one with great performance, according to numerical simulation and graphical 
outcomes. 
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1. Introduction 

Natural sciences are founded on the basis of chaos [1], so it is applied to various 
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disciplines in mathematics, computer science, microbiology, meteorology, biol-
ogy, engineering, geology, finance, economics, algorithmic trading, politics, 
population dynamics, psychology, philosophy, and robotics [2] [3] [4]. A variety 
of engineering and natural sciences problems are modeled using chaotic dynam-
ical systems. Dynamic systems designated by non-linear differential equations 
can be sensitive to initial conditions [5]. This phenomenon is recognized as de-
terministic chaos to mean that, even if the system’s mathematical description is 
deterministic, its activities demonstrate to be unpredictable. System instabilities 
and dynamic characteristics are generous in practice. Also, chaos is unpredicta-
ble and may lead to tremblings and exhaustion failures in mechanical systems; 
yet, chaos suppression is usually advantageous. Many researchers are interested 
in investigating mathematical models and the possibilities of chaos and its con-
trol mechanisms after discovering chaotic dynamics in the deterministic 
non-linear system [6] [7] [8]. The dynamic analysis of biologic and technological 
models has emerged as a significant research topic [9] [10] [11] [12] [13]. Many 
features of chaotic systems are studied, such as chaos control, chaos stability, 
amplitude death, chaos synchronization, pattern formation, etc. Because of its 
various applications in physics [14], control theory, biological networks, secure 
communication [15], artificial neural networks, chemical reactors [16], etc., 
chaos synchronization is a vital aspect in non-linear dynamical science.  

Pecora and Carrol demonstrated that two chaotic systems could synchronize 
in 1990s [17] [18]. The concept of synchronizing two similar nonlinear chaotic 
systems that begin with different initial conditions and a first system (Master 
system) can follow the trajectories of a second one (Drive system) when a suita-
ble control law is applied, and it appears that two chaotic systems cannot syn-
chronize with one another. However, if the two systems share information on a 
regular basis, they will be able to synchronize. A wide variety of methods are 
projected to achieve chaos synchronization such as the linear state error feed-
back method [19], time-delay feedback method [20], active control approach [21] 
[22], impulsive method [23], backstepping approach [24] [25], and some other 
controlling methods are important in recent times [26] [27] [28] [29]. The above 
methods are applied to many practical systems such as Van der Pol Duffing os-
cillators [21], the Rikitake two-disc dynamo—a geophysical system [19], Chua’s 
circuits [30], nonlinear Bloch equations modeling nuclear magnetic resonance 
[20], electric circuits modeling “jerk” equation [23], complex dynamos [31], 
nonlinear equations of acoustic gravity waves [32] and some other chaotic sys-
tem are important in recent times [24] [29] [32] [33]. Backstepping design and 
active control, in particular, are regarded as two powerful strategies for control-
ling and synchronizing chaos. 

Bai and Lonngren [34] projected the uses of chaos synchronization in the ac-
tive control method. In this method, the synchronization speed is fast, and the 
amplitude of the oscillations is less. Because of the ease of implementation of 
chaotic synchronization, active control schemes have piqued the interest of re-
searchers. Lately, we have used these methods to achieve synchronization and 
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analyzed the effect of eigenvalues [35]. These eigenvalues of the chaotic system’s 
coefficient matrix can be changed to obtain the required synchronization time. 
Using these studies, we can easily synchronize two identical chaos systems (i.e., 
two of the same parameters) with active control. The active control process is a 
powerful algorithm for synchronizing two chaotic systems, both are identical or 
non-identical [36]. Most practical systems have non-identical components, as is 
widely known, for which the active control method is the more efficient proce-
dure. If the chaotic system’s non-linearity is known, then linear active control 
approaches can be designed to achieve global chaos control and synchronization 
based on the chaotic system’s provided conditions. This approach has been used 
on a variety of real-world systems [34]; in the chaotic synchronization, the re-
ceptor tries to identify the chaotic signal sent from the emitter that means if two 
chaotic signals are asymptotically identical when the time goes to infinity so that 
two chaotic signals will be synchronized. There are no derivatives in the control-
ler, and the Lyapunov exponents are not required for their implementation, and 
these properties provide active control methods an edge over other conventional 
control systems [27]. 

The backstepping control algorithm is a type of non-linear controller design. 
It is very existent for handling mismatched perturbation [31]. It operates on 
multiple chaotic systems regardless of whether they understand external stimu-
lation or not, it requires just one controller to recognize synchronization be-
tween chaotic systems, and the controller has no derivatives [22]. Furthermore, 
the Backstepping design is a type of synthetic procedure to the controller that 
recursively connects the choice of a Lyapunov function [37]. The backstepping 
method has the advantage of being able to avoid cancellations of beneficial 
non-linearities acting in the system. So the backstepping method acts on stabili-
zation and tracking other than the linearization method. It is reported [38] that, 
backstepping technique is employed for controlling, tracking, synchronizing 
many chaotic systems [39] and it can be guaranteed global stability and transient 
performance non-linear systems. The initiation of a non-linear function passed 
through by course error signal under the backstepping design framework is pro-
jected to simplify the non-linear controller design process, decrease the number 
of undetermined parameters, increase the strength, and reduce the energy con-
sumption of the course-keeping controller and improved summarizing design 
method, while the design process of the controller is simplified to only one step. 
The Lyapunov function is to choose for stabilizing the system of different time 
steps with characterizations of the current approach and the control function is 
designed at the final step. Finally, this paper intends, schemes, and analyses a 
non-linear controller that comprehends the synchronized error fast and oscilla-
tion free convergence to zero.  

To control chaos in the Rucklidge system, the Active control and Backstep-
ping approaches are applied in this work. To provide global synchronization 
between two identical chaotic systems, we project active controllers and a recur-
sive backstepping control and compare simulation results of the two strategies. 
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In Section 1, we give the theoretical foundation of our paper. The remainder of 
the paper will be written as follows: Dynamical Analysis of the Rucklidge System 
with two Parameters, Section 2; Synchronization via Active Control is presented 
in Section 3, with numerical results, whereas Backstepping control design for 
chaos synchronization is presented in Section 4, with numerical results and a 
comparative research description in Section 5. Finally, Section 6 brings the paper 
to a close. 

2. Dynamical Analysis of the Rucklidge Chaotic System 

In this work, the Rucklidge chaotic system (1) is described by [40]:  

2

x bx ay yz
y x
z z y

= − + −
=

= − +







                        (1) 

where , ,x y z  and ,a b  are the state variables and positive constant parameters, 
respectively. We show in this paper that the system (1) is chaotic when the pa-
rameters are 6.7, 2a b= = . We use the chaotic system’s (8) initial values for 
numerical simulations as: ( )1 0 0.001x = , ( )1 0 0.001y = , ( )1 0 0.001z = . 

And the chaotic system (9) as: ( )2 0 5x = , ( )2 0 8y = , ( )2 0 4z = . Figures 
1-3 demonstrate the Rucklidge System’s (1) 2-D projections on ( ),x y , ( ),y z  
and ( ),z x  space projections, respectively. 
 

 

Figure 1. On the X-Y plane, a 2-D phase portrait of the Rucklidge chaotic system. 
 

 

Figure 2. On the Y-Z plane, a 2-D phase portrait of the Rucklidge chaotic system. 
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The time response of before synchronization states for the Master system 
( )1 1 1, ,x y z  and the Drive system ( )2 2 2, ,x y z  is shown in Figure 4.  

The error dynamics in the uncontrolled state are shown in Figure 5, whereas 
the error dynamics in the controlled state are shown in Figure 6 and Figure 12. 
 

 

Figure 3. On the X-Z plane, a 2-D phase portrait of the Rucklidge chaotic system. 
 

 

Figure 4. Time response of the states , ,x y z  before synchronization. (a) 1 2,x x ; (b) 

1 2,y y ; (c) 1 2,z z . 
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Figure 5. Time response of the error states before synchronization. 
 

 

Figure 6. Time response of the synchronized states of error ( ), ,x y ze e e . 

3. Synchronization via Active Control 

When Master and Drive systems are in the same parameters, achieving synchro-
nization using active control is appropriate and effective. Assume the existence 
of a Master system as  

( )x Mx g x= +                          (2) 

where ( )T
1 1 1, , , nx x y z R= ∈ , n nM R R∈ × , M is a constant system matrix and 

( )g x  is a sequence function that is nonlinear. 
The Drive system is  

( ) ( )y My g y u t= + +                       (3) 

where ( )T
2 2 2, , , ny x y z R= ∈

 , ( ) ( )( ) n
iu t u t R= ∈ , where ( )1,2, ,i n=  . 

3.1. Definition 

If an appropriate controller ( )u t  exists that satisfies , , nx y e R∀ ∈ ,  

0 0lim lim 0t ty x e→ →− = =  the Master and Drive systems are then designed to 
be synchronized.  

As a result, the error is defined as e y x= − . 
Then the error dynamics is  

( ) ( ),e y x Me G x y u t= − = + +                     (4) 
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where ( ) ( ) ( ),G x y g y g x= − . Without e of system (4), controller ( )u t  may 
eliminate non-linear section. That is  

( ) ( ) ( ),u t v t G x y= −                        (5) 

where ( )v t Ke=  represents a linear section with error variables. From Equa-
tion (5) and Equation (4) we get  

( )e Me v t= +                           (6) 

Equation (6) becomes when ( )v t  is a linear section with error variables and 
( )v t ke=  is a constant matrix.  

( )e M K e= +                           (7) 

3.2. Proposition [7] 

Satisfing the requirements needed for diagonal matrix ( )M K+  is 0iλ ≤ , 
where iλ  is the eigenvalue of matrix ( )M K+ , state vectors of system (7) is 
asymptotically converge to zero, as a result Master system (2) and Drive system 
(3) asymptotically synchronize. In this context, the Master and Drive systems are 
defined as follows: 

The Master Rucklidge system is defined by  

1 1 1 1 1

1 1
2

1 1 1

x bx ay y z
y x

z z y

= − + −
=

= − +







                      (8) 

where a and b are the system parameters. 
The Drive Rucklidge system is defined by  

2 2 2 2 2 1

2 2 2
2

2 2 2 3

x bx ay y z u
y x u

z z y u

= − + − +
= +

= − + +







                    (9) 

( )1, 2,3iu =  are active control functions for the Master system. In Equation 
(9), we presented three control functions: ( )1u t , ( )2u t , and ( )3u t  which are 
must be regulated. We subtract Equation (8) from Equation (9) to estimate the 
control functions. Consider the state errors between the controlling system (9) 
and the master system (8) that needs to be controlled by using  

2 1 2 1 2 1; ; ;x y ze x x e y y e z z= − = − = −                 (10) 

Applying the active control design methods, we subtract Equation (8) from 
Equation (9) and use the definitions in Equation (10) to derive the error dynam-
ics equation:  

( )

2 2 1 1 1

2

2 1 3

x x y

y x

z z y

e be ae y z y z u

e e u

e e e y y u

= − + − + +

= +

= − + + +







                  (11) 

tracking the re-describing control functions as:  

1 1 2 2 1 1

2 2

3 3

v u y z y z
v u
v u

= − +
=
=

                       (12) 
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the error dynamics Equation (11) takes on a new state  

( )

1

2

2 1 3

x x y

y x

z z y

e be ae v

e e v

e e e y y v

= − + +

= +

= − + + +







                    (13) 

The controllable state of error system (11) is a linear system with control ef-
fort ( ) ( ) ( )( )1 2 3, ,v t v t v t  as a function of error states ( ), ,x y ze e e . The error 
states ( ), ,x y ze e e  converge to zero as time t →∞  passes if these stabilize the 
system. This means that active control is used to synchronize the Master and 
Drive systems. For the control ( ) ( ) ( )( )1 2 3, ,v t v t v t , there are various possible 
sets. We created a constant matrix A that will govern the error dynamics (11) in 
accordance with the active control approach, such that  

[ ] TT
1 2 3, , , ,x y zv v v A e e e =                      (14) 

where A is a constant matrix. To stabilize the state of the error system, the com-
ponents of the matrix A must be chosen in such a way that the feedback system 
has all eigenvalues with negative real portions. In the tracking form, choose the 
matrix A:  

( )2 1

0
1 1 0

0 0

b a
A

y y

− − 
 = − − 
 − + 

 

Bring Equation (14) into Equation (13), we may find  

e Ke=  

1 1

2 2

2 1 3 3

0
1 0 0
0 1

x

y

z

e b a e e
e e A e
e y y e e

−       
      = +      

      + −      







 

2 0 0
0 1 0
0 0 1

b
K

− 
 = − 
 − 

 

In this specific selection, the eigenvalues of the system (13) are ( )2 , 1, 1b− − − . 
Due to the linearity system’s stability theory, this option will result in the con-
vergence of error states ( ), ,x y ze e e  to zero as time t approaches infinity, and 
therefore the synchronization of the two systems is achieved under the control 
system (15)  

( )

1 2 2 1 1

2

3 2 1

x y

x y

y

u be ae y z y z

u e e

u y y e

= − − + −

= − −

= − +

                  (15) 

3.3. Simulation and Results 

To get numerical results, we apply MatLab Simulink and the Runge-Kutta algo-
rithm of 4th order with a time grid of 0.05. We continue with the initial condi-
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tions of the Master system Equation (8) as follows:  

( ) ( ) ( )1 1 10 0.001, 0 0.001, 0 0.001x y z= = =             (16) 

and the Drive system’s initial conditions (9) as follows:  

( ) ( ) ( )2 2 20 5, 0 8, 0 4x y z= = =                  (17) 

The time response of the error states obtained from numerical simulations of 
synchronization systems (11) is shown in Figure 6 under the controller (15) 
stimulated at time t = 100 seconds, thereby guaranteeing the synchronization of 
system (8) and (9). It is clear that after control signals are activated, the error 
vectors converge to zero quickly. We calculate the synchronization measure for 
verifying the synchronization act from Figure 7, the average error on the system 
state variables are given by  

2 2 2
x y ze e e e= + +  

and Figures 8-10 demonstrate the response time of the synchronization of the 
driven system (9) to the driver (8), control signals are activated at the time t = 0, 
and Figure 11 show the response time of action control (15) for achieve chaos 
synchronization between the two chaotic systems. 
 

 

Figure 7. The response time of the synchronized states of average error. 
 

 

Figure 8. The response time of the synchronized states ( )1 2,x x . 
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Figure 9. Time response of the synchronized states ( )1 2,y y . 

 

 

Figure 10. Time response of the synchronized states ( )1 2,z z . 

 
The purpose of this section Figures 8-10 is to exhaust active control proce-

dure to synchronize two chaotic chaotic systems (8) and (9) by defining a con-
troller that the Drive system capability to trail the Master System and the states 
of two chaotic systems (8) and (9) show similar activities for all future states [21] 
[41]. 

4. Backstepping Control Design for Chaos Synchronization 

This section focuses on Backstepping Control systems because this class offers 
various examples of chaotic circuits and systems [42] we explore the backstep-
ping control design for a general system of the form:  

( ) ( ) 1x f x g x µ= +                         (18) 

be a responsive affine nonlinear system, with 1 Rµ ∈  as the control input, 
nx R∈  as the state, and f and g as nonlinear functions, with ( )0 0f = . The 

control system 18 can use the usual backstepping design. To stabilize systems 
that are in strict feedback form, we can use recursive application of backstepping 
control design as follows. 

https://doi.org/10.4236/ijmnta.2022.112003


A. Tarammim, M. T. Akter 
 

 

DOI: 10.4236/ijmnta.2022.112003 41 Int. J. Modern Nonlinear Theory and Application 
 

 

Figure 11. Time response of the synchronized states iu . (a) 1u ; (b) 2u ; (c) 3u . 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1 1 1 1 1 2

1 1 1 1 1 1 1

1 1

, ,

, , , , , ,

, , , , , ,
k k k k k k

k k k k k

x f x g x

f x g x

f x g x

f x g x u

µ

µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ
− − − − −

= +

= +

= +

= +








 


 

          (19) 

where 1 2, , , kµ µ µ  and u are scalars [43]. 
Backstepping design is a Lyapunov-based control approach that is well-organized. 

Backstepping control design of systems (18) is a recursive strategy that ensures 
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the system’s global asymptotic stability. The fundamental concept is to extend 
Lyapunov’s method by breaking down the full system design model (19) into a 
series of design challenges for lower-order systems. Depending on the state va-
riables, control parameters, and stabilizing functions, incorporate new variables 
into transformation processes. The ith subsystem may be stabilized with respect 
to a specific Lyapunov function , 1, 2, ,iV i n=   by utilizing the backstepping 
control design at the ith step. By treating the variable 1µ  as a virtual control 
input, the approach is used to stabilize the first equation. Similarly, the second 
equation is stabilized by continuing to use the variable 2µ  as the virtual control, 
when 1µ  is designed and so on. So the design of the final control input u, 
which generally depends on x and 1 2, , , kµ µ µ , is steadily achieved in n steps 
[43] [44]. So it is proved that backstepping design is suitable for controlling 
chaos, stabilization, and tracking problems. 

Consider the following Master system of Rucklidge systems:  

1 1 1 1 1

1 1
2

1 1 1

x bx ay y z
y x

z z y

= − + −
=

= − +







                     (20) 

in relation to the Drive system as 

2 2 2 2 2

2 2
2

2 2 2

x bx ay y z u
y x

z z y

= − + − +
=

= − +







                   (21) 

where u is a to-be-defined control function. We required only one controller in 
backstepping method. By using the error states definition (10) and subtracting 
Equation (20) from (21), we obtain  

( )

2 1

2 1

x x y y z

y x

z z y

e be ae z e y e u

e e

e e e y y

= − + − − +

=

= − + +







                (22) 

to re-arrange error system (22) into system (23) according to sequence of full 
system (19)  

( )2 1

2 1

z z y

y x

x x y y z

e e e y y

e e

e be ae z e y e u

= − + +

=

= − + − − +







                (23) 

The previous system (23) is an equilibrium point ( )0,0,0  in the absence of 
all control u. If u is chosen, then the equilibrium point residues are unchanged, 
the challenge of synchronization between the Master and Drive systems can be 
transformed into a problem of asymptotical system stabilization (23). The goal 
of this project is to find a control law u that will stabilize the system’s error va-
riables (23) at the origin. Since the system comprises three states or three 
non-linear differential equations, a recursive strategy will have three steps. We 
split down the system (23) into three subsystems, each with a single input and 
output. We initiate the formation with the first subsystem of the first non-linear 
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differential equation, and one continues until the last subsystem. In the proce-
dure of formation a change of coordinates ( ), ,i x y zw e e e=  is done. 

4.1. First Step 

To begin, we use ye  as a virtual controller to stabilize the first equation in (23), 
the object of the control is to drive ( ) ( ), , 0,0,0x y ze e e =  i.e.  
( ) ( )1 1 1 2 2 2; ; ; ;x y z x y z= , and define the first new virtual variable of the Backstep-
ping design as 1 zw e=  and Considering another new virtual variable as 

2 1yw e α= − . This last term will not be used in the first step, but it is needs to 

2w  to join the first subsystem on 1w  to the next subsystem on 2w  which will 
be considered in the second step, 1α  is the stabilization function. To find the 
stabilization function 1α , consider the Lyapunov function [37], given by:  

( ) ( )2
1 1 1

1
2

V w w=                        (24) 

substituting the derivative of 1w  for the time derivative of Equation (24) yields:  

( ) ( ) ( )2
1 1 1 2 2 1 1 2 1 1V w w w y y w y y α= − + + + +             (25) 

If the estimated stabilisation function 1α  is chosen as 1 0α = , as a result, 1V  
is indefinitely negative. The second term in Equation (25) will be eradicated in 
the next step.  

4.2. Second Step 

We stabilize the second equation in (23) for the stability of the second subsystem 
and its dynamics are calculated by putting the second equation of the system (23) 
into the second virtual variable with derivatives:  

2 1yw e α= −    

The stabilization function 2α  for the second subsystem is preferred such as 
the new virtual state variable 3 2xw e α= − . Let Lyapunov function for the second 
subsystem as:  

( ) ( ) ( )2
2 1 2 1 1 2

1,
2

V w w V w w= +                  (26) 

Substituting the derivative of 2w  in time derivative of 2V  then we get:  

( )( )2 2
2 1 2 2 3 2 2 1 2 1 2V w w w w w w w y y α= − − + + + + +          (27) 

The stabilization function 2α  is chosen as:  

( )2 2 1 2 1w w y yα = − − +                     (28) 

And by substituting 2 2,Vα   converted:  
2 2

2 1 2 2 3V w w w w= − − +                     (29) 

then 2V  is negative definite, the third term in Equation (29) will be eradicated 
in the next step.  
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4.3. Third Step 

To get the third virtual variable state, the time derivative of both the error on the 
third coordinate state and the stabilization function 2α . The equation of the 
third subsystem become:  

3 2xw e α= −    

3 2 1 2x y y zw be ae z e y e u α= − + − − + −                 (30) 

We choose the Lyapunov function for the third subsystem is as:  

( ) ( ) ( )2
3 2 3 2 2 3

1,
2

V w w V w w= +                  (31) 

It’s time derivative gives:  

( )( )
2 2

3 1 2 2 3 3 3

2 2 2
3 1 2 3 3 2 2 2 1 2y z

V w w w w w w

V w w bw w w b a z e y e uα α

= − − + +

= − − − + − + − − − +









     (32) 

If the control law u is preferred as follows  

( )2 2 2 1 2y zu w b a z e y eα α= − + − − + +                (33) 

Then,  
2 2 2

3 1 2 3V w w bw= − − −                      (34) 

is negative definite. The final system of the time derivative of the error model in 
( )1 2 3, ,w w w  coordinates in (35), the error dynamics ( ), ,x y ze e e  will converge 
to zero as t →∞ , whereas the equilibrium ( )0,0,0  residues are asymptotical-
ly stable, according to the LaSalle-Yoshizawa theorem [43]. As a result, the mas-
ter-drive system has been synchronized. We now study the complete space of 
( )1 2 3, ,w w w   :  

( )1 1 2 2 1

2

3 2 1 2

x

x y y z

w w w y y
w e
w be ae z e y e u α

= − + +

=

= − + − − + −







              (35) 

The equilibrium ( )0,0,0  of system (35) is universally asymptotically stable, 
as illustrated in Figure 13, according to LaSalle-Yoshizawa theorem [26] [27]. 
That is, the control law u has no effect on the system’s equilibrium of (22), i.e. 
( )0,0,0  is still the equilibrium. As a result, the new chaotic system (35) is stabi-
lized at the origin under the direction of the controller (33), and the two Ruck-
lidge chaotic systems are synchronized. 

4.4. Simulation and Results 

We solved system (22) with the controllers defined in (33) using the fourth-order 
Runge-Kutta algorithm with initial conditions ( )1 0 0.001x = , ( )1 0 0.001y = , 
( )1 0 0.001z =  and ( )2 0 5x = , ( )2 0 8y = , ( )2 0 4z =  with a time step of 0.01, 

and fixing the parameter values of a and b as shown in Figures 1-3. To demon-
strate the efficiency of the control law, we show numerical findings. The time 
response of the error state ( ), ,x y ze e e  is shown in Figure 12, which was  
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Figure 12. Tracking error , ,x y ze e e . 

 
obtained from numerical simulations of the synchronization systems (20) and 
(21) under the controller (33).  

From Figure 13 to examine the equilibrium ( )0,0,0  of system (35) and the 
average error propagation on the system state variables is used to calculate the 
synchronization quantity this are shown in Figure 14 given by  

2 2 2
x y ze e e e= + +  

After an initial transcience of around 6 st = , the Master-Drive system is glo-
bally synchronized. The exponential convergence of the synchronization quality 
described by error propagation on average error states also confirms this in Fig-
ure 17(b). 

Figure 15 shows the time response of the control law. 
The persistence of this part Figure 16 is to synchronize two chaotic systems 

(20) and (21) shattering Backstepping control process by defining a controller, 
and for all future states, the effectiveness of the Drive system to track the Master 
System and the states of two chaotic systems (20) and (21) indicate similar cha-
racteristics. 

5. Active Control and Backstepping Approaches Are  
Compared 

We obtained a relationship between synchronization time to investigate and 
compare the synchronization performance of the two strategies. Figure 17 illu-
strates the synchronization error (e) for the two techniques when controls are 
activated at t = 0. So, for backstepping control, synchronization was achieved at 

6 st = , and for active control, synchronization was achieved at ( 22 st = ), with a 
time delay of 16s. It is demonstrated that the error signals converge to the origin 
extremely smoothly with a low decay rate and sufficient synchronization speed, 
indicating that the researched controllers. 

The active control and backstepping control techniques are used to create a 
controller for a three-dimensional autonomous chaotic system, with backstepping 
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control reducing the number of controllers from three to one, and active control 
works according to dimension. So Backstepping control performs significantly, 
reducing the controller complexity and cost than the active control method. 
 

 

Figure 13. Final system of the error model after synchronization. 
 

 

Figure 14. Average error e. 
 

 

Figure 15. Control effort u. 
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Figure 16. Time response of the states , ,x y z  after synchronization. (a) Time response 
of ( )1 2,x x ; (b) Time response of ( )1 2,y y ; (c) Time response of ( )1 2,z z . 

6. Conclusions 

The performance of two control techniques for chaos synchronization, active 
control and recursive backstepping control, was investigated in this work. The 
two techniques are proven to have outstanding synchronization performance, 
with the active control slightly outperforming the backstepping. The perfor-
mance of theoretically designed nonlinear controllers was verified by numerical 
simulations that confirmed the proposed controller’s effectiveness. The results 
are presented in graphical style, together with a time history (Figures 1-16). The 
summaries are as follows:  
 Three controllers are found in active control design, and one controller is 

originated for the Backstepping design; 
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Figure 17. Comparison of synchronization times for ( 0 100t≤ ≤ ) between (a) active 
control and (b) backstepping approach with controller activated. (a) Zoom of the time 
response of average error e in Active control; (b) Zoom of the time response of average 
error e in backstepping control. 

 
 In two techniques, the error dynamics converge to zero as t →∞ , hence the 

equilibrium point ( )0,0,0  remains asymptotically stable;  
 Similar activities are shown in both ways for the states of two chaotic systems 

(Master and Drive);  
 The results reveal that the backstepping strategy converges to zero faster than 

the active control technique for momentary error dynamics. 
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