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Abstract 
 
The existing models of servers work on the M/G/1 model which is in some ways predictable and offers us an 
opportunity to compare the various other server queuing models. Mathematical analysis on the M/G/1 model 
is available in detail. This paper presents some mathematical analysis which aims at reducing the mean ser-
vice time of a multiple server model. The distribution of the Mean Service Time has been derived using Lit-
tle’s Law and a C++ simulation code has been provided to enable a test run so that the QoS of a multi-server 
system can be improved by reducing the Mean Service Time. 
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1. Introduction 
 
In queuing theory, a queuing model is used to approxi-
mate a real queuing situation or system, so the queuing 
behavior can be analyzed mathematically. Queuing mod-
els allow a number of useful steady state performance 
measures to be determined, including: 
 The average number in the queue, or the system,  
 The average time spent in the queue, or the system,  
 The statistical distribution of those numbers or 

times,  
 The probability the queue is full, or empty, and  

The probability of finding the system in a particular state. 
Queuing models are often set up to represent the 

steady state of a queuing system, that is, the typical long 
run or average state of a system. As a result, these are 
stochastic models that actually represent and symbolize 
the probability that a queuing system will be found in a 
particular configuration or state [1].  

 
2. Single Server Queue 

 
Single-server queues are, perhaps, the most commonly 
encountered queuing situation in real life. One encounters 
a queue with a single server in many situations, including 
business (e.g. sales clerk), industry (e.g. a production line), 
transport (e.g. a bus, a taxi rank, an intersection), tele-
communications (e.g. Telephone line), computing (e.g. 

processor sharing). Even where there are multiple servers 
handling the situation it is possible to consider each server 
individually as part of the larger system, in many cases. 
(E.g. A supermarket checkout has several single server 
queues that the customer can select from.) Consequently, 
being able to model and analyze a single server queue’s 
behavior is a particularly useful thing to do. 

2.1. Poisson Arrivals and Service 

M/M/1/∞/∞ represents a single server that has unlimited 
queue capacity and infinite calling population, both arri-
vals and service are Poisson (or random) processes, 
meaning the statistical distribution of both the in-
ter-arrival times and the service times follow the expo-
nential distribution [3]. 

2.2. Poisson Arrivals and General Service 

M/G/1/∞/∞ represents a single server that has unlimited 
queue capacity and infinite calling population, while the 
arrival is still Poisson process, meaning the statistical dis-
tribution of the inter-arrival times still follow the exponen-
tial distribution, the distribution of the service time does not. 

2.3. Infinitely Many Servers 
 
While never exactly encountered in reality, an infi-
nite-servers (e.g. M/M/∞) model is a convenient theo- 
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Figure 1. Components of a basic queuing process. 

 

 
Figure 2. Single server queue. 

 
retical model for situations that involve storage or delay, 
such as parking lots, warehouses and even atomic transi-
tions. In these models there is no queue, as such; instead 
each arriving customer receives service. When viewed 
from the outside, the model appears to delay or store each 
customer for some time. 
 
3. Multiple Server Queue 
 
Multiple (identical)-Server Queue situations are fre-
quently encountered in telecommunications or a customer 
service environment. When modeling these situations 
care is needed to ensure that it is a multiple servers queue, 
not a network of single server queues, because results 
may differ depending on how the queuing model behaves. 

One observational insight provided by comparing 
queuing models is that a single queue with multiple serv-
ers performs better than each server having their own 
queue and that a single large pool of servers performs 
better than two or more smaller pools, even though there 
are the same total number of servers in the system [4,5]. 

Queuing models can be represented using Kendall's 
notation: 

A/B/S/K/N/Disc where: 
 A is the inter arrival time distribution  
 B is the service time distribution  
 S is the number of servers  
 K is the system capacity  
 N is the calling population  
 Disc is the service discipline assumed  

Many times the last members are omitted, so the 
notation becomes A/B/S and it is assumed that K = ∞, N 
= ∞and Disc = FIFO. 

Some standard notations for distributions (A or B) are: 
 M for Markovian (exponential) distribution  
 Eκ for an Erlang distribution with κ phases  

 D for Degenerate (or Deterministic) distribution    
(constant)  

 G for General distribution (arbitrary)  
 PH for a Phase-type distribution  

The basic notations in the queuing model that we are 
about to mathematically analyze are: 

Λ = Arrival rate 
E (B) = Mean Service Time 

Amount of work per unit time = λ E(B) 
For a multiple server, p is the occupation rate or server 

utilization. 
p = [λ E(B)] / c 

Here c is the number of servers. 
Therefore, p α 1 / c 
Thus, the more number of servers, the lesser will be the 

occupation rate i.e. server utilization [7,8].  
One simple example : Consider a system having 8 

input lines, single queue and 8 servers. The output line 
has a capacity of 64 Kbit/s. If we assume the arrival rate 
at each input to be 2 packets/s, then, the total arrival 
rate is 16 packets/s. With an average of 2000 bits per 
packet, the service rate is 64 Kbit/s/2000b = 32 pack-
ets/s. Hence, the average response time of the system is 
1/(μ − λ) = 1/(32 − 16) = 0.0625 sec. Now, consider a 
second system with 8 queues, one for each server. Each 
of the 8 output lines has a capacity of 8 Kbit/s. The 
calculation yields the response time as 1/(μ − λ) = 
1/(4 − 2) = 0.5 sec. And the average waiting time in the 
queue in the first case is ρ/(1 − ρ)μ = 0.03125, while in 
the second case is 0.2. 
 
4. Little’s Law 
 
In queuing theory, Little's result, theorem, lemma, or law 
says: The long-term average number of customers in a 
stable system L (known as the offered load), is equal to 
the long-term average arrival rate, λ, multiplied by the 
long-term average time a customer spends in the system, 
W, or : 

L = W 
Although it looks intuitively reasonable, it's a quite re-

markable result, as it implies that this behavior is entirely 
independent of any of the detailed probability distribu-
tions involved, and hence requires no assumptions about 
the schedule according to which customers arrive or are 
serviced. Imagine a small shop with a single counter and 
an area for browsing, where only one person can be at the 
counter at a time, and no one leaves without buying 
something. So the system is roughly: 

Entrance → Browsing → Counter → Exit 
This is a stable system, so the rate at which people en-

ter the store is the rate at which they arrive at the counter 
and the rate at which they exit as well. We call this the 
arrival rate.  
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Figure 3. Little’s law represemtation. 

 
Little's Law tells us that the average number of cus-

tomers in the store, L, is the arrival rate, λ, times the av-
erage time that a customer spends in the store, W, or 
simply : 

L = W 
 
5. Usage of Little’s Law for MSMA 
 
We can also say that E(L) = λE(S). 
From Figure 3 we can say that. 

Mean number of customers in ABCD = Avg. number 
of customers x Mean sojourn time 

Replacing the parameters with standardized server pa-
rameters: 

E(L) will be the occupation rate 
Λ will be arrival rate i.e. average rate of packets arriv-

ing per unit time. 
E(S) will be mean service time. 
Now, based on theory of probability distribution 

E(X) = ∑ pixi 

Let us assume the following model: 
Let X represent the number of packets occupying the 

server. 
X = a b c d …….

P(X=x)= a1/k b1/k c1/k d1/k….

where k is the ideal occupation time and a1, b1, c1, d1 are 
the actual occupation times. 

Now, 

E(X) = ∑ pixi 

= a1/k (a) + b1/k (b) + c1/k (c) + d1/k (d) + …..   
=1/k [a1(a) +  b1(b) + c1(c) + d1(d) + …… ] 

Therefore, condition for mapping will be: 

1/k [a1(a) +  b1(b) + c1(c) + d1(d) + …… ] <= E(L) 

where E(L) is the mean occupation rate. 
Since, 

E(L) = λ E(S) 
1/k [a1(a) +  b1(b) + c1(c) + d1(d) + …… ] <= λ E(S) 

(1/k [a1(a) +  b1(b) + c1(c) + d1(d) + …… ]) / λ = E(S) 

Therefore, the basic aim of this mathematical analysis 
is provide a standard relation so that a distribution graph 
can be plotted against the graph for E(S) (Mean Service 
Time) to make them as similar as possible. 

6. Conclusions 
 
In a multiple server system, based on the derived 
mathematical model, a simulation can be carried out us-
ing the provided C++ simulator. The following conclu-
sions can be drawn from the test:  

The arrival rate increases as we increase the number of 
servers owing to the increase in the number of input lines. 
The occupation rate decreases as there are more number 
of servers to handle the load. The Mean Service Time 
will therefore decrease as we increase the number of 
servers, thus there will be more firepower to handle the 
packet load .The processing will be shared among the 
different servers. This will help in improving the QoS. 
The simulation software will provide us with a chance to 
test random data values and validate the theory. 
 
7. Results 
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