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Abstract 
Body Mass Index (BMI), defined as the ratio of individual mass (in kilo-
grams) to the square of the associated height (in meters), is one of the most 
widely discussed and utilized risk factors in medicine and public health, given 
the increasing obesity worldwide and its relation to metabolic disease. Statis-
tically, BMI is a composite random variable, since human weight (converted 
to mass) and height are themselves random variables. Much effort over the 
years has gone into attempts to model or approximate the BMI distribution 
function. This paper derives the mathematically exact BMI probability densi-
ty function (PDF), as well as the exact bivariate PDF for human weight and 
height. Taken together, weight and height are shown to be correlated biva-
riate lognormal variables whose marginal distributions are each lognormal in 
form. The mean and variance of each marginal distribution, together with the 
linear correlation coefficient of the two distributions, provide 5 nonadjustable 
parameters for a given population that uniquely determine the corresponding 
BMI distribution, which is also shown to be lognormal in form. The theoreti-
cal analysis is tested experimentally by gender against a large anthropometric 
data base, and found to predict with near perfection the profile of the empirical 
BMI distribution and, to great accuracy, individual statistics including mean, 
variance, skewness, kurtosis, and correlation. Beyond solving a longstanding 
statistical problem, the significance of these findings is that, with knowledge 
of the exact BMI distribution functions for diverse populations, medical and 
public health professionals can then make better informed statistical infe-
rences regarding BMI and public health policies to reduce obesity. 
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Correlation of Weight and Height 

 

1. Introduction 

The body mass index (BMI) is a composite random variable defined by the rela-
tion [1] 

2B M H≡ ,                         (1) 

in which M is a person’s mass in kg and H is the corresponding height in meters. 
It is to be recalled that a composite random variable comprises products and 
quotients (or a sum of products and quotients) of statistically distributed quanti-
ties [2]. As a readily obtainable quantitative measure of excess body fat, BMI is 
one of the most widely cited and discussed biomedical ratios employed by clini-
cians and epidemiologists [3]. Indeed, at the time of writing, BMI was the first 
item to come up when the phrase “most widely used biomedical index” was en-
tered into the Google search engine. The reason for this is clear: obesity and its 
relation to metabolic disease are problems facing nearly all nations in both the 
developed and developing world [4]. 

Given its importance to individual medical treatments and public health poli-
cies, it is perhaps surprising that the statistical distribution of BMI from its in-
ception to the present time has been uncertain and controversial. In this paper 
we show that weight (converted to mass) and height follow a correlated bivariate 
lognormal distribution, which leads to a uniquely specified lognormal distribu-
tion of BMI. A statistical test of our theoretical analysis by means of a large data 
base of individual mass, height, and BMI values provides strong evidence in 
support of our conclusion.1 

1.1. Statistical Background of BMI 

The concept of BMI was introduced as long ago as 1835 by Quetelet [5]. Initially 
assumed to be a normal (i.e. Gaussian) distribution by early developers of mod-
ern statistics, such as Galton and Pearson, the assumption was largely accepted 
by statisticians and scholars concerned with human growth throughout the 20th 
Century [5]. With the recognition that empirical BMI distributions appeared 
skewed to the right (i.e. to higher values), various non-symmetric distributions 
such as lognormal, gamma, beta, and power-law have been suggested, but none 
to our knowledge was rigorously demonstrated and tested. See, for example [6] 
[7] [8] [9]. 

The principal objective of this paper is to establish the distribution of BMI on 

 

 

1In physics there is a difference between mass and weight. Excluding nuclear interactions, mass is an 
invariant; weight is the product of mass and gravitational acceleration and therefore depends on lo-
cation and has different units than mass. In a medical context, weight is what is measured; statisti-
cally, it is mass that enters the BMI. Throughout this paper we refer to mass when analyzing the BMI 
distribution, but may speak of weight when referring to clinical studies, statistical sampling, data 
bases, and the like. 
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a more rigorous foundation and to test our findings experimentally against a 
large data base of personal weights and heights compiled in the 2012 Anthropo-
metric Survey of US Army Personnel (ANSUR) [10]. Our analysis, discussed in 
the following sections, shows that, statistically, weight and height are correlated 
lognormal variables from which it rigorously follows that BMI is also a lognor-
mal variable whose probability density function (PDF) is predictable from the 5 
parameters that uniquely characterize the joint distribution of weight and height. 
The finding of lognormality is consistent with one of the authors (MPS) pre-
vious investigations [2] [11] of the distribution of composite random variables, 
which showed that such variables are ordinarily well represented by lognormal 
distributions irrespective of the distributions of the composite factors. A novel 
feature of BMI, however, not encountered in References [1] and [11] is the cor-
relation of the individual factors of weight and height. 

It has long been the practice in clinical medicine to use mean values of se-
lected ratios, such as BMI to assess fat, LDL/HDL (low and high density lipo-
protein)to assess cardiovascular risk, A/G (albumin and globulin) to assess liver 
function, BUN (blood urea nitrogen)/creatinine to assess kidney function, and 
many others. However, as emphasized by the authors in regard to statistical in-
ferences [12] [11], the mean values alone may be uninformative and even mi-
sinformative. What is really required for valid interpretation and practical ap-
plication of a biomedical index is its statistical distribution. By knowing the dis-
tribution of a random variable an analyst can determine with quantifiable confi-
dence all population statistics (for comparison with empirical sample statistics) 
such as moments (mean, variance, skewness, kurtosis, etc.), cumulants, percen-
tiles (such as median, quartiles, etc.), and, especially in the case of biomedical ra-
tios, the cut-off values that determine degrees of health and risk. 

In the analysis to follow, we calculate the exact distribution of BMI from its 
defining relation Equation (1), knowledge of the joint distribution of weight and 
height, and use of mathematical transformation relations for products and quo-
tients of random variables [13] [14] [15]. The merit of this approach is that the 
form of the calculated distribution function is unique, apart from the empirical 
parameters that define the distributions of weight and height in a given popula-
tion. Past attempts, such as cited above, to obtain mathematical expressions for 
the BMI distribution by curve-fitting data to assumed BMI profiles lack rigor 
and can actually lead to mathematically untenable results. For example, as cited 
above, statisticians have assumed throughout much of the 20th century that height, 
weight (or mass), and BMI all followed normal (Gaussian) distributions. It is 
mathematically demonstrable [2], however, that if mass and height are normal 
variables (which they are not), then the distribution of BMI cannot possibly also 
be normal, although the distribution profile may suggest such an appearance. 
Moreover, if mass and height are lognormal variables, then the distribution of 
BMI is rigorously lognormal too. 

The virtue of having the exact (in contrast to an assumed or approximate) 
distribution is that it is expected to be valid for all allowed values of its parame-
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ters and variables. Thus, since mass and height must take real, positive values, 
the BMI distribution must rigorously vanish at 0B = . A normal, or other ap-
proximate, distribution for BMI may appear to vanish at 0B =  if the mean of 
the distribution is sufficiently larger than the width (i.e. standard deviation); in 
other words, if the distribution is sharply defined. Rigorously, it does not vanish 
at 0B = . More problematic, however, is that a broad normal distribution can 
overlap the negative real axis leading to impossible values of BMI. Under such 
conditions, it may be thought that one could preserve normality simply by 
adopting a truncated normal distribution defined over the positive real axis. The 
outcome of truncation, although it may meet boundary conditions, will not fit 
data as well as the true distribution. Examples investigated by one of the authors 
(MPS) by means of the Principle of Maximum Entropy [16], have shown that a 
truncated Gaussian is astronomically less likely to be correct than the true dis-
tribution [11]. 

1.2. Significance of the BMI Distribution to Public Health 

Before examining the statistical distribution of BMI, it is worth summarizing 
briefly how the distribution of BMI can influence the assessment of individual 
health and creation of public health policy. 

The measurement of an individual BMI value requires only a person’s weight 
and height. BMI therefore provides an inexpensive screening method for deter-
mining whether a person is underweight, healthy, overweight, or obese—the 
four general weight categories used by physicians and epidemiologists2. BMI is 
correlated with, and therefore seen as a proxy for, measurement of body fat [17], 
and is strongly correlated with metabolic disease [18]. Although there are other 
more accurate ways to measure body fat, such as bioimpedance analysis, dual- 
energy x-ray absorptiometry, computed tomography, and magnetic resonance 
imaging, such methods are expensive, not readily available to most patients or 
medical personnel, and require specially trained staff [17]. 

The statistical distribution of BMI provides the basis for setting the principal 
cut-off points that characterize various weight categories from severe thinness to 
severe obesity. Standard BMI cut-offs are independent of age and gender, al-
though it is recognized that the same numerical value of BMI may correspond to 
different amounts of body fat in different populations, partly as a result of dif-
ferent body proportions [19]. More than 2 decades ago the World Health Or-
ganization (WHO) convened a working group of experts to study cut-offs in re-
gard to the BMI of Asian populations, but the cut-offs remained largely un-
changed [20] despite the conclusion that the proportion of Asians at high risk 
for type 2 diabetes and cardiovascular disease is substantial at BMIs lower than 
the existing WHO cut-off points for overweight. A recent report, based on a US 

 

 

2The complete set of BMI classifications is more extensive than just four. Briefly, for illustrative 
purposes, according to the WHO a BMI ≥ 25 is considered overweight; ≥30 is considered obese; the 
range 18.5 - 24.9 is considered normal [1]. Nevertheless, there is much current discussion concern-
ing the setting of BMI cutoff points. 
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population of adults and young adults reached a similar conclusion that a higher 
BMI only moderately increased the risks for diabetes among the healthy obese, 
and that unhealthy thin people were more likely than the aforementioned group 
to get diabetes [21]. Clearly, rigorous statistical distributions of BMI are needed 
for specific population groups. Otherwise, the matter of setting and interpreting 
BMI cut-off points will be remain controversial, not just in articles in the medi-
cal literature, but also in reports to the general public [22] [23]. 

In reference [22], questions were raised as to the accuracy and utility of using 
BMI to describe individual health. In our opinion, BMI was, and is, intended to 
be a statistical quantity. As such, it describes populations and not specific indi-
viduals. Nevertheless, given the exact distribution function specific to a well- 
defined demographic, cut-offs can be set more appropriately and less arbitrarily 
so as to be medically useful to clinicians in evaluating individual patients. To 
achieve this, a major first step would be to have an accurate BMI distribution 
function covering the full range of a sufficiently large and well-defined popula-
tion of healthy individuals. We believe our analysis of the ANSUR data, which 
separately includes male and female members of the US military, provides such 
baseline information. 

With regard to the establishment of public health policies to reduce adult ob-
esity, knowledge of the exact BMI distribution can help resolve a debate over the 
optimal strategy for disease prevention. One approach, the “population strate-
gy”, proposed by Rose [24] [25] and widely adopted by epidemiologists, public 
health practitioners and policy makers, is to shift the distribution of a risk factor 
in a desired direction by applying interventions to an entire population [26]. An 
alternative approach, the “high-risk strategy”, aims to lower the risk of disease 
within a population by detecting and treating the subgroup of people who ma-
nifest extreme values of the designated risk factor, and therefore appear to be at 
the highest risk. 

Statistically, Rose and others found strong correlations between the mean val-
ue of a risk factor (e.g. BMI) and the prevalence of extreme values of that risk 
factor. In other words, in a specified population of people at risk for a particular 
disease over time, Rose expected the lower and middle sections of the distribu-
tion curve of the risk factor to move proportionally in the same direction as the 
high-end extreme section, thereby displacing the entire distribution curve to the 
right. He concluded from this, in regard to public health strategy, to implement 
a policy of intervention to all members of the population and not just those with 
risk factors in the upper tail of the distribution. The idea, as summarized in a re-
view [26] of Rose’s work, is that “More clinical cases result from small but wide-
spread risks than large but rare risks.” 

Supporters of the “high-risk strategy” have pointed out problems to Rose’s 
proposal. One such problem in regard to BMI in particular is the assumption of 
a Gaussian, or at least symmetric, distribution of the risk factor. This assump-
tion, as we indicated in the previous section, is almost certainly invalid for any 
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realistic population distribution of human height and weight (mass). Specula-
tions based on biological considerations have been made for a lognormal distri-
bution [7], but such reasoning, while suggestive, is likewise not rigorous and 
leaves open the possibility of other skewed distribution functions. 

Ultimately, which public health strategy is superior must be validated empiri-
cally. The efficacy of the “high-risk strategy” can be tested experimentally by ran-
domized control trials. By contrast, it is more difficult to test the efficacy of the 
“population strategy”. According to reference [26], the determination of whether 
a benefit results from lowering the risk of a whole population would require im-
plementation and monitoring of lifestyle changes starting from birth and ex-
tending over decades. 

Nevertheless, in order that an experimental test of strategy yield useful infor-
mation, the results must be interpretable, and a valid interpretation requires the 
exact BMI probability density function. This function provides the most reliable 
statistical tool to study the evolution over time of the population statistics re-
quired for the “population strategy”. Likewise, it helps the analyst decide quan-
titatively who falls within the category of high risk (i.e. proportion of a given 
population under the right tail of the distribution) as required for the “high risk 
strategy”. From a broader perspective, the exact distribution function allows public 
health specialists to define meaningfully the cutoff points by which degrees of 
fatness and risk are classified. 

Moreover, drawing upon the methodology of physics, we expect that, where 
direct experimental tests may be impractical to implement, the use of comput-
er-based modeling can play a constructive role. Knowledge of the exact theoret-
ical BMI distribution derived here, combined with well-designed mathematical 
models representing proposed public health interventions, can lead to insights 
and solutions in time intervals short compared to decades of observation. 

2. Exact Distribution Function of BMI 

The objective of this section is to derive the probability density function (PDF) 
of a random variable of the form of Equation (1), which we rewrite more gener-
ally as 

2Z X Y X W= =                        (2) 

in which X and Y are arbitrary real-valued random variables and 2W Y=  with 
corresponding PDFs ( )Xp x , ( )Yp y , ( )Wp w . As a matter of standard nota-
tion, we represent a random variable by an upper case letter (e.g. X) and the rea-
lization or outcome of the variable (referred to as a variate) by the corresponding 
lower case letter (e.g. x). 

Consider first the variable W, which must have non-negative variates. From 
the normalization criterion 

( ) ( )
0

d dW Yp w w p y y
∞ ∞

−∞

=∫ ∫                     (3) 
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or, equivalently, the differential transformation relation 

( ) ( )( ) d
dW Y
wp w p y w
y

=                     (4) 

with Jacobian d
d
w
y

, one can derive the relation [13] 

( ) ( ) ( )( )1
2W Y Yp w p w p w

w
= + − .               (5) 

An alternative and more versatile approach, which also leads to Equation (5), 
is to start with the defining transformation expressed by means of a Dirac delta 
function [27] 

( ) ( ) ( )2 dW Yp w p y y w yδ
∞

−∞

= −∫ .                 (6) 

The delta function, defined by the properties 

( )
0  if

 if
x y

x y
x y

δ
≠

− ≡ ∞ =
                     (7) 

with unit area 

( )d 1x y xδ
∞

−∞

− =∫ ,                       (8) 

is not actually a function, but what mathematicians refer to as a δ-distribution 
and physicists as a unit impulse. From its definition follows useful operational 
relations 

( ) ( ) ( )0 0df x x x x f xδ
∞

−∞

− =∫                    (9) 

( ) ( )1ax x
a

δ δ= ,                      (10) 

( ) ( ) ( )( )2 2 1
2

x a x a x a
a

δ δ δ− = − + +               (11) 

( )( ) ( )
d d

i

i

i x x

x x
g x

g x
δ

δ
=

−
= ∑                     (12) 

where a is a constant and ( )g x  a continuous real-valued function with zero 
points at ix , i.e. ( ) 0ig x = . As seen from Equation (9), the delta function serves 
as a filtering operation in integration. It can be represented in numerous ways by 
a limiting process of which one commonly used form is the Fourier transform of 
unity 

( ) ( )lim e d
K

ik x y

K
K

x y kδ −

→∞
−

− = ∫ .                  (13) 

Consider next the quotient 2Z X W X Y= =  for independent variables X 
and Y. Starting with the defining transformation 
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( ) ( ) ( )
0

d dZ X W
xp z x w p x p w z
w

δ
∞ ∞

−∞

 = − 
 ∫ ∫              (14) 

and employing relations (9)-(12) reduces integral (14) to the form 

( ) ( ) ( ) ( )( )2 2

0

dZ X Y Yp z y p zy p y p y y
∞

= + −∫ .            (15) 

Upon identification of X with mass and Y with height, Equation (15) is the 
exact distribution function of the random variable B representing body mass in-
dex under the condition that mass and height are statistically uncorrelated. We 
examine the case of correlated mass and height in Section 2.3. 

2.1. Special Case: Independent Normal Factors 

Over much of the period of modern statistics human attributes such as height 
and weight have been assumed or approximated to follow a Gaussian distribu-
tion. Justification for this may be attributed in part to empirical inferences drawn 
from coarse-graded statistical sampling, theoretical inferences based on the Cen-
tral Limit Theorem, and a need for mathematical convenience [28]. Statisticians 
were certainly aware, however, that the tails of a Gaussian did not fit observed 
frequency data closely [29] [30], but this problem was generally regarded as mi-
nor since the number of events were few compared with the bulk of the observed 
frequency distribution. With regard to BMI, however, the tail of the distribution 
is important since it represents the subgroup of people with extreme risk factors. 
Nevertheless, because normal distributions serve as a kind of baseline model in 
the statistics of public health, we examine the case of independent normally dis-
tributed weight (mass) X and height Y, 

( )
( )

2
1 1

2
2 2

,

,

X

Y

X N m s

Y N m s

=

=
                       (16) 

represented statistically by the symbol ( )2,N m s  in which m is the mean of the 
variable, 2s  is the variance, and the PDF of a normal distribution (indicated by 
superscript N)takes the general form 

( ) ( ) ( )2 2

2

21 e
2

N
X

x m sp x
s

− −

π
= .                 (17) 

Substitution into Equation (15) of PDF (17) with the parameters of distribu-
tions (16) leads to the explicit function 

( ) ( ) ( ) ( ) ( )( )
22 2 2 22 21 1 2 2 2 2

2, 2 22

1 2 0

1 e e e d
2

zy m sN N y m s y m s
Zp z y y

s s

∞
− − − − − ++

π
= ∫ .   (18) 

where the superscript ( ),N N  signifies that both component factors (mass and 
height) are normally distributed. It is clear from the form of Equation (18), in 
which the leading term in the exponent is z to the 4th power (rather than qua-
dratic), that normal distributions of mass and height, as expressed in relations 
(16), result in a non-normal and non-symmetrical distribution of body mass in-
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dex. 
To our knowledge, the integral (18) cannot be performed analytically, but 

must be evaluated numerically. A plot of ( ) ( ),N N
Zp z  (solid curve) as a function 

of z for a hypothetical sample set of parameters is shown in Figure 1. The profile 
is skewed to the right and appears very much like the lognormal profile (dashed 
curve), superposed for comparison. As seen in the figure, the two profiles are 
distinguishable, but in close agreement, especially in the vicinity of the maxi-
mum, the origin, and along the right tail. If the range of the figure were extended 
to show the tail out to z = 200, the two profiles would appear to overlap apart 
from a slightly lower maximum value of the lognormal distribution. 

The lognormal distribution of BMI shown in Figure 1, discussed more fully in 
the following sections, is the profile that would result if individual distributions 
of mass and height were both lognormal with parameters corresponding to the 
parameters of the normal distributions in the example. The PDF of the variable 

2Z X Y=  in which X and Y are lognormal variables takes the general form 

( ) ( )
( )( )2

2
ln

, 2
2

1 e
2

z m

s
Zp z

s z

−
−

Λ Λ

π
=                  (19) 

to be derived in Section 2.3. The superscript ( ),Λ Λ  signifies that both compo-
nent factors are lognormal. Determination of the lognormal parameters corres-
ponding to the parameters of the normal distributions that form Figure 1 is ex-
plained in the following section. 

 

 
Figure 1. Exact probability density (solid maroon curve) for 2Z X Y=  for mass  

( )70,20X N=  and height ( )1.8,0.5Y N= . Superposed is the corresponding lognormal 

density (dashed black curve) for ( )23.1080,0.6130Z = Λ . The relation between the nor-

mal and lognormal parameters is explained in Section 2.2. It is to be noted that in actual-
ity human weight and height are not distributed normally. 
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The exact PDF (18) and the corresponding lognormal PDF (19) yield, respec-
tively, the following means, dispersions (standard deviation about the mean), 
and asymmetries (skewness, defined in the next section) 

( ) ( )

( ) ( )

( ) ( )

, ,

, ,

, ,

Mean    27.25 27.00

Std Dev 21.93 18.23

Skewness     2.68 2.33

N N
Z Z

N N
Z Z

N N
Z ZSk Sk

µ µ

σ σ

Λ Λ

Λ Λ

Λ Λ

= =

= =

= =

           (20) 

which are seen to be numerically close for the exact and lognormal distributions 
of BMI. 

The statistics exhibited in relation (20) raise a cautionary issue in regard to 
skewed distribution functions. Ordinarily—i.e. primarily for symmetric distri-
butions—the standard deviation is interpreted as a measure of the uncertainty of 
the mean, which, itself, is usually adopted in statistical physics and medicine as 
the experimental value of a distributed quantity. However, as seen in Figure 1, 
the modes (i.e. maxima), in contrast to the means, of the two profiles are actually 
fairly narrowly located and serve better than the mean for purposes of monitor-
ing the evolution of the BMI distribution in a specified population over time. 
The large dispersions about the means are due to the long high-end tails. The 
skewness of a distribution, which is proportional to the 3rd central moment, pro-
vides a quantitative measure of the asymmetry about the mean, and therefore a 
measure of the fraction of a population at greatest risk of metabolic disease. 

In summary, for purposes of defining appropriate cutoff points for the various 
weight categories and demographics and to investigate evolving trends in BMI 
within a population, a lognormal distribution would serve equally satisfactory to 
the exact BMI distribution derived on the assumption of normally distributed 
weight and height. Our analysis indicates, however, that this assumption is not 
valid, and that the true distributions of weight and height are, themselves, log-
normal, from which it follows that a lognormal BMI distribution is not an ap-
proximation, but rigorously exact. We discuss this in the following section. 

2.2. Special Case: Independent Lognormal Factors 

If the natural logarithm of a set of variates { }ix , represented by the random va-
riable X, gives rise to a normal distribution, represented by the variable Y, then 
X is said to be a lognormal random variable. The relation is expressed symboli-
cally as 

( ) ( ) ( ) ( )2 2ln , exp ,Y XY X N m s X Y m s= = ⇒ = = Λ .       (21) 

From the transformation relations (21) and normal PDF (17), there follows 
the lognormal PDF 

( ) ( )
( )( )2 2ln 2

2

1 e

2

x m s

Xp x
xs

− −
Λ

π
= .                 (22) 

Note that the parameters defining the lognormal distribution X are the mean 
and variance of the normal variable Y. In other words, m and 2s  are not mo-
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ments of the lognormal distribution. The r th order moments ( )0
rM r X≡ , 

1,2,r =  , of a lognormal distribution can be calculated straightforwardly as 
expectation values by using PDF (22) 

( ) ( )
0

d
X

r rX x p x x
∞

Λ= ∫ .                    (23) 

However, it is simpler to calculate ( )0M r  from the moment generating func-
tion [13] 

( ) ( )
1 2 2
2exp emt s t t

Yg t Yt X+≡ = =                (24) 

of the normal distribution Y by use of relation (21) and substitution of the dis-
crete index r for the continuous dummy variable t. This leads to 

( )
1
2

2 2

0 emr s rM r += .                      (25) 

The first few moments ( )0M r  and the principal combination statistics 

Variance     ( )22
X Xσ µ≡ −       (26) 

Skewness  ( )3 3
XSk X µ σ≡ −                 (27) 

Kurtosis  ( )4 4
X XK X µ σ≡ −        (28) 

of the lognormal distribution are summarized in Table 1. The subscript 0 in 
( )0M r  signifies that the moments are taken with respect to the origin. The 

preceding combination statistics are central moments, designated ( )M rµ  in 
Table 1, where the subscript µ  signifies that the moments are taken with re-
spect to the lognormal mean ( )0 1Mµ ≡  

( ) ( )( ) ( ) ( ) ( )0
00

d 1 ,
rr r j r j

X
j

M r p x x x C r j M jµ µ µ
∞

− −

=

= − = −∑∫ .     (29) 

The symbol 

( ) ( )
!,

! !
rC r j

j r j
≡

−
                      (30) 

is a binomial coefficient. 
The mean µ  and variance 2σ  of the lognormal variable X is given in terms 

of the mean m and variance 2s  of the normal variable Y by the following rela-
tions from Table 1. 

( )
21

2

2 22 2 2

e

e e e

m s

m s s

µ

σ

+=

= −
                     (31) 

from which follow the inverse relations 

2

2 2
lnm µ

µ σ

 
 =
 + 

                      (32) 
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Table 1. Moments and variances of the log-normal distribution. 

Order r Moment ( )0M r  Central Moment: ( )M rµ  

1 21
2em s+

 
0 

2 22 2e m s+
 ( )2 22 2e e em s s−

 

3 29
23e m s+

 ( )2 2 29 5 3
2 2 23e e 3e 2es s sm − +

 

4 24 8e m s+
 ( )2 2 2 24 8 5 3 2e e 4e 6e 3em s s s s− + −

 

5 225
25e m s+

 ( )2 2 2 2 225 17 7 511
2 2 2 2 25e e 5e 10e 10e 4es s s s sm − + − +

 

6 26 18e m s+
 ( )2 2 2 2 2 26 18 13 9 6 4 3e e 6e 15e 20e 15e 5em s s s s s s− + − + −

 

7 249
27e m s+

 ( )2 2 2 2 2 2 249 37 27 19 13 9 7
2 2 2 2 2 2 27e e 7e 21e 35e 35e 21e 6es s s s s s sm − + − + − +

 

8 28 32e m s+
 ( )2 2 2 2 2 2 2 28 32 25 19 14 10 7 5 4e e 8e 28e 56e 70e 56e 28e 7em s s s s s s s s− + − + − + −

 

Statistic Symbol Expression 

Standard Deviation σ  ( )2 22e e em s s−
 

Skewness Sk ( ) ( )
3

2 2 2 23e 3e 2 e 1s s s− + −
 

Kurtosis K 2 2 24 3 2e 2e 3e 3s s s+ + −  

Variance of Skewness Var (Sk) ( )( ) ( ) ( )( )2

6 13

3 3 3 2
4

Var M M Var M
S S

µ µ µ+
 

Variance of Kurtosis Var (K) ( )( ) ( ) ( )( )2

8 16

4 2 4 2Var M M Var M
S S

µ µ µ+
 

 
2 2

2
2lns µ σ

µ
 +

=  
 

.                      (33) 

Relations (31), (32), (33) will be applied shortly to the BMI distribution in 
Figure 1. 

Consider next the case of independent lognormal factors for mass and height 
respectively 

( )
( )

2
1 1

2
2 2

,

,

X

Y

X m s

Y m s

= Λ

= Λ
                       (34) 

resulting in the BMI3 

 

 

3We use symbols X and Y at various points in the paper to represent different types of random va-
riables in different examples. This should pose no difficulty because in each case the distribution of 
each variable is precisely defined at the outset. We believe it is easier for the reader to keep track of 
just two symbols in a discussion than burden this paper with a different symbol each time a variable 
is used in an example. 
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2Z X Y= .                         (35) 

To find the distribution of Z, take the natural logarithm of both sides of ex-
pression (35) to obtain 

( ) ( ) ( )
( ) ( )
( )

2 2
1 1 2 2

2 2
1 2 1 2

ln ln 2ln

, 2 ,

2 , 4

Z X Y

N m s N m s

N m m s s

= −

= −

= − +

                 (36) 

where the first equality of the second line of Equation (36) follows from the defi-
nition of a lognormal variable, and the second equality is the result of combining 
two independent normal distributions, which follows from the equivalence rela-
tion [13], 

( ) ( )2, 0,1N m s m sN= + .                   (37) 

Thus, since the log of Z is a normal variable, then Z must be a lognormal va-
riable ( )2,ZZ m s= Λ  with parameters 

1 2
2 2 2

1 2

2

4

m m m

s s s

= −

= +
                        (38) 

From relations (31), the parameters (38) correspond to a mean BMI of 

( ) ( ) ( )2 21
1 2 1 222 4

0 1 e
m m s s

Mµ
− + +

= =                   (39) 

with standard deviation 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 21
1 2 1 2 1 2 1 222 4 2 4 42

0 02 1 e e e
m m s s s s s s

M Mσ
− + + + +

= − = − .     (40) 

In the example illustrated in Figure 1, a hypothetical sample population was 
characterized statistically by mass 70 20M Mµ σ± = ±  kg and height  

1.8 0.5H Hµ σ± = ±  m. If mass and height independently follow the respective 
lognormal distributions ( )2

1 1,X m sΛ  and ( )2
2 2,Y m sΛ , the four parameters of 

the distributions are rigorously determined from Equations (31)-(33) (to four 
decimal places) 

1 1

2 2

4.2093, 0.2801
0.5506, 0.2726

m s
m s

= =
= =

                  (41) 

The corresponding parameters of the BMI distribution ( )2,Z m sΛ  in Figure 
1 (dashed curve) are then given by Equation (38) 

3.1080, 0.6130m s= = .                   (42) 

From the inverse relations (39) and (40) one calculates the mean and standard 
deviation of the BMI distribution to be 

27.0018, 18.2349BMI BMIµ σ= = ,               (43) 

which agree with the corresponding values in Equation (20) obtained by integra-
tion over the PDF as in Equation (23). 

2.3. Special Case: Correlated Lognormal Factors 

The exact BMI distribution expressed by Equation (15) contains in the integrand 
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products of the PDFs of the variables X and Y. However, if the weight of an in-
dividual is influenced by his/her height (or vice versa), then the joint distribu-
tion function of mass and height, expressed as ( ),XYp x y , does not factorize in-
to separate functions of x and y. In that case, the antecedent Equation (14) with 

2W Y=  takes the form 

( ) ( )
0 0

d d ,Z X W
xp z x w p x w z
w

δ
∞ ∞  = − 

 ∫ ∫               (44) 

leading to the result 

( ) ( ) ( )( )2 2 2

0

, , dZ XY XYp z y p zy y p zy y y
∞

= + −∫ .           (45) 

In the following section we provide strong evidence that height and weight are 
significantly correlated and that the marginal distributions of both variables are 
lognormal in form. The joint distribution function of bivariate lognormal va-
riables is derivable from the distribution function of bivariate normal variables 
[31] 

( ) ( )
1 2

2
1 2 2

1 2

2 2
1 1 1 1 2 2 2 2

2
1 1 2 2

1, e
2 1

1 2
1

YN q
Y Y

Y

p y y
s s r

y m y m y m y mq r
s s s sr

−=
−

       − − − −
 = − +      −         

π
    (46) 

In the preceding equation, 1m , 1s  are the mean and standard deviation of a 
normal variable 1Y , and likewise 2m , 2s  are the mean and standard deviation 
of a normal variable 2Y . The Pearson correlation coefficient r is defined as the 
expectation value [31] 

( )( ) ( )1 1 2 2 1 2

1 2 1 2

cov ,Y m Y m Y Y
r

s s s s
− −

≡ = ,              (47) 

which falls within the range 1 1r≥ ≥ − . The expectation value in the numerator 
of Equation (47) is the covariance. A correlation coefficient 1r =  signifies that 
the two variables are perfectly correlated linearly; likewise, 1r = −  signifies 
perfect linear anticorrelation. An arbitrary value of r within the stated range is 
interpreted to mean that 2r  is the fraction of the variance of one variable at-
tributable to the other [32]. 

The probability density function ( )Rp r  of the Pearson r is a complicated 
mathematical expression involving gamma functions and a hypergeometric func-
tion of the type 2 1F . The exact form of the PDF and resulting statistical mo-
ments can be found in Ref. [33]. Of particular utility in this paper is the standard 
deviation rσ  and standard error (SE) 

21r
r

rSE
n n

σ −
≡ =                       (48) 

truncated at the first term of an expansion in inverse powers of the sample size 
n. Plots of ( )Rp r  for different mean values r  and two sample sizes n are 
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displayed in Figure 2. The profiles are strongly skewed to the left for small sam-
ple size and rapidly approach Gaussian form as n increases. For the ANSUR data 
used in this paper, n > 1000 and the exact profile of ( )Rp r  is indistinguishable 
from a normal distribution about r  with width rSE  given by (48). 

If the normally distributed variates of 1Y  and 2Y  are obtained by taking the 
natural logarithm of the variates of 1X  and 2X , then 1X  and 2X  are log-
normal variables. In analogy to Equation (4), the transformation of PDF (46) to 
a PDF of 1X  and 2X  is implemented as follows 

( ) ( ) ( ) ( ) ( )( )1 2 1 2

, , 1 2
1 2 1 1 2 2

1 2

d d
, ,

d d
N N

X X Y Y
y yp x x p y x y x
x x

Λ Λ =           (49) 

where ( ) ( )lny x x=  and leads to 

( ) ( )

( ) ( ) ( ) ( )

1 2

2
,

1 2 2
1 21 2

2 2
1 1 1 1 2 2 2 2

2
1 1 2 2

1 e,
2 1

ln ln ln ln1 2
1

Xq

X X

X

p x x
x xs s r

x m x m x m x m
q r

s s s sr

−
Λ Λ =

−

 − − − −      
 = − +      

−        

π



 (50) 

which generalizes Equation (22). 
The marginal distribution of one variable is obtained by integrating the PDF 

(50) over the other variable as follows 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1

1 2 2

,
1 2 2 1

0

,
1 2 1 2

0

, d

, d

X X X

X X X

p x x x p x

p x x x p x

∞
Λ Λ Λ

∞
Λ Λ Λ

=

=

∫

∫
                  (51) 

As one would expect, the correlation coefficient r vanishes from the marginal 
distributions, since both variables must be present if there is to be a correlation 
between them. 

 

 
Figure 2. Probability density of Pearson r coefficient for different values of the mean r  and sample sizes n = 10 

(left panel) and n = 100 (right panel). The PDF rapidly approaches Gaussian form in the limit of increasing sample 

size. 
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It is to be borne in mind that the Pearson coefficient r is a measure of the cor-
relation between normal variables 1Y  and 2Y . The Pearson coefficient of the 
lognormal variables 1X  and 2X , which represent respectively mass and height 
in the context of BMI, is obtained from the relation corresponding to (47) 

( )( )( )1 1 2 2

1 2

cov X Xµ µ
ρ

σ σ
− −

=                  (52) 

which can be reduced to 

( )( )1 1 2 2 1 2 1 2

1 2 1 2

X X X Xµ µ µ µ
ρ

σ σ σ σ
− − −

= = .           (53) 

Equation (53) requires the integral 

( ) 1 2
1 21 2 1 1 2 1 2 2 1 2

0 0

d , d ers s
X XX X x x x p x x x µ µ

∞ ∞

= =∫ ∫           (54) 

where mean value µ  of a lognormal variable is given by Equation (31). From 
Equations (54), (53), and (31), it follows that the correlation coefficient ρ  of a 
bivariate lognormal distribution takes the form 

( )( )
1 2

2 2
1 2

e 1

e 1 e 1

rs s

s s
ρ −
=

− −
.                    (55) 

It is worth noting that the moments, including all correlation statistics of a 
bivariate, or more generally a multivariate, distribution can in principle be ob-
tained from a moment generating function [13] without having to perform inte-
grals like the one in Equation (54), which can be difficult. This method, however, 
lies outside the scope of this paper. Nevertheless, integrations over the bivariate 
PDF (50) can be greatly simplified by transforming from the space of ( )1 2,x x  
back to the space of ( )1 2,y y  and then transforming to variables ( ),u v  defined 
by 

1 1
2

1

2 2
2

2

1

1

y mu
r s

y mv
r s

−
=

−
−

=
−

                        (56) 

which generates the probability density 

( ) ( )2 21
2

2 21, e
2

u ruv vrf u v
− − +

π
−

= .                 (57) 

The range of variables u, v is ( ),−∞ ∞ . To calculate joint expectations of 
powers of 1X  and 2X , substitute 

2
1 1 1

2
2 2 2

1
1

1
2

e e

e e

y r s u m

y r s v m

x

x

− +

− +

= =

= =
                     (58) 

in the integral with PDF ( ),f u v . 
Even with the preceding transformations to facilitate calculation, we have 
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been unable to derive in closed form an expression for the variance of Equation 
(55). We approximate, therefore, the variance of ρ  by using error propagation 
theory [34] 

1 2

2 22
2 2 2 2

2 2
1 2

r s sr s sρ
ρ ρ ρσ σ σ σ

   ∂ ∂ ∂ = + +    ∂ ∂ ∂     
             (59) 

in which 2
rσ  is given by Equation (48), and the variance of the variance 2s  of 

a normal random variable ( )2,N m s  is known to be [13] 

2
2 42
s

sσ = .                         (60) 

Standard errors are obtained by dividing the variances 2
rσ , 2

1

2
s

σ , 2
2

2
s

σ  by the 
sample size n. The analytical evaluation of Equation (59) leads to a long, and not 
particularly illuminating expression and will not be given explicitly, since, when 
its evaluation is needed later, both the partial derivatives and numerical substitu-
tions are carried out by computer. 

Calculation of the probability density function of the ratio 2
1 2Z X X=  using 

PDF (50) with lognormal factors ( )1

2
1 1 1,XX m s= Λ  for mass and  

( )2

2
2 2 2,XX m s= Λ  for height proceeds most readily from the defining trans-

formation 

( ) ( )

( )

1 2

1 2

1
1 2 1 22

0 0 2

2 2
2 2 2 2

0

, d d

, d

Z X X

X X

xp z p x x z x x
x

x p zx x x

δ
∞ ∞

∞

 
= − 

 

=

∫ ∫

∫
             (61) 

where the second line of relation (61) results immediately from property (10) of 
the delta function. The remaining integration can be performed by transforming 
to the integration variable ( )2 2lny x=  and leads to the exact PDF 

( ) ( )

( ) ( )( )
( )

( )

2
1 2

2 2
1 2 1 2

ln 2

2 4 4

2 2
1 2 1 2

e

2 4 4

z m m

s s rs s

Zp z
s s rs s z

− −
−

+ −
Λ

+ −π
=                 (62) 

for BMI of a population with correlated weight and height. 
From the form of PDF (62), it is seen that the variable Z is exactly lognormal 

( )2,ZZ m s= Λ ,                       (63) 

with parameters 

1 2
2 2 2

1 2 1 2

2

4 4

m m m

s s s rs s

= −

= + −
                     (64) 

Comparison with Equation (38) shows that the mean m is the same as for in-
dependent lognormal factors, but the variance 2s  is a function of the correla-
tion coefficient r. The influence of correlation on the probability density (and 
therefore also on statistical moments)can be quite strong, as illustrated in Figure 
3 which shows plots of PDF (62) as a function of the BMI variate z for values of r 
ranging from −1 to +1 in intervals of 0.25. The plots are color coded such that  
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Figure 3. Exact BMI distribution for lognormally distributed correlated mass and height. 
The correlation coefficient r = +1 (solid blue), −1 (dashed blue), 0 (solid black) and varies 
from minimum to maximum in increments of 0.25. Positive correlation leads to narrower 
profiles. The parameters of the marginal mass and height distributions are the same as for 
Figure 1. 

 
profiles of the same r  have the same color, but are distinguished by their 
widths ranging from a maximum for 1r = −  (dashed blue curve) to a minimum 
of 1r =  (solid blue curve). The solid black profile corresponds to uncorrelated 
weight and height, 0r = . As shown in the figure, increasing the correlation of 
weight and height displaces the maximum of the BMI distribution to the right 
and narrows the spread. For perfect linear correlation 1r = , the variance takes 
its minimum value, ( )22

1 2min
2s s s= − , which, as expected, can never be nega-

tive. As a corollary of the narrower spread, the tail of the BMI distribution with 
positive correlation drops off more rapidly than if weight and height were un-
correlated or anticorrelated. 

BMI population statistics, of which the most important are the mean, disper-
sion about the mean (standard deviation), and asymmetry about the mean (skew-
ness) 

( ) ( )2 2
1 2 1 2 1 2

1exp 2 4 4
2Z Z m m s s rs sµ  ≡ = − + + − 

 
         (65) 

( ) ( ) ( )2 2 2 2
1 2 1 2 1 2 1 21 2

2 8 8 4 42 22 e e e
s s rs s s s rs sm m

Z Z Zσ
+ − + −−≡ − = −       (66) 

( ) ( )

( )
2 2 2 21 2 1 2 1 2 1 2

2 2
1 2 1 2

3 3 4 4 4 4

3 3 2
4 4

e 3e 2

e 1

s s rs s s s rs s

Z
s s rs sZ

Z
Sk

µ

σ

+ − + −

+ −

− − +
≡ =

−
         (67) 

are also markedly affected by the correlation of weight and height, as plotted in 
Figure 4 as a function of correlation coefficient r. As shown in the figure, the higher 
the correlation, the lower are the BMI mean, standard deviation, and skewness. 
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Figure 4. Variation of lognormal BMI mean (red), standard deviation (blue), and skew-
ness (magenta) with Pearson correlation coefficient r. The parameters of the marginal 
mass and height distributions are the same as for Figure 1. 

3. Statistical Analysis of the ANSUR Data 

The Anthropometric Survey of U.S. Army Personnel (ANSUR), conducted in 
2012 and reported in 2014 [10], was undertaken by the Natick Soldier Research, 
Development and Engineering Center (NSRDC) in Natick, Massachusetts to 
obtain an extensive body of data from comparably measured individuals repre-
sentative of the “Total Army” of active-duty personnel. The motivation of the 
survey was to obtain accurate data by which the Army could make appropriate 
decisions regarding clothing, protective equipment, workspaces, and other size- 
dependent, work-related matters. 

In keeping with this need, the survey measured 93 dimensions directly and 41 
derived dimensions from a sample of 4082Mn =  men and 1986Fn =  women. 
Although data were compiled demographically in terms of race, ethnicity, gend-
er, age, and geographic location, the analysis in this paper partitions the data 
into two samples based exclusively on gender. Of the 93 directly measured 
attributes and 41 derived attributes acquired from each of the 6068 individuals 
in the combined sample, the only statistics pertinent to this paper are the weight 
(converted to mass) and height, from which the sample BMI values are calcu-
lated according to Equation (1). Details of the measurement apparatus, mea-
surement procedure, and steps taken to assure accuracy are described in the 
Technical Report [10]. 

3.1. Distribution of Height 

Figure 5 shows a histogram (gray bars) of the distribution of heights of the 
male subgroup (left panel) and female subgroup (right panel) in the ANSUR 
population. Corresponding histograms of the natural logarithm of the heights 
are shown in Figure 6. Table 2 summarizes the sample statistics obtained from  
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Figure 5. Histograms (gray bars) of the height of male (left) and female (right) soldiers compiled from the ANSUR 
data. Superposed envelopes (maroon curves) are the exact lognormal probability density functions. 

 

 
Figure 6. Histograms (gray bars) of the natural logarithm of the height of male (left) and female (right) soldiers 
derived from the ANSUR data. Superposed envelopes (maroon curves) are the exact Gaussian probability density 
functions. 

 
analysis of the two sets of data. 

The histograms of log-height in Figure 6 appear symmetric about the mean 
and can be well fitted by Gaussian profiles with sample means and standard 
deviations 

Male Subgroup: 
0.5624

0.0390
HM

HM

m
s

=
=

                 (68) 

Female Subgroup: 
0.4869

0.0394
HF

HF

m
s

=
=

                (69) 

calculated directly from the unpartitioned data (in contrast to partitioning the 
data into categories and applying a maximum likelihood or Bayesian estimation 
procedure). 
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Table 2. Descriptive statistics of sample height, weight, body mass index (BMI). 

Statistic 
Sample 
M: 4082 
F: 1986 

Mean 
Standard 
Deviation 

Skewness Kurtosis 
Min  

Value 
Max  

Value 

Height (m) Male 1.7562 0.0685 0.1113 3.0680 1.49 1.99 

 Female 1.6285 0.0642 0.0876 3.0041 1.41 1.83 

Weight (kg) Male 85.5240 14.2190 0.4817 3.3583 39.30 144.20 

 Female 67.7582 10.9819 0.5545 3.6599 35.80 119.6 

BMI (kg/m2) Male 27.6863 4.0390 0.3568 3.1129 15.35 43.45 

 Female 25.4960 3.4908 0.5144 3.4797 16.37 40.78 

Ln Height Male 0.5624 0.0390 −0.0090 3.0594   

 Female 0.4869 0.0394 −0.0312 3.0222   

Ln Weight Male 4.4351 0.1654 −1.4686 3.0295   

 Female 4.2030 0.1604 2.4300 3.1094   

Ln BMI Male 3.3103 0.1458 −0.0582 2.8854   

 Female 3.2293 0.1354 0.0995 2.9858   

   Standard Error     

Correlation r (lnH & lnW) Male 0.4716 0.0122     

Female 0.5387 0.0159     

Correlation ρ  (H & W) Male 0.4689 0.0010     

Female 0.5335 0.0015     

 
Chi-square tests of the goodness of fit of the log-height histograms to Gaus-

sian profiles are summarized in Table 3. For 24ν =  degrees of freedom (data 
partitioned into 25 categories), the tests yielded respective p-values of 35.73% 
(male) and 58.77% (female). It is to be recalled that the p-value is the probability 
that a subsequent random sample from the same total population would result in 
a chi-square value equal to or greater than the observed value, assuming the null 
hypothesis is correct [35]. The null hypothesis in testing the histograms of Fig-
ure 6 is that they are samples from Gaussian distributions with parameters given 
by Equations (68) and (69). The critical statistic of a chi-square test is the chi- 
square value beyond which the p-value is below 5%. The p-values in Table 3 are 
all well above 5%. 

The significance of a chi-square test is not that it proves the null hypothesis to 
be true, but that the null hypothesis cannot be rejected on the basis of the test. 
Nevertheless, the test supports the inference that, if the histograms of log-height are 
Gaussian, then the height, itself, is distributed lognormally for both male and fe-
male subgroups. This is evidenced in Figure 5 by the superposed lognormal profiles 
corresponding to the distributions ( )2,HM HMm sΛ  for males and ( )2,HF HFm sΛ  
for females. Chi-square tests of the lognormal fits, reported in Table 3, show 
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p-values of 41.67% for males and 59.08% for females, which again support the 
null hypothesis. 

Although the visual appearance of the histograms of height in Figure 5, for 
both male and female subgroups, may suggest that these data are distributed 
normally, this appearance is deceptive and incorrect, given that the natural loga-
rithm of the set of variates yield normal distributions. By contrast, the natural 
logarithm of a normal variable is not distributed normally, as shown in Figure 7. 
The blue profile is a normal (Gaussian) distribution based on the same height 
parameters ( )1.8, 0.5m s= =  as the example used in Figure 1. The red profile 
is the distribution of the natural logarithm of the Gaussian variates. 

 
Table 3. Chi-square tests of the log-normal fit to height, weight, and BMI. 

Variable 
Parameters of PDFs
( ),m sΛ  and ( ),N m s  

Chi-Square Tests with d.o.f 24ν =  

Physical Variable X Ln of Variable X 

 
Location 

(m) 
Scale 
(s) 

2
νχ Λ  

P-Value %
Λ  

2

Nνχ  
P-Value % 

N 

Height (M) 0.5626 0.0390 24.80 41.67 25.92 35.73 

Height (F) 0.4869 0.0394 21.81 59.08 21.86 58.77 

Weight (M) 4.4351 0.1654 27.56 27.89 21.36 61.71 

Weight (F) 4.2030 0.1604 22.50 54.97 18.92 59.08 

BMI (M) 3.3103 0.1458 24.32 44.37 22.98 52.12 

BMI (F) 3.2293 0.1354 32.20 12.21 32.02 12.66 

 

 

Figure 7. Profile of the PDF of a normal variable ( )21.8,0.05Y N=  (blue) and the pro-

file of the log-of-normal variable (renamed a logGauss variable) ( )lnX Y=  (maroon). 

One sees that a logGauss variable is not distributed normally. 

https://doi.org/10.4236/ojs.2022.123022


M. P. Silverman, T. C. Lipscombe 
 

 

DOI: 10.4236/ojs.2022.123022 346 Open Journal of Statistics 
 

To examine this issue analytically, consider a normal variable ( )2,Y N m s=  
and the log-of-normal variable ( )lnX Y= . To avoid confusing the term “log- 
of-normal” with the entrenched designation “lognormal” for a variable whose nat-
ural logarithm is normal, we will call X in this example a logGauss random vari-
able. Employing the transformation methods of previous sections, one can rea-
dily show that the PDF of a logGauss variable takes the form 

( )
( )2

22

e1 exp
22

x

X

m
p x x

ss

 − = − +
 π 

,              (70) 

which is not equivalent to the PDF of a normal (Gaussian) distribution. For va-
riates x in the vicinity of the maximum point at ( )ln m , one can truncate at first 
order a Taylor series expansion of the numerator ( )ex m−  in Equation (70) to 
obtain an approximate PDF of Gaussian form. However, the expansion is not 
valid at the wings, which descend more quickly than a Gaussian on the right side 
and extend more slowly and into the nonphysical negative range on the left side. 

It is clear, then, that the distribution of heights of males and females in the 
ANSUR data is not a normal distribution, but, in conformity with our applied 
statistical tests and the theoretical analyses of [2] [11], is consistent with a log-
normal distribution. Moreover, given that the same biological processes are 
likely to determine height in any population of healthy males or females with 
access to adequate nutrition, we believe it reasonable to infer that human height 
in all such populations is distributed lognormally.What distinguishes one popu-
lation from another would be the parameters, not the form, of the distribution. 

3.2. Distribution of Weight (Mass) 

Figure 8 shows a histogram (gray bars) of the distribution of weight (converted 
to mass) of the male subgroup (left panel) and female subgroup (right panel) in 
the ANSUR population. The mass histograms in Figure 8 are skewed to the right 
and are clearly non-Gaussian. Corresponding histograms of the natural loga-
rithm of the masses are shown in Figure 9. Table 2 summarizes the sample sta-
tistics obtained from analysis of the two sets of data. 

As with the attribute of height in the previous section, the histograms of log- 
mass in Figure 9 appear symmetric about the mean and are well fitted by Gaus-
sian profiles with the following sample means and standard deviations 

Male Subgroup: 
4.4351

0.1654
WM

WM

m
s

=

=
                (71) 

Female Subgroup: 
4.2030

0.1604
WF

WF

m
s

=

=
               (72) 

calculated directly from the unpartitioned data. (Note: We use the subscript W 
for weight in relations (71) and (72), even though the distribution function and 
associated moments are for mass, since weight was the attribute actually meas-
ured. Also, we reserve the subscript M to represent “Male”.) 
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Figure 8. Histograms (gray bars) of the mass of male (left) and female (right) soldiers compiled from the ANSUR 
data. Superposed envelopes (maroon curves) are the exact lognormal probability density functions. 

 

 
Figure 9. Histograms of the natural logarithm of the mass of male (left) and female (right) individuals derived from 
the ANSUR data. Superposed envelopes (maroon curves) are the exact Gaussian probability density functions. 

 
Chi-square tests of the goodness of fit of the log-mass histograms in Figure 9 

to Gaussian profiles are summarized in Table 3. For 24ν =  degrees of free-
dom, the tests yielded respective p-values of 61.71% (male) and 59.08% (female). 
Likewise, chi-square tests of the fit of the mass histograms to lognormal profiles 
in Figure 8 yielded p-values of 27.89% (male) and 54.97% (female). Altogether, 
the chi-square tests of the histograms in Figure 8 and Figure 9 well support the 
null hypothesis that weight (mass) is distributed lognormally in both male and 
female subgroups of the ANSUR population. As with height, there is reason to 
infer that the attribute of weight in healthy human populations accessible to 
adequate nutrition will follow a lognormal distribution. 

3.3. Correlation of Height and Weight (Mass) 

Figure 10 shows a scatter plot of the weight (converted to mass) against height 
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for males (left panel) and females (right panel) of the ANSUR sample. Each 
point in a scatter plot is the mass and height of a single individual. The elongated 
shapes of the scatter plots clearly demonstrate that the data are linearly corre-
lated. There may also be higher order correlations, but in this paper we are con-
cerned exclusively with linear correlation as quantified by the Pearson correla-
tion coefficients r and ρ  defined by Equations (47) and (53), respectively, and 
predicted by Equation (55) for lognormal distributions. 

Figure 11 displays the scatter plots of Figure 10 rescaled by dividing the va-
riates of the two random variables by their sample standard deviations. The re-
sulting variate is a pure number without units or dimensions. Superposed on the  

 

 
Figure 10. Correlation of mass (kg) and height (m) for males (left panel) and females (right panel) of the ANSUR 
sample. The elongated scatter patterns display a linear correlation. 

 

 
Figure 11. Correlation of mass and height scaled by their respective standard deviations for the data in Figure 10. 
The scaled variables are pure numbers without units. Each superposed dashedred line is a linear least squares fit to 
the scaled data. The slope of the left (right) line is precisely the correlation coefficient ρ  for males (females) as 
predicted from lognormal theory (Equation (55)) and shown in Table 2 and Table 4. 
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dimensionless scatter plots is the line of regression obtained from a least-squares 
fit to the scaled data. The respective slopes of the lines in the left and right panels 
accurately yielded the correlation coefficient ρ  for males and females, respec-
tively, as recorded in Table 2 and Table 4. For purposes of comparison, Figure 
12 shows a simulated scatter plot of uncorrelated weight and height, obtained 
from 10,000 samples drawn independently from lognormal random number ge-
nerators (RNGs) with the same parameters as given in relations (69) and (72) for 
the female subgroup in the ANSUR data. The overall shape is circular, apart 
from fluctuations at the periphery. 

It is an important point worth clarifying why the slope of the line of regression 
to the scaled scatter plot is an exact geometric representation of the Pearson 
correlation coefficient. We have not seen this point discussed elsewhere although 
Galton seems to have understood this point empirically in 1888 [36]. A linear 
least-squares (LLS) fit with slope a and intercept b 

y ax b= +                           (73) 

to the raw data (i.e. the scatter plot of variates y against variates x) leads to the 
standard LLS slope [32] 

2
2

1 1 1

ˆ
1 1

xy x y
n n na

x x
n n

  −   
  =

 −  
 

∑ ∑ ∑

∑ ∑
                 (74) 

which is the sample statistic corresponding to the population statistic 

2
X

XY X Y
a

σ
−

= .                      (75) 

 

 
Figure 12. Simulated scatter plot of uncorrelated weight and height, obtained from 10,000 
samples drawn independently from lognormal random number generators (RNGs) with 
parameters corresponding to the ANSUR female subgroup. 
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Relation (75) is not the Pearson correlation coefficient expressed by Equation 
(53). However, if one substitutes into Equation (74) the scaled variables 

X

Y

x x
y y

σ
σ

′ ≡
′ ≡

                          (76) 

then it follows straightforwardly that the resulting sample statistic corresponds 
to the population statistic a′  

X Y

XY X Y
a

σ σ
−

′ = ,                     (77) 

which is the Pearson correlation coefficient. 
The quantity ρ  in Table 4 is especially revealing, for it shows the agreement 

to three or four decimal places of the values of the empirical weight-height cor-
relation coefficient for male and female subgroups obtained in 3 different ways: 
1) direct calculation of the covariance of unpartitioned data displayed in Figure 
10; 2) calculation of the slope of the scaled data in Figure 11; and 3) prediction 
of ρ  by lognormal theory from the Pearson correlation coefficient r of the bi-
variate normal distribution ( )2 2, ; , ;WH W W H HN m s m s r . Thus, analysis of the 
Pearson correlation coefficient ρ  reinforces the conclusion that weight and 
height comprise correlated bivariate lognormal random variables symbolized by  

( )2 2, ; , ;WH W W H Hm s m s rΛ . 
We also note here, in anticipation of the next section, the very close agree-

ment in Table 4 of the sample mean and standard deviation of the log-BMI data 
with the corresponding values predicted from Equation (64), which again de-
pend on the Pearson correlation r. 

3.4. Distribution of Body Mass Index (BMI) 

Figure 13 shows histograms of the BMI for males (left panel) and females (right 
panel) calculated from the weight and height data of the ANSUR sample and 
normalized to unit area. The dashed red-blue envelope curve in each panel is 
actually a superposition of two theoretical curves: a) a lognormal profile (red) 
with mean and variance obtained directly from the unpartitioned set of natural 
logarithms of the empirical BMI variates; and b) the lognormal profile (blue) 
from Equation (62) with parameters predicted by Equation (64) and Gaussian 
statistics (68), (69), (71), (72). The perfect superposition of the two theoretical 
profiles is strong evidence that human weight and height are described by a cor-
related bivariate lognormal distribution, and that BMI is likewise distributed 
lognormally with theoretically determined, nonadjustable parameters. 

Chi-square tests of the hypothesis that BMI is a lognormal variable is summa-
rized in Table 3. For 24ν =  degrees of freedom, the tests yielded respective 
p-values of 44.37% for the male subgroup and 12.21% for the female subgroup. 

Corresponding histograms of the natural logarithm of BMI are shown in Fig-
ure 14, superposed by Gaussian envelope curves computed with the parameters 
used in Figure 13. Chi-square tests of the goodness of fit, given in Table 3, yielded  
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Table 4. Comparison of BMI statistics from sampling and Log-Normal Theory. 

Statistic of BMI Distribution 
Sample 

Male (4082) 
LN Theory (M) 
( ), , , ,W H W Hm m s s rΛ

 

Sample 
Female (1986) 

LN Theory (F) 
( ), , , ,W H W Hm m s s rΛ

 
Log-Normal Parameters    

Mean Wm   4.4351  4.2031  

Mean Hm   0.5624  0.4869  

SD Ws   0.1654  0.1604  

SD Hs   0.0390  0.0394  

Correlation of lnW & lnH WHr  0.4716  0.5387  

Correlation of W & H WHρ  0.4689 0.4689 0.5335 0.5359 

BMI Statistics     

Mean ( )ln B Bm  3.3103 3.3099 3.2293 3.2292 

SD ( )ln B Bs  0.1458 0.1432 0.1354 0.1354 

Mean 27.6863 27.6873 25.4960 25.4948 

SE Mean 0.06322 0.0635 0.0783 0.0778 

Variance 16.3133 16.4762 12.1856 12.0216 

SE Variance 0.3711 0.3954 0.4306 0.4092 

Skewness 0.3568 0.4430 0.5144 0.4105 

SE Skewness 0.0643 0.0745 0.1112 0.1040 

Kurtosis 3.1129 3.3509 3.4797 3.3011 

SE Kurtosis 0.1724 0.2512 0.3670 0.3404 

 

 
Figure 13. Histograms (gray bars) of the BMI for males (left panel) and females (right panel) calculated from the weight and 
height data of the ANSUR sample and normalized to unit area. The dashed red-blue envelope in each panel is a superposition of 
two probability density profiles: (a) a lognormal profile (red) with parameters (mean and variance) obtained directly from the 
unpartitioned natural logarithms of the empirical BMI variates; and (b) the lognormal profile (blue) from Equation (62) with pa-
rameters predicted from Equation (64). 
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Figure 14. Histogram (gray bars) of the natural logarithm of the BMI of male (left) and female (right) individuals 
in the ANSUR sample. The superposed maroon profile in each panel is the theoretical normal PDF with Gaussian 
parameters predicted by lognormal theory, Equation (64). 

 
p-values of 52.12% for the male subgroup and 12.66% for the female subgroup. 

It is to be emphasized that the excellent fit of the theoretical probability den-
sity to the normalized histograms of BMI depends crucially on the correlation of 
the two variables, weight and height. Recall that the 4 parameters (2 pairs of 
means and variances) that separately characterize the lognormal distributions of 
weight (mass) and height are obtained experimentally from the marginal distribu-
tions of what is actually a bivariate normal distribution ( )2 2, ; , ;WH W W H HN m s m s r . 
However, the marginal distributions are independent of the Pearson correlation 
parameter r. If one is ignorant of, or intentionally disregards, the correlation of 
weight and height, the resulting theoretical probability density function may 
then fit the observed BMI distribution very poorly, as illustrated in Figure 15. 

The gray translucent bars in Figure 15 comprise the BMI histogram of the 
ANSUR female subgroup displayed in Figure 13. The black enveloping curve is 
the theoretical PDF, Equation (62), with empirical correlation r = 0.5387, also 
shown in Figure 13. By contrast, the orange bars comprise a normalized histo-
gram of BMI simulated by 10,000 samples drawn independently from RNGs for 
mass and height. The magenta envelope is the theoretical PDF, Equation (62), 
with r = 0. The histogram composed of uncorrelated samples of weight and 
height is much wider that the true (i.e. empirically obtained) histogram, and of 
lower maximum (since the total area under a normalized histogram is unity). As 
shown in Figure 15, the tails of the two histograms, which characterize the sub-
populations at greatest risk of obesity and metabolic disease, differ significantly. 
To disregard positive (negative) correlation of weight and height is to signifi-
cantly overcount (undercount) the population at greatest risk. 

4. Conclusions 

The body mass index (BMI) is one of the most widely employed medical risk  
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Figure 15. Comparison of the histogram of BMI in the ANSUR female subgroup (trans-
lucent gray bars; sample size = 1986) with a simulated histogram (orange bars, sample 
size = 10,000) obtained from lognormal random number generators (RNGs) programmed 
with the same means and variances for weight (mass) and height as in the ANSUR sam-
ple. Weight and height variates are correlated in the ANSUR sample, but are drawn from 
independent RNGs in the simulation. Superposed on the two normalized histograms are 
the theoretical PDF Equation (62) with Pearson r = 0.5387 for the ANSUR sample (black 
curve) and r = 0 for the simulation (magenta curve). 

 
factors in current use, given the epidemic proportions of obesity among popula-
tions of both industrialized and developing countries. A significant amount of 
research over many years has been devoted to modeling and/or approximating 
an empirical distribution function for BMI. In this paper, we derived by rigorous 
statistical reasoning the mathematically exact form of the probability density 
function (PDF), Equation (61) to which the definition of BMI as the ratio of 
mass to the square of height inexorably leads. This PDF is uniquely determined 
by the correlated bivariate distribution of weight and height, the form of which 
we deduced from a large anthropometric data base. 

The advantage of an exact theory over an empirically matched mathematical 
expression is that the exact theory is valid over the entire allowed range of its va-
riables and applies to other statistical populations than the one (or few) used for 
purposes of testing and confirmation. By contrast, an expression obtained by 
curve-fitting has a limited range of validity and cannot be relied on to character-
ize other statistical populations. Perhaps even more significant is that the exact 
theory provides insights into the relationships of its variables, whereas an ap-
proximate expression found by curve fitting merely provides at best a numerical 
or graphical coincidence without an underlying scientific basis. 

We proposed theoretically and demonstrated experimentally by statistical 
analysis of a large anthropometric data base that human weight and height con-
stitute a correlated bivariate lognormal distribution represented by  
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( )2 2, ; , ;WH W W H Hm s m s rΛ . The five parameters defining the PDF (2 means, 2 va-
riances, and 1 linear correlation), inferred from the natural logarithm of the 
mass and height variates, uniquely predict the BMI PDF (62) from which all sta-
tistical moments of BMI follow. There are no freely adjustable parameters in the 
exact PDF. From the resulting form of the exact BMI PDF, we established that 
BMI is rigorously a lognormal random variable itself. 

Our investigation of the correlation of weight and height has shown that it can 
strongly affect the BMI PDF and statistical moments, particularly in regard to 
the amplitude and extent of the tail of the distribution, which relates to the sub-
group of a population at greatest risk. In particular, a positive (negative) linear 
correlation leads to a narrower (wider) BMI distribution and lower (higher) 
proportion of high-risk individuals compared with the distribution based on sta-
tistically independent weight and height. 

In summary, we conclude that a correct and accurate theoretical analysis of 
the distribution of BMI must include not only the means and variances obtained 
from the marginal distributions of weight and height, but also a correlation 
analysis of the two sets of variates. With a complete set of the 5 parameters that 
define the bivariate weight-height distribution for each specified demographic, 
one would then be in a position to make valid inferences regarding population- 
specific BMI quantiles (or other statistical measures) that affect public health 
policy and clinical treatment of individuals. 
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NEJM—New England Journal of Medicine 
NHANES—National Health and Nutrition Examination Survey 
NHLBI—National Heart Lung and Blood Institute 
NIH—National Institutes of Health 
NLM—National Library of Medicine 
WHO—World Health Organization 
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