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Abstract: As air transportation systems have expanded around the world in recent decades, aviation safety 
and accident/incident prevention have assumed greater importance to governments and airlines. Aircraft ac-
cident investigation has a key role to play when an aircraft has an accident or unexpected incident during 
flight operations. Traditionally the Flight Data Recorder (FDR) has played the major role in establishing the 
causes of most accidents or incidents. However, information contained in the Cockpit Voice Recorder (CVR) 
is also very useful during such investigations by providing a better understanding of the real situation. The 
CVR can act effectively as a latent signal transducer for both the speech and non-speech audio information. 
Some typical techniques, such as sound identification, voice recognition, appear to offer significant clues in 
the analysis and classification of speech and non-speech CVR signals.  
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1. Introduction 

The CVR records audio information on four channels. 
Non-speech information from the Cockpit Area Micro-
phone (CAM) is recorded on channel 1. CAM records 
thumps, clicks and other sounds occurring in the cockpit 
other than speech. Channel 2 and 3 of the CVR record 
speech audio information from the Captain and First Of-
ficer’s audio selector panels. Channel 4 records the audio 
information from the jump seat/observer’s radio panel. 

2. Background Cockpit Sound Identification 

It may be hard to believe that non-speech sounds are 
highly important to the investigation of aircraft damage 
because the background cockpit sounds can reveal prob-
lem areas of the aircraft during the time leading up to the 
accident. Non-speech data from the CAM can be ana-
lyzed with sound spectrum analysis to detect whirl flutter, 
as well as possibly distinguish the sound of a bomb ex-
plosion from the sound of cabin decompression. Spectrum 
analysis can also be used to confirm that the clicks and 
thumps recorded by the CAM are simply generated by 
cockpit controls, and the sound of the aircraft moving 
through the air.  

Analysis background information recorded in air-
craft CVRs has been proposed as a complement to the 
analysis of onboard FDRs in civil aircraft investigations. 
One reported case provides a good example of the analy-
sis of CVR data playing a key part in an aircraft accident 
investigation. In 1992, a 19-seater commuter aircraft 

crashed during an evening training mission. At that time, 
the US Federal Aviation Agency (FAA) did not require 
the installation of FDR onboard all small commercial 
aircrafts, and the CVR onboard the crashed small jet was 
the only flight record available to provide clues to the 
causes of the accident. Fortunately, in this case, the CVR 
recording not only included the voice communication, but 
also structural acoustics as well as other sounds and noise 
sources. This allowed the accident investigation to focus 
on the non-speech sounds taken from the CVR tape. A 
close inspection of the time series from the CVR track 
revealed a periodic set of transient components occurring 
at a frequency of 0.86 Hz. Comparing this frequency with 
an independent dynamic analysis of the engine mount 
damage, the 0.86 Hz transient data were demonstrated by 
independent structural and flutter analyses to be quite 
close to the frequency experienced from a damaged en-
gine mount. Moreover, there was a sudden loud sound at 
the end of the tape. This 25 millisecond long event was 
much louder than the sound in the cabin. Although this 
short length of the sound did not provide adequate audio 
listening time, there was enough signal time and ampli-
tude to perform wavelet and voice recognition analysis. 
The conclusion drawn after the investigation was that the 
engine on the starboard wing separated during the flight. 
Subsequently, the fallen engine struck the tail of the air-
craft, damaging most of the horizontal surfaces. The loss 
of the engine also led to the separation of the right wing 
panel outboard of the engine. As a result, the aircraft 
pitched down, rolled to the right and crashed [1,2,3]. 

The results of the accident investigation described 
above, and Pan Am Flight 103 disintegrated over Locker-
bie, Scotland in 1989 due to a bomb explosion, motivated Project supported by the National Natural Science Foundation of China 

(Grant No. 60776819). 
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us to explore the analysis of aircraft CVR sound sources 
for use in aircraft accident investigations.  

2.1 Framework of Background Cockpit Sound 

Identification System 

The framework of the system composes of three modules: 
feature extraction, audio search, and audio database[4]. 
When audio signals are fed into the system, it extracts 
audio features first; audio features are compared with the 
features in audio database. Audio candidates are gener-
ated according to the result of the match process.  

Feature extraction module does some preliminary 
processing, such as down sampling, low band pass filter-
ing. Then it computes the audio features using algorithm 
described in 2.2 below. Audio feature database stores the 
audio features computed in advance. Audio search mod-
ule compares the features of possible identical audios and 
outputs the best candidates. 

2.2 Audio Feature Extraction Approach 

Because human hearing is most sensitive to the frequen-
cies below 2,000 Hz, high frequency parts lose heavily 
when audios are encoded at very low bit rates. Accord-
ingly, in this system audio signals are down sampled to 
5,000 Hz first. Then signals are segmented into frames 
and weighted by hamming window. Fourier Transforma-
tion is performed and spectrum power is obtained. 33 
overlapped frequency bands are used at equal logarithm 
interval. 32-bit audio feature is computed for each frame.  

In order to make audio feature stable, frame length 
as long as 410 milliseconds is chosen. Frame shift is only 
12.8 milliseconds. As a result, the frame boundaries of 
audio queries in the worst case are 6.4 milliseconds off 
from the boundaries used in the database that are pre- 
computed.  

2.3 Audio Search Approach 

2.3.1 Audio Feature Similarity Measurement 
Each frame has one 32-bit audio feature. The similarity of 
two features is measured by Hanning distance, which is 
the number of different bits. The smaller the Hanning 
distance, the more similar the two features are, vice versa.  

Bit Error Rate (BER) defines the similarity of two 
audio feature serials with same length. Let X, Y are two 

audio feature serials, X= 1, 2, ..., nx x x ,  

Y=  .  1, 2, ..., ny y y

Where N is the frame number of the features. The 
BER between X and Y is  

 

 

 
Where, H(.) is Hanning distance between X and Y. 

Obviously, 0≤BER≤1, the lower BER is, the more simi-
lar the two feature serials are.  

2.3.2 Beam Based Search Approach 
When searching audio candidates in the audio database, it 
will be of very low efficiency if whole match comparison 
is processed at every possible starting frame. A beam- 
based search strategy is presented in this system to avoid 
low efficiency. The main idea of this approach is that it 
takes the current best score as the base and prunes away 
all branches whose scores are higher than the base plus 
the empirical threshold (beam width). 

2.4 Experimental Results 

First, we used Chinese National Project Speech Database 
as test data. All silent parts at the beginning and the end 
of the speech files are cut off. Speech files are merged 
into 5-minute long files. Totally 20 hours of speech is 
used as the audio database. Five hundred 3-second audio 
files are picked out from the database randomly. These 
3-second audios are used as the audios to be identified. 
All these speech data are in PCM 16K sample rate format 
originally. They are encoded by various codecs at differ-
ent bit rate and then decoded to PCM 8K sample rate 
wave files that are used in our experiments.  

We performed two types of audio search tests in this 
study. First, the following three types of sounds generated 
in the cockpit were recorded as sound samples. 
 Warning and alert signals such as GPWS, TCAS, 

engine fire, autopilot disengage, etc; 
 Sounds generated by switches on central panel P2, 

glare shield P7, and forward overhead panel P5; 
 Sounds generated by levers such as landing gear 

lever, thrust lever, speed-brake lever, and flap lever as 
well as stall warning signals generated by the levers. 

Nearly twenty hours of audio data are saved in the au-
dio database. Fifty audio segments that are less than three 
seconds long are used as queries to be identified.  

The first type of audio search tests uses the cockpit 
sound samples we recorded earlier to test against all 
pre-recorded cockpit sound samples in the same database. 

The second type of audio search tests uses real sound 
recorded on tape CVR and Solid State CVR. The sound 
samples to search with are the same as the first type of 
tests. The higher the score is, the more similar the two 
feature series are.  

From the test results, we can see that, in first type of 
audio search tests, three types of sounds generated in the 
cockpit were recorded as sound samples have the higher 
score. While in second type of audio search tests, warning, 
alert signals and switch sounds have higher scores; the 
sounds generated by various levers have the lowest score. 
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 3. Automatic Speaker Recognition 

The speech information recorded by the CVR can be 
analyzed with spectrum analysis in order to match the 
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recorded voices to the appropriate person. 
Automatic speaker recognition, automatically extract 

information transmitted in speech signal, which can be 
classified into identification and verification, is the task of 
identifying a speaker based on his or her voice in CVR 
recording. Speaker identification is the process of deter-
mining which registered speaker provides a given utter-
ance. Speaker verification is the process of accepting or 
rejecting the identity claim of a speaker. Speaker recogni-
tion methods can also be divided into text-dependent and 
text-independent methods. The former require the speaker 
to say key words or sentences having the same text for 
both training and recognition trials, whereas the latter do 
not rely on a specific text being spoken. 

3.1 Framework of Automatic Speaker Recogni-
tion System 

The framework of the system composes of three modules: 
feature extraction, speaker modeling, and speaker recog-
nition. When audio signals are fed into the system, the 
speaker features are drawn from the input speech seg-
ments. Furthermore, the influence of channel and envi-
ronment is restrained by robust techniques. During 
speaker modeling process, input front-end features char-
acterize the speaker. GMM or SVM modeling approach is 
used to train the target speaker models, which compose 
the speaker model database.  

3.2 Speaker Feature Extraction Approach  

There are two main aspects of speaker features. First, 
physiologic structure is different by individual. Second, 
the uttered habits are different. It can be described as 
prosody features. In the field of speech signal processing, 
the former is embodied on the structure of frequency. The 
classical features include cepstral and pitch. And the latter 
is embodied on the variability of the speech based on the 
spectral structure. The classical features include the delta 
cepstral and delta pitch. 

In speaker recognition, the cepstral is used mostly 
and could achieve a good performance. Besides, it can be 
extracted more easily than other features. At present, the 
Mel Frequency Cepstral Coefficients (MFCC) is used 
successfully in speaker recognition, which is proved in 
applications. In feature extractors of speaker systems, all 
of the feature vectors are processed by CMS and feature 
warping method. 

Using the delta cepstral information based on time 
domain is proved that the performance of speaker recog-
nition is enhanced mostly. In our system, speech data are 
parameterized every 25ms with 15ms overlap between 
contiguous frames. For each frame a feature vector with 
52 dimensions is calculated: 13 Mel Frequency Percep-
tual Linear Predictive (MFPLP) coefficients, 13-delta 
cepstral, 13 double delta cepstral and 13 triple cepstral. 

3.3 Two of the Speaker Models 

The GMM system uses a 100-3800 Hz bandwidth front 
end consisting of 24 MEL filters to compute 13 cepstral 
coefficients (C1-C13) with cepstral mean subtraction, and 
their delta, double delta, and triple-delta coefficients, pro-
ducing a 52 dimensional feature vector. The feature vec-
tors are modeled by a 2048-component GMM.  

The cepstral SVM system is based on the cepstral 
sequence kernel[5]. All of them use basic features, which 
are similar to the cepstral GMM system. The only differ-
ence is that MFCC features are appended with only delta 
and double delta features.  

3.4 Speaker Recognition Approaches 

The speaker identification is that given the test speech 
segment, the system needs to choose the true speaker 
from the speaker models database. The key function is 
calculating the log likelihood of the input test speech fea-
tures and one target speaker model. Its calculated method 
is denoted as the follows: 

     log | log |hyp UBMS X p X p X    

Where  S X  is the final output score, 

 | hypp X   is the probability of the speech segment 

based on the hypothesis model,  is the 

probability of the speech segment based on UBM. The 
final output score 

 | UBMp X  

 S X  is according as the final answer 

“YES” or “NO” by comparing with the system threshold.  

3.5 Evaluation and Experimental Results 

3.5.1 NIST Evaluation 
We used NIST 06 SRE tasks and data as training and test 
data. The task of speaker detection includes single 
speaker verification and conversational speaker verifica-
tion based on telephone database.  

There is a single basic cost model for measuring 
speaker detection performance, to be used for all speaker 
detection tests. For each test, a detection cost function 
will be computed over the sequence of trials provided. 
Each trial must be independently judged as “true” (the 
model speaker speaks in the test segment) or “false” (the 
model speaker does not speak in the test segment), and 
the correctness of these decisions will be tallied. This 
detection cost function is defined as a weighted sum of 
miss and false alarm error probabilities: 

Det Miss Miss | Target Target

FalseAlarm FalseAlarm | NonTarget Target+ (

C C P P

C P P1 )

  
  

 

The parameters of this cost function are the relative 
costs of detection errors,  and , and the a 
priori probability of the specified target speaker, . 
The parameter values is used as the primary evaluation of 
speaker recognition performance for all speaker detection 

MissC FalseAlarmC
TargetP
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C=number of correctly recognized test utterances / 
total number of test utterances 

tests,  =10, =1, =0.01. Besides, the 
Equal Error Rate (EER) is also described the performance. 
EER is denoted as the point value when the miss rate is 
equal to the false alarm rate,  

MissC FalseAlarmC

Miss Ta( |P

TargetP

False) (P

In this test, correct rate is 10 out of 12, which is 
83.3%. 
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3.5.2 Experiments and Results 
The experiments are assigned based on 2006 NIST 
speaker recognition evaluation database.  
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tiveness. The correct rate C is defined as follow: 
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