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Abstract 
Recently, many open source software (OSS) developed by various OSS 
projects. Also, the reliability assessment methods of OSS have been proposed 
by several researchers. Many methods for software reliability assessment have 
been proposed by software reliability growth models. Moreover, our research 
group has been proposed the method of reliability assessment for the OSS. 
Many OSS use bug tracking system (BTS) to manage software faults after it 
released. It keeps a detailed record of the environment in terms of the faults. 
There are several methods of reliability assessment based on deep learning for 
OSS fault data in the past. On the other hand, the data registered in BTS dif-
ferences depending on OSS projects. Also, some projects have the specific 
collection data. The BTS has the specific collection data for each project. We 
focus on the recorded data. Moreover, we investigate the difference between 
the general data and the specific one for the estimation of OSS reliability. As a 
result, we show that the reliability estimation results by using specific data are 
better than the method using general data. Then, we show the characteristics 
between the specified data and general one in this paper. We also develop the 
GUI-based software to perform these reliability analyses so that even those 
who are not familiar with deep learning implementations can perform relia-
bility analyses of OSS. 
 

Keywords 
Open Source Software, Deep Learning, Software Reliability, Deep Learning, 
Software Tool 

 

1. Introduction 

Open source software (OSS) systems have been developed by various OSS 
project. Along with this, the number of users become increasing regardless of 
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individuals or companies. On OSS, the number of reported faults is also in-
creasing. In particular, several serious faults are detected in the easier phase of 
operation. In addition, since the source code of OSS is opened to the public, it is 
easier for crackers to find vulnerabilities than commercial software. In particular, 
the zero-day attacks are targeted to vulnerabilities. The vulnerability will be fixed 
when the serious problems are recognized by users. This is one of the major risks 
by operating OSS on the internet. 

Under these circumstances, it is necessary to assess the reliability of the OSS in 
order to operate OSS safely and stably. Many methods for software reliability as-
sessment have been proposed by software reliability growth models [1] [2] [3]. 
However, it is difficult to assess the reliability of OSS. OSS user is increasing year 
by year. However, these users are not familiar with OSS. Therefore, the users 
may be exposed by the potential security and operational risks, if the OSS is in 
an unstable state. Various researchers have discussed the reliability of OSS to 
solve this problem [4] [5]. Software reliability model is one of the methods to 
measure OSS reliability. This method has the advantage for the reliability evalu-
ation dynamically. Historically, the methods of software reliability assessment 
based on the software reliability growth models have been proposed by many 
researchers [1] [2] [3]. Also there are several methods of reliability assessment 
based on deep learning for OSS fault data in the past [6] [7]. 

On the other hand, a bug tracking system (BTS) is often used in OSS devel-
opment to manage project progress by correcting faults. The BTS records many 
information in terms of the faults reported after releasing the OSS. There are the 
data such as the date, time, the nickname of reporter, assignee, OS, severity etc. 
on the BTS. This recorded data set is different according to OSS project. Also, 
there is the data collected in the specified OSS project only. Several researches 
have used BTS fault data to estimate the OSS reliability [6] [7]. However, there 
are no research papers in terms of the collected specific data to the OSS project. 

We focus on specific data recorded on the BTS of OSS. We discuss the differ-
ence between the general data collected by BTS and the specified data. Further-
more, we develop GUI-based software based on deep learning by using the pro-
posed method. 

The organization of this paper is as follows:  
Section 2: describes the several methods that have been proposed in previous 

papers.  
Section 3: proposes the estimation method of OSS software reliability assess-

ment based on deep learning. Then, the proposed method applies data recorded 
only in a specific OSS to deep learning.  

Section 4: shows the optimizing method of neural network.  
Section 5: describes the development of tools to perform deep learning.  
Section 6: shows the several numerical examples based on proposed method 

and previous method.  
Section 7: discusses the proposed method. 
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2. Data Preprocessing for OSS Fault Data and MTBF 

There are various reliability models and neural networks for improving the 
software reliability. Many of the methods for estimating reliability with neural 
networks based on time-series analysis are using the past data of failure occur-
rence [8] [9]. In particular, many reliability estimation methods based on ma-
chine learning use only the software failure data in order to analyze the reliabili-
ty. On the other hand, a reliability evaluation method using the BTS has been 
proposed in the past in terms of OSS software reliability. Also, the bug manage-
ment by using BTS is widely used in OSS projects around the world. The general 
fault factors recorded in the BTS have been used in several researches [6] [7]. On 
the other hand, the BTS has collected the other specific data of OSS projects. 
This paper has the unique feature that we discuss the difference between the 
general data and the specific data on BTS. We show the general data recorded in 
many BTS in Table 1. Table 2 shows the specific data of OSS. Table 1 and Table 
2 are obtained from RedHad Openstack [10]. 

In order to use these data in deep learning, it is necessary to convert above 
mentioned data to numerical values. In this paper, the general data have been 
converted into numerical values as shown in Table 3. Similarly, the specific data 
have been converted into numerical values as shown in Table 4. 

Mean Time Between software Failures (MTBF) is one of reliability assessment 
measures. The software is the reliable system if the MTBF becomes large. Then 
the software will operate continuously without failure. The MTBF grows as de-
velopment progresses because the software faults are removed during the soft-
ware operation. i-th MTBFi  is given by the following equation 
 
Table 1. The list of general fault data in BTS. 

Classification Contents 

Opened The date and time recorded on the bug tracking system. 

Changed The modified date and time. 

Status The fixing status of fault. 

Resolution The status of resolution of fault. 

Hardware The name of hardware under fault occurrence. 

OS The name of operating system under fault occurrence. 

Severity The level of fault. 

Summary The brief contents of fault. 

Reporter The nickname of fault reporter. 

Assignee The nickname of fault assignee. 

Product The name of product included in OSS. 

Component The name of component included in OSS. 

Version The software version number of OSS. 
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Table 2. The list of specific fault data in BTS. 

Classification Contents 

Votes The number of faults in BTS. 

Type The type of faults. 

Keywords The keyword about fault. 

QA Contact The name of correspondent person of fault. 

QA Contact Real Name The real name of correspondent person of fault. 

Alias The name of fault alias. 

Dependent Products The product depending to fault. 

Depends On The faults depend on the other fault. 

Docs Contact The nickname of fault reporter. 

Fixed In Version The version with fixed fault. 

URL The URL related to fault. 

 
Table 3. Method of numeric conversion for each factor in general data. 

Factor Method of Numeric Conversion 

Opened, Changed Time of between previous and current fault 

Product, Component, Version, 
Reporter, Assignee, Severity, 

Status, Resolution, Hardware, OS 
Frequency encoding 

Summary Count encoding 

 
Table 4. Method of numeric conversion for each factor in specific data. 

Factor Method of numeric conversion 

Opened, Changed Time of between previous and current fault 

votes, Type, Keywords, Classification 
QA Contact, QA Contact Real Name, 

Alias, Dependent Products, 
Depends On, URL 

Frequency encoding 

Fixed In Version, Docs Contact Count encoding 

 

MTBF i
i

i

T
N

≡ ,                         (1) 

where each parameters are defined as follows:  

iN : The total number until i-th fault occurred during operation,  

iT : The time of software operation until i-th fault. 
We consider that MTBF is used for the systems that can be repaired. On the 

other hand, the Mean Time To Failure (MTTF) is used for the non-repairable 
systems. In this paper, MTBF is used as the assessment measure for OSS reliabil-
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ity because the OSS is repairable system. In this paper, the MTBF is defined as 
the time between the correction of a fault and the occurrence of the next fault. 

3. Estimation of OSS Reliability Based on MTBF and Deep  
Learning 

Several researchers have proposed the useful deep learning algorithms. In this 
paper, we use MTBF-based deep learning to estimate OSS reliability. In this pa-
per, we have constructed a feed-forward neural network in which signals propa-
gate in the order of input layer, intermediate layer, and output layer, respective-
ly. Then, we distinguish between the general data recorded on BTS and the spe-
cific data on OSS project. We show three cases based on deep learning in Table 
1 and Table 2 as explanatory variables. Moreover, we consider the case of the 
case with both general and special data as explanatory variables. 

4. Optimization of Deep Neural Network 

Several algorithms have been proposed by several researchers for parameter op-
timization of deep learning networks [11] [12] [13] [14] [15]. In this paper, we 
use the Adam optimizer well known as deep learning optimization algorithm 
[16]. Figure 1 shows the details of the hyper-parameters used for Adam. Adam 
is a stochastic gradient descent method that improves on AdaGrad and RMSProp. 
It has the characteristic of updating values more frequently where the gradient of 
the loss function is large and reducing the update range. Then, the gradient is 
highly variable, the facilitating convergence with a small amount of computa-
tion. 
 

 

Figure 1. Network model. 
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4.1. Activation Function 

Activation function is the function used to convert the sum of inputs from the 
network into outputs. This function is typically a nonlinear function in order to 
achieve in Figure 1 outputs that cannot be represented by a single node. In this 
paper, ReLU is used as the activation function. ReLU is following as  

( )
0 0,

0.
u

f u
u u

≤
=  >

                       (2) 

In deep learning, the gradient method defines a loss function as Equation (2). 
Also, there is the other loss function with weights to modify the derivative to-
ward near 0. This is often proposed when learning proceeds. However, depend-
ing on the activation function, as the number of layers increases, nodes with 
gradients close to 0 are more likely to appear, and the Vanishing gradient prob-
lem, where the weights are not updated, is more likely to occur. ReLU is a func-
tion that is less prone to this problem. In mathematics, a value of 0 is not diffe-
rentiable. In general, when the value is 0, including when it is less than 0, it fol-
lows that  

( )
0 0,
1 0.

u
f u

u
≤′ =  >

                       (3) 

From Equation (3), the gradient is sufficiently large to prevent the gradient 
loss problem. It also has the advantage of being less computationally expensive 
due to its simple formulas. 

4.2. Loss Function 

Loss function is a function that evaluates the error between the output value of 
the network and the correct value when optimizing the weights of each node in 
deep learning. In this paper, the estimation is a regression problem to predict the 
output value of MTBF. The widely known loss functions for regression problems 
are MSE (Mean Squared Error), which squares the error between the correct so-
lution and the output value, and MAE (Mean Absolute Error), which takes the 
absolute value of the correct solution and the output value, respectively. MSE 
uses the error squared, making MSE a more error-tolerant network than MAE. 
Since there are many outliers in the MTBF estimated in this paper that are far 
from the overall trend, MAE is used as the loss function. MAE is following as  



1

1MAE ,
N

i i
i

y y
N =

= −∑                       (4) 

where each parameter is as follows: 
N: the total number of data,  


iy : estimate,  

iy : output data from network.  

5. Development of Prototype Deep Learning Tool Based on  
GUI 

Various research papers have used the deep learning to estimate the reliability of 
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OSS. In order to perform such deep learning, there are time constraints for users 
who are not familiar with programming language, such as the need to build a 
scientific environment for program installation, and computers for deep learn-
ing, as well as time constraints for building the environment. This makes it dif-
ficult for the average user to understand the reliability of OSS by using deep 
learning. Therefore, we have developed a GUI-based reliability analysis tool to 
solve this problem. Our software works as follows  

1) The data of Input OSS fault data are send to Node.js server from client 
software.  

2) The Python read the transfer data, and start the algorithm of deep learning.  
3) The Python send the estimation results to Node.js server.  
4) The Python transfer the estimation results to client software. Then, the user 

can see the results by several graphs.  
The software workflow is shown in Figure 2. The environment for deep 

learning is not built on the user’s side, but on the server, making the software 
independent of the user’s execution environment. The program operation screen 
is shown in Figure 3. The intuitive GUI-based software can be used by users 
who are not familiar with programming. The method proposed in Section 3 is 
used for deep learning. In addition, as shown in Figure 4, the user can choose 
whether to use general data, specific data, or both as parameters for deep learn-
ing. This enables optimal deep learning at the user’s discretion. After the train-
ing is completed, the server returns three graphs, MTBF, cumulative MTBF, and 
the Error Scatter, respectively. Then, the user can view the estimation results us-
ing the application. This paper presents as the examples for numerical results of 
the method proposed in Section 3 using the prototype tool. 
 

 

Figure 2. The workflow of reliability assessment tool. 
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Figure 3. The screen of software readme. 
 

 

Figure 4. The screen of software menu. 

6. Numerical Illustrations of Our Tool 

We have retrieved 20,000 large fault data sets from RedHat Openstack’s BTS and 
input them into our deep learning tool. Then, the results were obtained from 
three deep training runs: one with general data, one with specific data, and one 
with both general and specific data, respectively. Figures 5-7 show the estimated 
instantaneous MTBF. Figure 5 and Figure 7 show that the estimation results 
generally capture the trend of the testing data. On the other hand, the graph in 
Figure 6 shows that the estimation result of MTBF is not so large even though 
the MTBF of the testing data is higher. 

Figures 8-10 show the estimated cumulative MTBF. The cumulative MTBF 
shows the MTBF when all the instantaneous MTBFs up to a certain point are 
summed. The graphs in Figure 8 and Figure 10 show that the testing data is well 
estimated for the actual data. In particular, the shape of the graphs of the testing 
data and the estimation results in Figure 10 are very similar. On the other hand,  
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Figure 5. The estimated MTBF for faults using general parameter. 
 

 

Figure 6. The estimated MTBF for faults using specific parameter. 
 

the graph in Figure 9 shows a lower level of cumulative MTBF than the testing 
data. 

Figures 11-13 show the scatter of errors. Also, Figure 11 and Figure 12 show 
that the testing data and estimation results tend to plot near the same when the 
MTBF of the testing data is low. We found that the estimate is not well done 
when the MTBF of the testing is high. Figure 13 plots the testing data and the 
estimation results in the same vicinity regardless of the testing data. 
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Figure 7. The estimated MTBF for faults using general and specific parameter. 
 

 

Figure 8. The estimated cumulative MTBF for faults using general parameter. 
 

Table 5 shows the correlation coefficient for the scatter of errors. The correla-
tion coefficients are the highest for the general and specific data. This indicates 
that the accuracy of estimation is the highest for the general and specific data. 

From above results, we find that combining general and specific data for 
learning may provide more accurate estimation than using general data. 
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Table 5. The correlation coefficient of errors. 

General data 0.60552 

Specific data 0.58601 

General data and specific data 0.61113 

 

 

Figure 9. The estimated cumulative MTBF for faults using specific parameter. 
 

 

Figure 10. The estimated cumulative MTBF for faults using general and specific parameter. 
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Figure 11. The relation of testing data and estimate for faults using general parameter. 
 

 

Figure 12. The relation of testing data and estimate for faults using specific parameter. 

https://doi.org/10.4236/ajor.2022.123007


S. Miyamoto et al. 
 

 

DOI: 10.4236/ajor.2022.123007 123 American Journal of Operations Research 
 

 

Figure 13. The relation of testing data and estimate for faults using general and specific parameter. 

7. Concluding Remarks 

In this paper, we have discussed the availability of our method by using specific 
data for estimate MTBF. As a result, the proposed estimation results using the 
specific data are not well than the general data. The estimation using a combina-
tion of general and specific data was more accurate than the estimation using 
general data. This has shown that specific data is useful as an explanatory varia-
ble with different characteristics from general data. 

In addition, we have developed a reliability assessment tool based on deep 
learning that can be used by users who are not familiar with deep learning. The 
tool has been designed to be more practical by allowing users to choose whether 
to use the parameters recorded only in the specific OSS projects proposed in this 
paper. 

In BTS, there are various types of failure data other than those used in this 
paper. Therefore, as a future study, we are planning to investigate the construc-
tion of reliability models by using fault data collected in BTSs of other OSS 
projects. On the other hand, some specific data collected from OSS projects may 
adversely affect the estimation. We would like to discuss the selection of appro-
priate specific data in the future. 
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