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Abstract 
When the circuit breaker cuts the electric current, an electric arc is created 
between its electrodes. The success or failure of breaking the electric current 
by the circuit breaker depends strongly on the physico-chemical properties of 
the electric arc created, such as the composition of which depends on the 
material of the electrical contacts. In this work, we determine the equilibrium 
composition of the electric arc in the low voltage air circuit breaker with sil-
ver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K 
and at atmospheric pressure. We use the Gibbs free energy minimization 
method and develop a computer code to determine the equilibrium composi-
tion of the created plasma. The analysis of the results obtained shows that O2 
particles with a dissociation energy of 5.114 eV, NO with a dissociation ener-
gy of 6.503 eV, and N2 dissociation 9.756 eV dissociate around 3500 K, 5000 
K, and 7500 K, respectively. We note that the electro-neutrality is established 
between the electrons and the cations: Ag+ and NO+, for temperatures lower 
than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is 
established between the electrons and the cations: N+, O+, and Ag+. The nu-
merical density of the electrons increases when the proportion of the vapor of 
the electrical contacts increases in the mixture, in particular for temperatures 
lower than 11,000 K.  
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1. Introduction 

Switching devices such as circuit breakers play a very important role in the 
transport and distribution networks of electrical energy from the various pro-
duction plants to the users. Indeed, the circuit breaker is the protection element 
by excellence which has the possibility of de-energizing an electrical circuit by 
instantly cutting off the current in the event of anomalies. The circuit breaker 
can prevent fires usually caused by these anomalies. 

When the electric current is cut in a circuit breaker, an electric arc is created 
between its electrodes. This electric arc will generate a plasma which can be de-
fined as a medium made up of a set of particles (atoms, molecules, electrons, 
radical ions) totally or partially ionized and electrically neutral. 

The electric arc and the plasma have been the subject of numerous theoretical 
and experimental studies [1] [2] [3] [4] [5]. Studies have shown that the nature 
of the electrodes (electrical contacts) significantly modifies the behavior of the 
electric arc [6]. 

Circuit breaker contact materials have various qualities. There is no ideal ma-
terial. Thus, the choice of the material constituting the electrodes is crucial and 
must above all be adapted to the intended application. 

In this work, we are interested in the equilibrium composition of the plasma 
in the low voltage air circuit breaker with silver tin dioxide alloy contacts. The 
reason is that this type of contact has a high resistance to electric arc erosion and 
has good anti-weld properties [6]. 

We use the Gibbs free energy minimization method and we develop a com-
puter code to determine the equilibrium composition of the created plasma. 

After the introduction in Section 1, we give the materials and methods in Sec-
tion 2. The results, analyses, and discussions are given in Section 3. Finally, we 
present the conclusion in Section 4. 

2. Materials and Methods 
2.1. Choice of Electrical Contact Material 

The materials used for contacts in breaking devices are mainly copper and silver 
due to their low contact resistance. If the latter is used in their pure state, they 
undergo substantial erosion and tend to weld together under the effect of strong 
electric currents. To avoid this, manufacturers manufacture electrical contacts 
from metal alloys or pseudo-alloys in the form of solid rivets. They are mainly 
composed of AgC, AgNi, AgW, AgWC, CuCr, and AgSnO2. 

The materials used in the development of electrical contacts must have 
well-defined properties, in order to have a long life and to be resistant to various 
stresses with significant temperature which rises until melting and the formation 
of droplets. Therefore, they must satisfy the following properties [7]: 
- Have adequate melting temperatures; 
- Have high electrical and thermal conductivities; 
- Be sufficiently inert with respect to the atmosphere in which they will be 

https://doi.org/10.4236/ampc.2022.125006


B. Adjigkiga et al. 
 

 

DOI: 10.4236/ampc.2022.125006 71 Advances in Materials Physics and Chemistry 
 

placed to avoid the formation of insulating films; 
- Have sufficient mechanical properties to withstand the forces applied when 

the contacts are crushed. 
In addition, the electrical contacts depend on several parameters such as the 

nature of the circuit (resistive, inductive), the type of electric arc (opening or 
closing), the type of current (direct or alternating current), and the intensity 
(low or strong). This is why the choice of alloy for electrical contact materials is 
tricky. 

Silver is preferentially used for high-intensity electrical contact pads, despite 
its higher cost, because it has a lower electrical resistivity (1.59 µΩ∙cm) and high 
thermal conductivity (419 W∙m−1∙K−1) at room temperature (20˚C) [6]. In addi-
tion, silver is a noble metal that does not oxidize in the air, unlike copper and 
aluminum. 

However, its use remains limited due to its tendency to weld and its low resis-
tance to erosion. Indeed, its poor resistance to erosion is linked to its low melt-
ing temperature (961˚C) and its low boiling temperature (2212˚C). This is why 
silver is associated with other metals (Cu, Ni, C, W) or oxides (CdO, SnO2, ZnO) 
to form pseudo-alloys in order to improve the resistance to welding and to ero-
sion, when the electric current is cut off, without altering the resistance of the 
electric contact [6] [8] [9]. Metal oxides of the SnO2 type (3.3% to 5% maximum 
14%) are intended to reduce the risks of welding in the breaking device, but their 
addition in large quantities greatly increases the duration of the electric arc, thus 
aggravating the contact erosion [6]. 

We choose to use the alloy of silver and tin dioxide (AgSnO2) because it has a 
high resistance to electric arc erosion and has good anti-welding properties [6] 
[8] [9].  

2.2. Method for Determining the Equilibrium Composition of  
Plasma 

In this work, we use the Gibbs free energy minimization method. This method is 
very effective and easy to implement. It is also adapted to the type of plasma stu-
died. 

However, it requires knowledge of the specific thermodynamic data of all the 
chemical species that make up the mixture. It was developed by White, Johnson 
and Dantzig at full thermodynamic equilibrium [10]. Lagrange multipliers are 
used to minimize the Gibbs free energy (free enthalpy), resulting in the conver-
gence of results. 

The determination of the equilibrium composition requires prior knowledge 
of the specific chemical potentials of all the particles populating the plasma. We 
used data from NIST, Bonnie, F. Bendjebbar and JANAF tables to determine 
the specific chemical potentials of electrons, atomic and molecular species [2] 
[11] [12]. We also use the thermodynamic data smoothed and tabulated by Bon-
nie for the calculation of the specific thermodynamic properties. This data is for 
standard enthalpy and standard entropy. Enthalpy and entropy are derived from 
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the standard heat capacity. 
The thermodynamic data are dependent on the temperature and are deter-

mined at the pressure of 1 bar. 
The heat capacity is given by the relation [12] [13]: 

( )0
, 2 1 2 3 4

1, 2, 3, 4, 5, 6, 7,
P i

i i i i i i i

C T
a T a T a a T a T a T a T

R
− −= + + + + + +       (1) 
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The specific chemical potential is given by the relation: 
0 0
i iH T Sµ = − ∗                         (4) 

where ( ), 1, ,7j ia j =   represent the smoothing constants of 0
,p iC , 0

iS  and 
0
ih . ,j ib  the integration constants of the particle i, R the ideal gas constant and 

T the temperature in kelvin. The constants ,j ia  and ,j ib  of certain particles are 
taken from the work of Bonnie [12]. 

We use the following hypotheses: 
- The composition of the air, in mass percentage, is taken as 77.8% nitrogen 

and 22.2% oxygen; 
- The other constituents of the air are negligible; 
- The range of temperatures considered is from 500 K to 15,000 K and at at-

mospheric pressure; 
- The different percentages retained are mass percentages; 
- The different species of the plasma are characterized by a single temperature. 

In the case of the calculation of the equilibrium composition of plasmas of 
mixtures of air, silver and tin dioxide, we have retained five types of basic nuclei 
(four basic elements and electrons): Ag, N, O, Sn and e−. 

Practical studies have shown that silver oxide (Ag2O) dissociates from 430 K. 
The latter is eliminated when the electric arc appears. 

The chemical particles taken into account in the plasma of mixtures of air, 
silver and tin dioxide are: 
- The electron and the monatomic particles are in total seventeen (17): 

e−, Ag−, N−, O−, Sn−, Ag, N, O, Sn, Ag+, N+, O+, Sn+, Ag2+, N2+, O2+, Sn2+; 
- The diatomic particles are a total of eleven (11): 

2N− , 2O− , NO−, NO, N2, O2, SnO, Sn2, NO+, 2N+ , 2O+ ; 
- The triatomic particles and more are a total of twelve (12): 
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3NO− , 2NO− , N2O5, N2O4, N2O3, NO3, NO2, N2O, N3, O3, SnO2, N2O+. 
We have a total of forty (40) chemical particles. 
First, we determine the numbers of moles, and then this will allow us to cal-

culate the densities of the different particles. At a given point, the numerical 
densities of the chemical species, symbolized by ( )1 2 3, , , , MY y y y y , must sa-
tisfy electrical neutrality and conservation of the number of nuclei in the plasma. 
These conditions result in the following relation [14] [15] [16] [17]: 

( )
1

1, 2, ,
M

ij j j
i

a y b j m
=

= =∑                       (5) 

where M is the number of chemical species in the mixture, m the number of ba-
sic nuclei including the electron and ija  represents the matrix containing the 
number of nuclei and electrical charges of the chemical species taken into ac-
count in this work, in other words, ija  corresponds to the number of type nuc-
lei j of the particle i and jb  the initial number of type nuclei j. 

The calculated Gibbs free energy at the point ( )1 2 3, , , , MY y y y y  is given 
by [18] [19]: 
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The values iy  are proportional to the numerical densities in . 
We need to find the point ( )1 2 3, , , , MY y y y y  that minimizes the function 
( )G Y  and for which the coordinates iy  satisfy the following conditions: 

- The numbers of moles must be positive 0iy ≥ , i∀ ; 
- The coordinates iy  must satisfy the conservation of the number of nuclei 

and electrical neutrality. 
To obtain the direction in which G decreases, White et al. perform a Taylor 

series expansion of order two (02) at the point, which gives: 
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Taking into account the physical conditions of Equation (5), we introduce the 
Lagrange multipliers jπ . So we get the function ( )Xζ : 
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( )G X  is then minimal when we have [10] [20]: 
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Using the Newton-Raphson method, we obtain the following system of equa-
tions [2] [13] [18] [21] [22]: 
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The electric neutrality, in the plasmas of electric arcs, being established we can 
suppose that 1 0b =  ( 1b  is the number of initial electron). 

We take into account forty chemical species and five different types of nuclei 
which correspond to the five (05) Lagrange multipliers, that is to say that 

40M =  and 5m = . The system of Equations (11) is therefore a system of for-
ty-five (45) equations with forty-five unknowns, which are the numbers of moles 
of the forty chemical species plus the five Lagrange multipliers. 

The principle of the numerical method consists to assign initially and arbitra-
rily the moles numbers values iy  and to the five Lagrange multipliers. The 
numbers of moles must satisfy the following two conditions: 

1

0i
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ij i j
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y
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=
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j m
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                   (12) 

For the resolution of the system of Equations (11), the new values of the 
numbers of moles and the Lagrange multipliers are obtained by the following 
relation: 

i i i

j j j

x y yλ
π π λ π
= + ∆
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The parameter λ  is the correction coefficient. It allows avoiding the negative 
values of the numbers of moles which can appear when one moves away from 
the solution. To avoid exceeding the convergence point, λ  must satisfy the fol-
lowing condition: 
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Equation (14) translates that: 
0i i ix y yλ= + ∆   [ ]1;i M∀ ∈                   (16) 
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The new values of number of moles and Lagrange multipliers are used for a 
new cycle of calculation. The criterion for interrupting iterations is set by the 
following condition given by Cayet [13] [20]: 

( ) ( )
( )

1410
G X G Y

G X
−−

                       (17) 

Starting point values iy  do not obey Dalton’s law. The values obtained after 
convergence are proportional to the volume densities in . 

The proportionality constant is calculated with Dalton’s law by [13]: 

1

i i M

i
i

P P
kn x
y T

=

− ∆

=

∑
                         (18) 

where P is the total pressure of the mixture and ΔP the pressure drop resulting 
from the Coulomb attraction produced between the charged particles. 

3. Results, Analyzes, and Discussions 
3.1. Results 

In this part, first, we present the calculation results of the equilibrium composi-
tion of the pure air plasma. 

Next, we present the results of calculating the equilibrium composition of 
plasmas of mixtures of air, silver and tin dioxide assuming that the electrical 
contact material (the AgSnO2 alloy) contains four percent of tin dioxide (4% 
SnO2). 

Finally, we show the influence of vapor from electrical contacts on the nu-
merical densities of electrons and the four basic elements. 

Figures 1-3 present the evolutions of the numerical densities according to the 
temperature, of the particles populating these plasmas, at atmospheric pressure 
and at local thermodynamic equilibrium (LTE). 

Figure 4 shows the influence of vapor from electrical contacts in AgSnO2 on 
the numerical densities of electrons and the four basic elements. 
 

 

Figure 1. Evolution as a function of temperature of the numerical densities of particles in 
pure air plasma at atmospheric pressure and at LTE. 
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Figure 2. Evolution as a function of temperature of the numerical densities of plasma 
particles at 99.99% air and 0.01% AgSnO2, with 4% SnO2 in the alloy, at atmospheric 
pressure and at LTE. 
 

 

Figure 3. Evolution as a function of temperature of the numerical densities of plasma 
particles at 95% air and 5% AgSnO2, with 4% SnO2 in the alloy, at atmospheric pressure 
and at LTE. 
 

 

Figure 4. Influence of vapor from electrical contacts on the numerical densities of elec-
trons and the four basic elements. 
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3.2. Analyses and Discussions 

To validate the computer code that we have developed, we compare our values 
of numerical densities of some particles, from the air plasma at atmospheric 
pressure and the ETL (Figure 1), with those published by KOHIO et al. [18] 
for two temperature values (8000 K and 10,000 K). The results presented in 
Table 1 show that our results are in good agreement with those of KOHIO et 
al. [18]. 

The differences observed, in the order of 0% to 14% maximum, may be due, 
on the one hand, to the fact that we did not use exactly the same data for the 
calculation. 

On the other hand, by the fact that KOHIO et al. used the volume percentage 
while we used the mass percentage since, in this work, we are more interested in 
the masses of the different particles than in their volumes. 

The analysis of these different figures shows that the numerical densities of 
the particles: Ag, N, O and Sn, as well as the particles which are formed from a 
combination of these basic elements, depend closely on the initial proportions of 
the mixture.  

By examining the different results of Figure 2 and Figure 3, we observe that: 
- For temperatures below 1500 K, the main particles are: N2, O2, Ag and SnO; 
- For temperatures between 1500 K and 6500 K, the main particles are: NO, O, 

Sn and NO+; 
- For temperatures above 6500 K, the main particles are: e−, N, N+, O+, Ag+ and 

Sn+. 
We note that the electro-neutrality is established between the electrons and 

the cations: Ag+ and NO+, for temperatures lower than 6500 K. For temperatures 
above 6500 K, electro-neutrality is established between the electrons and the ca-
tions: N+, O+ and Ag+. 
 
Table 1. Comparison of our composition calculation results, of air plasma at ETL and at 
atmospheric pressure, with those of KOHIO et al. [18]. 

Particules 
8000 K 10,000 K 

KOHIO this study difference% KOHIO this study difference% 

e− 2.18E+21 2.19E+21 0.45% 1.67E+22 1.71E+22 2.39% 

O2 8.41E+18 7.77E+18 7.60% 1.24E+18 1.08E+18 12.90% 

NO 6.63E+20 7.05E+20 6.33% 6.26E+19 6.75E+19 7.82% 

N 5.89E+23 6.54E+23 11.01% 4.97E+23 5.49E+23 10.46% 

N2 4.91E+22 5.53E+22 12.62% 1.93E+21 2.17E+21 12.43% 

O+ 4.07E+20 3.53E+20 13.26% 2.78E+21 2.41E+21 13.30% 

N+ 1.34E+21 1.51E+21 12.68% 1.31E+22 1.46E+22 8.95% 

O 2.02E+23 1.90E+23 5.94% 1.47E+23 1.39E+23 5.44% 
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Electronegative particles (anions): 2N− , O−, N− and 2O−  appear with low 
densities. Nevertheless, these anions could have a significant influence on the 
electrical conductivity, because these particles capture the electrons and reduce 
not only the number of electrons but also their mobility. 

We notice that the O2 particle, with a dissociation energy of 5.114 eV, disso-
ciates around 3500 K. The NO particle, with a dissociation energy of 6.503 eV, 
dissociates around 5000 K. The N2 particle which has a dissociation energy of 
9.756 eV higher than the last two particles dissociates around 7500 K. Thus, we 
can say that the dissociation temperature of a particle depends on its dissociation 
energy. 

Moreover, in these plasmas, we observe that, for the same temperature, the 
numerical densities of the Sn2+ particles are greater than the numerical densities 
of the Ag2+ particles. This can be explained by the fact that the second ionization 
energy of tin (14.63 eV) is lower than that of silver (21.49 eV). Similarly, the 
numerical densities of N2+ particles are higher than the numerical densities of 
O2+ particles. This can be explained by two factors. The first factor is that the 
second ionization energy of nitrogen (29.60 eV) is lower than that of oxygen 
(35.11 eV). The second one is due to the fact that the percentage of nitrogen is 
greater than that of oxygen in the initial proportion. 

According to these different figures, we notice that the poly-atomic particles 
such as NO3, N2O4, N2O3, N2O5, 3NO−  do not appear, that is to say, that their 
numerical densities are lower than the numerical minimum density that we con-
sidered (1015 m−3). Indeed these particles dissociate when the temperature in-
creases because their dissociation energies are very low. It is the same for the 
particles: O3, N3 which only appear at very low temperatures with low numerical 
densities ( 19 310 min −

 ). 
The analysis of Figure 4 shows that for the same temperature, the numerical 

densities of silver atoms and tin increase when the percentage of the particles 
coming from the vapor of the electric contacts increases, while the atoms of ni-
trogen and oxygen decrease slightly. Indeed the numerical densities of particles 
such as Ag and Sn, for the same temperature, increase when the proportion, in 
mass percentage, of the vapor of the electrical contacts (AgSnO2) increases in the 
mixture. It is the same for the particles: Ag+, Sn+, Ag2+ and Sn2+. 

However, the numerical densities of particles such as N, O, N2, O2, N+, O+, 
N2+, and O2+ for the same temperature, decrease slightly when the proportion, in 
mass percentage, of the vapor from the electrical contacts increases. 

As for the numerical density of the electrons, it increases when the propor-
tion, in mass percentage, of the vapor of the electrical contacts increases in the 
mixture, for temperatures lower than 11,000 K, which could lead to an increase 
in the electrical conductivity of the electric arc. 

4. Conclusions 

The composition of the plasma in the low voltage air circuit breaker with silver 
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tin dioxide alloy contact is determined in a temperature range from 500 K to 
15,000 K and at atmospheric pressure. 

We used the Gibbs free energy minimization method. It allowed us to develop 
a computer code, from which we determined the equilibrium composition of the 
plasma created. 

The results obtained show that electro-neutrality is established between elec-
trons and cations: Ag+, and NO+, for temperatures below 6500 K. For tempera-
tures above 6500 K, electro-neutrality is established between electrons and ca-
tions: N+, O+ and Ag+. The density of the electrons increases when the propor-
tion, in mass percentage, of the vapor of the electrical contacts increases in the 
mixture, in particular for temperatures lower than 11,000 K. As the density of 
the electrons increases, this could lead to an increase in the electrical conductiv-
ity of the electric arc. The determination of the thermodynamic properties and 
transport coefficients are therefore necessary to verify this hypothesis. 
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