
Int. J. Communications, Network and System Sciences, 2010, 3, 32-37
doi:10.4236/ijcns.2010.31003 Published Online January 2010 (http://www.SciRP.org/journal/ijcns/).

Copyright © 2010 SciRes. IJCNS

Exploiting Loop-Carried Stream Reuse for Scientific
Computing Applications on the Stream Processor

Weixia XU, Qiang DOU, Ying ZHANG, Gen LI, Xuejun YANG
Institute of Computer, National University of Defense Technology, Changsha, China

Email: {xuwx, douq, zhangying, genli, xjyang}@nudt.edu.cn
Received September 19, 2009; revised October 22, 2009; accepted December 1, 2009

Abstract

Compared with other stream applications, scientific stream programs are usually bound by memory accesses.
Reusing streams across different iterations, i.e. loop-carried stream reuse, can effectively improve the SRF
locality, thus reducing memory accesses greatly. In the paper, we first present the algorism identifying
loop-carried stream reuse and that exploiting the reuse after analyzing scientific computing applications. We
then perform several representative microbenchmarks and scientific stream programs with and without our
optimization on Isim, a cycle-accurate stream processor simulator. Experimental results show that our algo-
rithms can effectively exploit loop-carried stream reuse for scientific stream programs and thus greatly im-
prove the performance of memory-bound scientific stream programs.

Keywords: Stream Reuse, Loop-Carried, Stream Processor

1. Introduction

Now conventional architecture has been not able to meet
the demands of scientific computing [1,2]. In all state-of-
the-art architectures, the stream processor [3], as shown
in Figure 1, draws scientific researchers’ attentions for its
processing computation-intensive applications effec-
tively [4–8].

Compared with other stream applications, scientific
computing applications have less computation density,
i.e. the ratio of computations to memory accesses for
involved data, especially for memory-bound scientific
applications. Therefore, memory accesses totally domi-
nant the performance of scientific stream programs.

The stream processor has three level memory hierar-
chies [12], local register files (LRF) near ALUs exploit-
ing locality in kernels, global stream register files (SRF)
exploiting producer-consumer locality between kernels,
and streaming memory system exploiting global locality.
The bandwidth ratio between three level memory hierar-
chies is large. In Imagine [9,10], the ratio is 1:13:218. As
a result, how to enhance the locality of the SRF and LRF
and consequently how to reduce the chip-off memory
traffics become key issues to improve the performance of
scientific stream programs constrained by memory ac-
cess. Figure 2 shows a stream flows across three level
memory hierarchies during the execution of a stream
program. First, the stream is loaded from chip-off mem-

ory into the SRF and distributed into corresponding
buffer. Then it is loaded from the SRF to LRF to supply
operands to a kernel. During the execution of the kernel,
all records participating in kernel and temporary results
are saved in LRF. After the kernel is finished, the records
are stored back to the SRF. If there is producer-consumer
locality between this kernel and its later kernel, the
stream is saved in the SRF. Otherwise, it is stored back
to chip-off memory.

Reusing streams across different iterations, i.e., loop-
carried stream reuse, can improve the SRF locality. In the
paper, we present algorisms identifying loop-carried stream
reuse and exploiting the stream reuse according to the
analysis of typical scientific computing applications. We
give the identification algorism to decide what applications
can be optimized and the steps how to utilize loop- carried
stream reuse to optimize stream organization. Then we
perform several representative microbenchmarks and sci-
entific stream programs with and without our optimization
on a cycle-accurate stream processor simulator, Isim. Ex-
perimental results show that our algorithm can improve
scientific stream program performance efficiently.

2. Loop-Carried Stream Reuse

Loop-carried stream reuse is defined as that between
neighboring loop iterations of a stream-level program,
input or output streams of kernels in the first iteration

W. X. Xu ET AL. 33

Figure 1. Block diagram of a stream processor.

Figure 2. Stream flowing across the memory system.

Figure 3. Example code.

Figure 4. Data trace of array QP references.

can be used as input streams of kernels in the second itera-
tion. If input streams are reused, we call it loop-carried
input stream reuse. Otherwise, we call it loop-carried out-
put stream reuse. The essential of stream reuse optimiza-
tion is to enhance the locality of the SRF. Correspondingly,
input stream reuse can enhance producer-producer locality
of the SRF while output stream reuse can enhance pro-
ducer-consumer locality of the SRF.

Figure 5. A D-level nested loop.

Then we take code in Figure 3 from stream program

MVM as example to depict our methods, where NXD equals
to NX+2. In the paper, we let NX and NY equal to 832.

Figure 4 shows the data trace of QP(L), QP(L+NXD)
and QP(L-NXD) participating in loop2 of Figure 3.
QP(1668,2499) is QP(L+NXD) of loop2 when J=1,
QP(L) of loop2 when J=2, and QP(L-NXD) of loop2
when J=3. So, stream QP can be reused between differ-
ent iterations of loop1. If QP(1668,2499) is organized as
a stream, it will be in the SRF after loop2 with J=1 fin-
ishes. Consequently, when loop2 with J=2 or J=3 run-
ning, it doesn’t get stream QP(1668,2499) from chip-off
memory but the SRF.

2.1. Identifying Loop-Carried Stream Reuse

Figure 5 shows a generalized perfect nest of D loops.
The body of the loop nest reads elements of the m-di-
mensional array A twice. In the paper, we only consider
linear subscription expressions, and the ith dimension
subscription expression of the first array A reference is
denoted as , where Ij is an index vari-

able,
0,, * ijjii CICF  

Dj 1 , Ci,j is the coefficient of Ij, Dj 1

j 0,'iC

, and
Ci,0 is the remaining part of the subscript expression that
does not contain any index variables. Correspondingly,
the ith dimension subscription expression of the second
array A reference is denoted as . If in

the Pth level loop, the data trace covered by the leftmost
Q dimensions1 of one array A read references in the nest
with IP=i is the same to that of the other array A read
references in the nest with IP=i+d, where d is a const, and
they are different to each other in the same nest, such as
the data trace of array QP in loop2 in Figure 3, the two
array A read references can be optimized by input stream
reuse in respect of loop P and dimension Q. Then we
give the algorism of Identifying Loop-carried Input
Stream Reuse, ILISR.

 jii ICG *' ,

Algorithm ILISR . Two array references in the same
loop body can be optimized by input stream reuse in re-
spect of loop P and dimension Q if:

1)when 1M

0,1CI j 

, i.e. array A is a 1-D array, the subscript
expressions of two array A references can be written as

and respectively,

and Q=1 now. The coefficients of F1 and G1 should sat-
isfy following formulas:

,11 *CF j 0,1,11 '*' CICG jj 

1In this paper, we assume the sequence of memory access is the left-
most dimension first just like as that in FORTRAN.

Copyright © 2010 SciRes. IJCNS

 W. X. Xu ET AL.

Copyright © 2010 SciRes. IJCNS

34

3) when 1M , the coefficients of F1 and G1 should
satisfy following formulas:)')1((: ,1,1 jj CCDjj  (a)

PCdCC ,10,10,1 '*'  (b)





D

j
jjjj LUCCDjj

1
,1,1))(*()1((: (c)

)')1((: ,1,1 jj CCDjj  (g)

PCdCC ,10,10,1 '*'  (h)





D

i
jjjj LUCCDjj

1
,1,1))(*()1((: (i)

Formulas (1a) and (1b) ensure when the loop indi-
ces of outmost P-1 loops are given and the loop body
passes the space of innermost D-P loops, the data trace
of one array A read reference in the nest with IP=i is
the same to that of the other array A read references
in the nest with IP=i+d. d is a const and we specify
d=1 or 2 according to [13]. When I1, …, IP-1, are
given and IP, …, ID vary, Formula (1c) restricts the
data trace of one array A references in the nest with
IP=i from overlapping that of the other in the nest
with IP=i +d. This formula ensures the characteristic
of stream process, i.e. data as streams is loaded into
the stream processor to process and reloaded into the
SRF in batches after process. For the stream proces-
sor, the cost of random access records of streams is
very high.

4) when 1M , the subscript expressions of two array

A read references should satisfy following formulas:

)(dIFG PQQ  (j)

))()((ii GFQii  (k)

, ,((0 '(' 0))i j i ji j C j j j C      '

', ,'(' 0)) (('i j i ji i i C i j C     

', ,'(' 0)) (('i j i ji i i C i j C     

','(' ' 0))i ji i i C   

(l)

Algorithm IsClean . Since the reuse happening in the

SRF is value reuse, the reuse happens only when the
values to be reused must not be changed before the reuse.
For a reference to array A whose values are to be reused
and a write reference, we denote the subscript expres-
sions of the reuse source reference as Fi and those of
write reference as Gi. The values generated by the reuse
source are not changed by the write reference in the sub-
sequent d iterations if:

2) when 1M , i.e. array A is a multi-dimensional ar-
ray, the subscript expressions of two array A read refer-
ences should satisfy following conditions:

d) the Qth dimension subscript expression of one array
is gotten by translating the index IP in the dimension
subscript expression of the other array by d, i.e.

, and,)(dIFG PQQ  5) when the reuse source is used earlier than the write
reference e) all subscript expressions of one array A reference

are the same with those of the other except the Qth di-
mension subscript expression, i.e. ,

and,

))()((ii GFQii 
1

max{ ({ , }) }
M

Q P P P Q
Q

F I L U N


  

1
1

min{ (, { , }) (0)}
M

Q P P P P Q
Q

F I i I L U N i d


    
(m)

or
1

min{ ({ , }) }
M

Q P P P Q
Q

F I L U N


  

1
1

max{ (, { , }) (0)}
M

Q P P P P Q
Q

F I i I L U N i d


    
(n)

f) for the two array A references, the innermost index
variable in one subscript expression will not appear in
any righter dimension subscript expressions, i.e.

, ,((0 '(' 0))i j i ji j C j j j C       '



))

', ,'(' 0)) (('i j i ji i i C i j C     
6) when the write reference is earlier

, ' ',0 '(' ' 0)) '(' ' 0i j i jj j j C i i i C       

1

max{ ({ , }) }
M

Q P P P Q
Q

F I L U N


  

1
1

min{ (, { , }) (0 1)}
M

Q P P P P Q
Q

F I i I L U N i d


     
(o)

or
1

min{ ({ , }) }
M

Q P P P Q
Q

F I L U N


  

1
1

max{ (, { , }) (0 1)}
M

Q P P P P Q
Q

F I i I L U N i d


     
(p)

It can be proved that data access trace of two array ref-
erences decided by condition (2) satisfies condition (1),
and when Uj-Ij is large enough, they are equivalent.

The algorism of Identifying Loop-carried Output
Stream Reuse, ILOSR, is similar to ILISR except that
reusing stream mustn’t change original data dependence.
Then we give the ILOSR algorism without detailed
specifications.

 Algorithm ILOSR. We denote the subscript expres-
sions of read references as Fi and those of write refer-
ences as Gi. Two array references in loop body can be
optimized by output stream reuse in respect of loop P
and dimension Q if:

2.2. Exploiting Loop-Carried Stream Reuse

Then we present our algorithm of Exploiting Loop-
carried Stream Reuse, ELSR. The algorithm ELSR

W. X. Xu ET AL. 35

Figure 6. FORTRAN code of applications to be optimized.

Table 1. Benchmark programs.

Name Description

P2Q2d1 P=Q=2, d=1, and optim eam reuse. ized by input str

P2Q2d1l2
same applicati eam reuse but on as P2Q2d1 except that we don’t optimize it by str

organize array references of the innermost 2 loops as streams

P2Q2d1l3 same as P2 as streams Q2d1l2 except that array references of all 3 loops are organized

P3Q3d1 P=Q=3, d=1, and optimized by input stream reuse

P3Q3d1O same as reuse P3Q3d1 except that it is optimized by output stream

P3Q3d2 same as P3Q3d1 except that d=2

QMR.
ab. of QMRCGSTAB, a symmetric sparse linear subspace method to solve large non

systems[14] whose coefficient array size is 800*800

MVM
a subroutine of a hydrodynamics application and computing band matrix multiplica-

tion with the size of 832*832

Laplace calculating the central di y whose size is 256*256 fference of two-dimension arra

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

64 128 192 256 320
(a)Load traffics

P2Q2d1
P2Q2d1l2
P2Q2d1l3

0.0E+00

5.0E+07

1.0E+08

1.5E+08

64 128 192 256 320
(b) Store traffics

0.E+00

2.E+08

4.E+08

6.E+08

64 128 192 256 320
(c) Load-store traffics

0.E+00

5.E+07

1.E+08

64 128 192 256 320
(d) Run time

Figure 7. With the increase of array size the performance of different stream implementations of the application in 6(a) in
respect of memory traffics (bytes) and run time (cycles).

0.E+00

2.E+06

4.E+06

P2
Q2d

1

P3
Q3d

1

P3
Q3d

1O

P3
Q3d

2

(a) Load traffics

Without With

0.E+00

5.E+05

1.E+06

P2
Q2d

1

P3
Q3d

1

P3
Q3d

1O

P3
Q3d

2

(b) Store traffics

0.E+00

3.E+06

6.E+06

P2
Q2d

1

P3
Q3d

1

P3
Q3d

1O

P3
Q3d

2

(c) Load-store traffics

0.E+00

1.E+06

2.E+06

P2
Q

2d
1

P3
Q

3d
1

P3
Q3d

1O

P3
Q

3d
2

(d) Run time

Figure 8. Performance of P2Q2d1, P3Q3d1, P3Q3d1O and P3Q3d2 with array size of 64 in respect of memory traffics

onsists of the following three steps to exploit the streams

he
in

e all operations on array A in the in-
nermost D-P loops as a kernel.

Step C. Organize all operations in the outmost P loops
as

op P in stream-level pro-
gr

F by the former nest, which
m

(bytes) and run time (cycles).

c
identified by algorithms ILISR, OLISR and IsClean:

Step A. Organize different array A references in t
nermost D-P loops as stream A1 and A2 according

their data traces.
Step B. Organiz

 stream-level program.
When the nest with IP=i of lo
am operates on stream A1 and A2, one of them has

been loaded into the SR
eans that the kernel doesn’t get it from chip-off mem-

ory but the SRF. From the feature of the stream process-

Copyright © 2010 SciRes. IJCNS

W. X. Xu ET AL.36

0.E+00

2.E+11

Load Store Load-
store

(a) QMR.

Without With
4.E+11

0.E+00

2.E+07

4.E+07

0.E+00

1.E+06

Load Store Load-
store

(b) MVM

2.E+06

Load Store Load-
store

(c) Laplace

Figure 9. Effects of stream reuse on the memory traffics of scientific programs.

1.0

1.1

1.2

1.3

1.4

Q
M

R.

M
V
M

Lap
la
ce

Figure 10. Speedup of scientific programs with stream
reuse.

itecture, we can know the time to access chip-off
emory is much larger than that to access the SRF, so

d in loop1 as three streams accord-
in

three streams
ac

erformance of microbenchmarks and
ons optimized and unoptimized

ams used for evalua-
tion. Microbenchmarks listed in the upper half of the

here is an input stream reuse between adja-
ce

affics, Figure 7(b) shows store traffics, Figure 7(c)
sh

sor arch
m
the method of stream reuse can improve stream program
performance greatly.

In stream program MVM unoptimized, we organize
different array QP rea

g their data trace ,and. organize operations in loop1 as
a kernel The length of each stream is 832*832. When
running, the stream program must load these three
streams into the SRF, the total length of which is 692224
*3, nearly three times of that of array QP.

By the stream reuse method above, we organize dif-
ferent array QP read references in loop2 as

cording their own data trace, organize operations in
loop2 as a kernel, and organize operations in loop1 ex-
cept loop2 as stream-level program. Thus there would be
832*3 streams in the stream program loop1, and the
length of each is 832. So in stream program loop1,
stream QP(L), QP(L+NXD) and QP(L-NXD) of neigh-
boring iterations can be reused. As a result, the stream
program only need load 832 streams with the length of
832 from chip-off memory to the SRF, the total length of
which is 692224, nearly 1/3 of that of unoptimized pro-
gram.

3. Experiment

We compare the p
several scientific applicati
by stream reuse. All applications are run on a cycle-accurate
simulator for a single-node Imagine stream processor,
Isim [9,10].

table stress particular aspects of loop-carried stream re-
use, e.g., if t

Table 1 summarizes the test progr

nt loop nests in respect of loop 2 and dimension 2, the
benchmark is named P2Q2d1. All microbenchmarks are
stream programs of applications in Figure 6 in FOR-
TRAN code. P2Q2d1, P3Q3d1, P3Q3d1O and P3Q3d2
are corresponding stream programs of 6(a), 6(b), 6(c)
and 6(d), which is optimized by loop-carried stream re-
use. P2Q2d1l2 and P2Q2d1l3 are corresponding stream
programs of 6(a) without optimization. There are 2*N
out of 4*N streams that can be reused as N stream in the
SRF in every microbenchmark except P2Q2d1, in which
there are 2*N2 out of 4*N2 streams that can be reused as
N2 stream in the SRF. Scientific applications listed in the
lower half of the table are all constrained by memory
access. 14994 out of 87467 streams in QMR can be re-
used as 4998 streams in the SRF, 3 out of 8 streams in
MVM can be reused as 1 stream in the SRF, and 3 out of
5 streams in Laplace can be reused as 1 stream in the
SRF.

Figure 7 shows the performance of different stream
implementations of the application in 6(a) with the in-
crease of array size. Figure 7(a) shows chip-off memory
load tr

ows the total chip-off memory traffics, and Figure 7(d)
shows the run time of these implementations. In Figure
7(a), the load traffics of P2Q2d1 are nearly 2/3 of the
other two implementations whatever the array size is.
This is because input loop-carried stream reuse optimiza-
tion finds the loop-carried stream reuse, improves the
locality of the SRF and consequently reduces the load
memory traffics. In Figure 7(b) the store traffics of dif-
ferent implementations are the same because there is
only input stream reuse, which has no effect on store
traffics. From Figure 7(c), we can see that because loop-
carried stream reuse reuses 2 input streams as one stream
in the SRF, it cut down the total memory traffics obvi-
ously. In Figure 7(d), when the array size is 64, the run
time of P2Q2d1 is larger than the other two implementa-
tions. When the array size is 128, the run time of P2Q2d1
is a little larger than the other two implementations. The
reason for above is that when the array size is small, the

Copyright © 2010 SciRes. IJCNS

W. X. Xu ET AL. 37

he total chip-off m
or

out. All
th

r, we give the algorithms of identifying lo

sentative mi-
robenchmarks and scientific stream programs with

ke advantage of architec-
tu

d S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” Computer Architecture

ors,” In Proceed-

ttp://merrimac.stanford.edu/.

, No-

 Proceedings of the 2004 SIGGRAPH

on

 computing programs on imagine,” Advances

lishers, Boston, MA, 2001.

 Engineering,

ications,” Mas-

gust 2003.

GPLAN ‘91

esidual variant of

stream length of P2Q2d1 is much shorter than and the
number of streams are larger than the other two imple-
mentations. As a result, the overheads to prepare to load
streams from chip-off memory to the SRF weigh so
highly that they can’t be hidden, including the time the
host writes SDRs(Stream Descriptor Register) and
MARs(Memory Access Register).With the increase of
the array size, the run time of P2Q2d1 is smaller and
smaller than the other two implementations. This is be-
cause with the increase of the stream length, the over-
heads to load streams into the SRF weigh more and more
highly and consequently the overheads to prepare load-
ing streams can be hidden well. The memory traffics of
P2Q2d1 are the least and consequently the P2Q2d1 pro-
gram performance is the highest.

Figure 8 shows the performance of P2Q2d1, P3Q3d1,
P3Q3d1O and P3Q3d2 with array size of 64. Figure 8(a)
shows chip-off memory load traffics, Figure 8(b) shows
store traffics, Figure 8(c) shows t em-

y traffics, and Figure 8(d) shows the run time of them.
These applications are representative examples of loop-
carried stream reuse. In Figures 8(a), 8(b) and 8(c), chip-
off memory load, store and total traffics have similar
characteristics as those in Figure 7. In Figure 8(d), the
performances of all applications except P2Q2d1 have
been improved by stream reuse optimization. The reason
for the reduction of P2Q2d1 performance has been given
above. The results show that these representative appli-
cations optimized by loop-carried stream reuse all get
similar performance increase as that in Figure 7.

Figure 9 shows the effects of stream reuse on the
memory traffics of scientific programs used in our ex-
periments. Figure 10 shows the speedup yielded by sci-
entific applications with stream reuse over with

on C

ese applications are optimized by input stream reuse.
From results, we can see that because all these applica-
tions are constrained by memory access, the improve-
ment of application performance brought by stream reuse
is nearly in proportion to the amount of streams that can
be reused.

4. Conclusions and Future Work

In this pape op-

[carried stream reuse for scientific applications and of
exploiting the stream reuse. Several repre
c and Conference on Programming Language Design and Im-

plementation, ACM, New York, 1991.

[14] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and
C. H. TongSIAM, “A quasi-minimal r

without our optimization are performed on Isim which is
a cycle-accurate stream processor simulator. Simulation
results show that the optimization method can improve
the performance of scientific stream program constrained
by memory access efficiently.

In the future, we are devoted to developing more pro-
gramming optimizations to ta

ral features of the stream processor for scientific com-
puting applications.

5. References

[1] W. A. Wulf an

News, Vol. 23, No. 1, pp. 20–24, 1995.

[2] D. Burger, J. Goodman, and A. Kagi, “Memory band-
width limitations of future microprocess
ings of the 23rd International Symposium on Computer
Architecture, Philadelphia, PA, pp. 78–89, 1996.

[3] S. A. William, “Stream architectures,” In PACT 2003,
September 27, 2003.

[4] Merrimac–Stanford Streaming Supercomputer Project,
Stanford University, h

[5] W. J. Dally, P. Hanrahan, et al., “Merrimac: Supercom-
puting with streams,” SC2003, Phoenix, Arizona
vember 2003.

[6] M. Erez, J. H. Ahn, et al., “Merrimac-supercomputing
with streams,”
GP^2 Workshop on General Purpose Computing on Gra-
phics Processors, Los Angeles, California, June 2004.

[7] J. B. Wang, Y. H. Tang, et al., “Application and study of
scientific computing on stream processor,” Advances
Computer Architecture (ACA’06), Chengdu, China, Au-
gust 2006.

[8] J. Du, X. J. Yang, et al., “Implementation and evaluation
of scientific

omputer Architecture (ACA’06), Chengdu, China,
August 2006.

[9] M. Rixner, “Stream processor architecture,” Kluwer
Academic Pub

[10] P. Mattson, “A programming system for the imagine
media processor,” Department of Electrical
Ph.D. thesis, Stanford University, 2002.

[11] O. Johnsson, M. Stenemo, and Z. ul-Abdin, “Program-
ming & implementation of streaming appl
ter’s thesis, Computer and Electrical Engineering, Halm-
stad University, 2005.

[12] U. J. Kapasi, S. Rixner, et al., “Programmable stream
processor,” IEEE Computer, Au

13] G. Goff, K. Kennedy, and C. W. Tseng, “Practical de-
pendence testing,” In Proceedings of the SI

the bi-cgstab algorithm for nonsymmetric systems,”
Journal on Scientific Computing, 1994.

Copyright © 2010 SciRes. IJCNS

