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Abstract 
 
Compared with other stream applications, scientific stream programs are usually bound by memory accesses. 
Reusing streams across different iterations, i.e. loop-carried stream reuse, can effectively improve the SRF 
locality, thus reducing memory accesses greatly. In the paper, we first present the algorism identifying 
loop-carried stream reuse and that exploiting the reuse after analyzing scientific computing applications. We 
then perform several representative microbenchmarks and scientific stream programs with and without our 
optimization on Isim, a cycle-accurate stream processor simulator. Experimental results show that our algo-
rithms can effectively exploit loop-carried stream reuse for scientific stream programs and thus greatly im-
prove the performance of memory-bound scientific stream programs. 
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1. Introduction 
 
Now conventional architecture has been not able to meet 
the demands of scientific computing [1,2]. In all state-of- 
the-art architectures, the stream processor [3], as shown 
in Figure 1, draws scientific researchers’ attentions for its 
processing computation-intensive applications effec-
tively [4–8].  

Compared with other stream applications, scientific 
computing applications have less computation density, 
i.e. the ratio of computations to memory accesses for 
involved data, especially for memory-bound scientific 
applications. Therefore, memory accesses totally domi-
nant the performance of scientific stream programs. 

The stream processor has three level memory hierar-
chies [12], local register files (LRF) near ALUs exploit-
ing locality in kernels, global stream register files (SRF) 
exploiting producer-consumer locality between kernels, 
and streaming memory system exploiting global locality. 
The bandwidth ratio between three level memory hierar-
chies is large. In Imagine [9,10], the ratio is 1:13:218. As 
a result, how to enhance the locality of the SRF and LRF 
and consequently how to reduce the chip-off memory 
traffics become key issues to improve the performance of 
scientific stream programs constrained by memory ac-
cess. Figure 2 shows a stream flows across three level 
memory hierarchies during the execution of a stream 
program. First, the stream is loaded from chip-off mem-

ory into the SRF and distributed into corresponding 
buffer. Then it is loaded from the SRF to LRF to supply 
operands to a kernel. During the execution of the kernel, 
all records participating in kernel and temporary results 
are saved in LRF. After the kernel is finished, the records 
are stored back to the SRF. If there is producer-consumer 
locality between this kernel and its later kernel, the 
stream is saved in the SRF. Otherwise, it is stored back 
to chip-off memory.  

Reusing streams across different iterations, i.e., loop- 
carried stream reuse, can improve the SRF locality. In the 
paper, we present algorisms identifying loop-carried stream 
reuse and exploiting the stream reuse according to the 
analysis of typical scientific computing applications. We 
give the identification algorism to decide what applications 
can be optimized and the steps how to utilize loop- carried 
stream reuse to optimize stream organization. Then we 
perform several representative microbenchmarks and sci-
entific stream programs with and without our optimization 
on a cycle-accurate stream processor simulator, Isim. Ex-
perimental results show that our algorithm can improve 
scientific stream program performance efficiently. 

2. Loop-Carried Stream Reuse 

Loop-carried stream reuse is defined as that between 
neighboring loop iterations of a stream-level program, 
input or output streams of kernels in the first iteration  
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Figure 1. Block diagram of a stream processor. 
 

 
Figure 2. Stream flowing across the memory system. 

 

 
Figure 3. Example code. 

 

 

Figure 4. Data trace of array QP references. 

 
can be used as input streams of kernels in the second itera-
tion. If input streams are reused, we call it loop-carried 
input stream reuse. Otherwise, we call it loop-carried out-
put stream reuse. The essential of stream reuse optimiza-
tion is to enhance the locality of the SRF. Correspondingly, 
input stream reuse can enhance producer-producer locality 
of the SRF while output stream reuse can enhance pro-
ducer-consumer locality of the SRF. 

 
Figure 5. A D-level nested loop. 

 
Then we take code in Figure 3 from stream program 

MVM as example to depict our methods, where NXD equals 
to NX+2. In the paper, we let NX and NY equal to 832. 

Figure 4 shows the data trace of QP(L), QP(L+NXD) 
and QP(L-NXD) participating in loop2 of Figure 3. 
QP(1668,2499) is QP(L+NXD) of loop2 when J=1, 
QP(L) of loop2 when J=2, and QP(L-NXD) of loop2 
when J=3. So, stream QP can be reused between differ-
ent iterations of loop1. If QP(1668,2499) is organized as 
a stream, it will be in the SRF after loop2 with J=1 fin-
ishes. Consequently, when loop2 with J=2 or J=3 run-
ning, it doesn’t get stream QP(1668,2499) from chip-off 
memory but the SRF. 
 
2.1. Identifying Loop-Carried Stream Reuse 
 
Figure 5 shows a generalized perfect nest of D loops. 
The body of the loop nest reads elements of the m-di-
mensional array A twice. In the paper, we only consider 
linear subscription expressions, and the ith dimension 
subscription expression of the first array A reference is 
denoted as , where Ij is an index vari-

able, 
0,, * ijjii CICF  

Dj 1 , Ci,j is the coefficient of Ij, Dj 1

j 0,'iC

, and 
Ci,0 is the remaining part of the subscript expression that 
does not contain any index variables. Correspondingly, 
the ith dimension subscription expression of the second 
array A reference is denoted as  . If in 

the Pth level loop, the data trace covered by the leftmost 
Q dimensions1 of one array A read references in the nest 
with IP=i is the same to that of the other array A read 
references in the nest with IP=i+d, where d is a const, and 
they are different to each other in the same nest, such as 
the data trace of array QP in loop2 in Figure 3, the two 
array A read references can be optimized by input stream 
reuse in respect of loop P and dimension Q. Then we 
give the algorism of Identifying Loop-carried Input 
Stream Reuse, ILISR. 

 jii ICG *' ,

Algorithm ILISR . Two array references in the same 
loop body can be optimized by input stream reuse in re-
spect of loop P and dimension Q if: 

1)when 1M

0,1CI j 

, i.e. array A is a 1-D array, the subscript 
expressions of two array A references can be written as 

and respectively, 

and Q=1 now. The coefficients of F1 and G1 should sat-
isfy following formulas: 

,11 *CF j 0,1,11 '*' CICG jj 

1In this paper, we assume the sequence of memory access is the left-
most dimension first just like as that in FORTRAN. 
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3) when 1M , the coefficients of F1 and G1 should 
satisfy following formulas: )')1((: ,1,1 jj CCDjj   (a)

PCdCC ,10,10,1 '*'   (b)





D

j
jjjj LUCCDjj

1
,1,1 ))(*()1((:  (c)

)')1((: ,1,1 jj CCDjj   (g)

PCdCC ,10,10,1 '*'   (h)





D

i
jjjj LUCCDjj

1
,1,1 ))(*()1((:  (i)

Formulas (1a) and (1b) ensure when the loop indi-
ces of outmost P-1 loops are given and the loop body 
passes the space of innermost D-P loops, the data trace 
of one array A read reference in the nest with IP=i is 
the same to that of the other array A read references 
in the nest with IP=i+d. d is a const and we specify 
d=1 or 2 according to [13]. When I1, …, IP-1, are 
given and IP, …, ID vary, Formula (1c) restricts the 
data trace of one array A references in the nest with 
IP=i from overlapping that of the other in the nest 
with IP=i +d. This formula ensures the characteristic 
of stream process, i.e. data as streams is loaded into 
the stream processor to process and reloaded into the 
SRF in batches after process. For the stream proces-
sor, the cost of random access records of streams is 
very high. 

 
4) when 1M , the subscript expressions of two array 

A read references should satisfy following formulas: 

)( dIFG PQQ   (j)

))()(( ii GFQii   (k)

, ,( ( 0 '( ' 0))i j i ji j C j j j C      '  

', ,'( ' 0)) ( ( 'i j i ji i i C i j C       

', ,'( ' 0)) ( ( 'i j i ji i i C i j C       

','( ' ' 0))i ji i i C     

(l)

 
Algorithm IsClean . Since the reuse happening in the 

SRF is value reuse, the reuse happens only when the 
values to be reused must not be changed before the reuse. 
For a reference to array A whose values are to be reused 
and a write reference, we denote the subscript expres-
sions of the reuse source reference as Fi and those of 
write reference as Gi. The values generated by the reuse 
source are not changed by the write reference in the sub-
sequent d iterations if: 

2) when 1M , i.e. array A is a multi-dimensional ar-
ray, the subscript expressions of two array A read refer-
ences should satisfy following conditions: 

d) the Qth dimension subscript expression of one array 
is gotten by translating the index IP in the dimension 
subscript expression of the other array by d, i.e. 

, and, )( dIFG PQQ  5) when the reuse source is used earlier than the write 
reference e) all subscript expressions of one array A reference 

are the same with those of the other except the Qth di-
mension subscript expression, i.e. , 

and, 

))()(( ii GFQii 
1

max{ ( { , }) }
M

Q P P P Q
Q

F I L U N


    

1
1

min{ ( , { , }) (0 )}
M

Q P P P P Q
Q

F I i I L U N i d


    
(m) 

or 
1

min{ ( { , }) }
M

Q P P P Q
Q

F I L U N


    

1
1

max{ ( , { , }) (0 )}
M

Q P P P P Q
Q

F I i I L U N i d


    
(n) 

f) for the two array A references, the innermost index 
variable in one subscript expression will not appear in 
any righter dimension subscript expressions, i.e.  

, ,( ( 0 '( ' 0))i j i ji j C j j j C       '



))

 

', ,'( ' 0)) ( ( 'i j i ji i i C i j C       
6) when the write reference is earlier 

, ' ',0 '( ' ' 0)) '( ' ' 0i j i jj j j C i i i C         

1

max{ ( { , }) }
M

Q P P P Q
Q

F I L U N


    

1
1

min{ ( , { , }) (0 1)}
M

Q P P P P Q
Q

F I i I L U N i d


       
(o)

or 
1

min{ ( { , }) }
M

Q P P P Q
Q

F I L U N


    

1
1

max{ ( , { , }) (0 1)}
M

Q P P P P Q
Q

F I i I L U N i d


       
(p)

It can be proved that data access trace of two array ref-
erences decided by condition (2) satisfies condition (1), 
and when Uj-Ij is large enough, they are equivalent.  

The algorism of Identifying Loop-carried Output 
Stream Reuse, ILOSR, is similar to ILISR except that 
reusing stream mustn’t change original data dependence. 
Then we give the ILOSR algorism without detailed 
specifications. 

 Algorithm ILOSR. We denote the subscript expres-
sions of read references as Fi and those of write refer-
ences as Gi. Two array references in loop body can be 
optimized by output stream reuse in respect of loop P 
and dimension Q if: 

2.2. Exploiting Loop-Carried Stream Reuse 
 
Then we present our algorithm of Exploiting Loop-  
carried Stream Reuse, ELSR. The algorithm ELSR  
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Figure 6. FORTRAN code of applications to be optimized. 

 
Table 1. Benchmark programs. 

Name Description 

P2Q2d1 P=Q=2, d=1, and optim eam reuse. ized by input str

P2Q2d1l2 
same applicati eam reuse but on as P2Q2d1 except that we don’t optimize it by str

organize array references of the innermost 2 loops as streams 

P2Q2d1l3 same as P2  as streams Q2d1l2 except that array references of all 3 loops are organized

P3Q3d1 P=Q=3, d=1, and optimized by input stream reuse 

P3Q3d1O same as  reuse  P3Q3d1 except that it is optimized by output stream

P3Q3d2 same as P3Q3d1 except that d=2 

QMR. 
ab. of QMRCGSTAB, a symmetric sparse linear subspace method to solve large non

systems[14] whose coefficient array size is 800*800 

MVM 
a subroutine of a hydrodynamics application and computing band matrix multiplica-

tion with the size of 832*832 

Laplace calculating the central di y whose size is 256*256 fference of two-dimension arra
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Figure 7. With the increase of array size the performance of different stream implementations of the application in 6(a) in 
respect of memory traffics (bytes) and run time (cycles). 
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Figure 8. Performance of P2Q2d1, P3Q3d1, P3Q3d1O and P3Q3d2 with array size of 64 in respect of memory traffics 

onsists of the following three steps to exploit the streams 

he 
in

e all operations on array A in the in-
nermost D-P loops as a kernel. 

Step C. Organize all operations in the outmost P loops 
as

op P in stream-level pro-
gr

F by the former nest, which 
m

(bytes) and run time (cycles). 
 
c
identified by algorithms ILISR, OLISR and IsClean:  

Step A. Organize different array A references in t
nermost D-P loops as stream A1 and A2 according 

their data traces.  
Step B. Organiz

 stream-level program. 
When the nest with IP=i of lo
am operates on stream A1 and A2, one of them has 

been loaded into the SR
eans that the kernel doesn’t get it from chip-off mem-

ory but the SRF. From the feature of the stream process- 
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Figure 9. Effects of stream reuse on the memory traffics of scientific programs. 
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Figure 10. Speedup of scientific programs with stream 
reuse. 

itecture, we can know the time to access chip-off 
emory is much larger than that to access the SRF, so 

d in loop1 as three streams accord-
in

three streams 
ac

erformance of microbenchmarks and 
ons optimized and unoptimized 

ams used for evalua-
tion. Microbenchmarks listed in the upper half of the 

here is an input stream reuse between adja-
ce

affics, Figure 7(b) shows store traffics, Figure 7(c) 
sh

 
sor arch
m
the method of stream reuse can improve stream program 
performance greatly. 

In stream program MVM unoptimized, we organize 
different array QP rea

g their data trace ,and. organize operations in loop1 as 
a kernel The length of each stream is 832*832. When 
running, the stream program must load these three 
streams into the SRF, the total length of which is 692224 
*3, nearly three times of that of array QP.  

By the stream reuse method above, we organize dif-
ferent array QP read references in loop2 as 

cording their own data trace, organize operations in 
loop2 as a kernel, and organize operations in loop1 ex-
cept loop2 as stream-level program. Thus there would be 
832*3 streams in the stream program loop1, and the 
length of each is 832. So in stream program loop1, 
stream QP(L), QP(L+NXD) and QP(L-NXD) of neigh- 
boring iterations can be reused. As a result, the stream 
program only need load 832 streams with the length of 
832 from chip-off memory to the SRF, the total length of 
which is 692224, nearly 1/3 of that of unoptimized pro-
gram. 

3. Experiment 

We compare the p
several scientific applicati
by stream reuse. All applications are run on a cycle-accurate 
simulator for a single-node Imagine stream processor, 
Isim [9,10]. 

table stress particular aspects of loop-carried stream re-
use, e.g., if t

Table 1 summarizes the test progr

nt loop nests in respect of loop 2 and dimension 2, the 
benchmark is named P2Q2d1. All microbenchmarks are 
stream programs of applications in Figure 6 in FOR-
TRAN code. P2Q2d1, P3Q3d1, P3Q3d1O and P3Q3d2 
are corresponding stream programs of 6(a), 6(b), 6(c) 
and 6(d), which is optimized by loop-carried stream re-
use. P2Q2d1l2 and P2Q2d1l3 are corresponding stream 
programs of 6(a) without optimization. There are 2*N 
out of 4*N streams that can be reused as N stream in the 
SRF in every microbenchmark except P2Q2d1, in which 
there are 2*N2 out of 4*N2 streams that can be reused as 
N2 stream in the SRF. Scientific applications listed in the 
lower half of the table are all constrained by memory 
access. 14994 out of 87467 streams in QMR can be re-
used as 4998 streams in the SRF, 3 out of 8 streams in 
MVM can be reused as 1 stream in the SRF, and 3 out of 
5 streams in Laplace can be reused as 1 stream in the 
SRF. 

Figure 7 shows the performance of different stream 
implementations of the application in 6(a) with the in-
crease of array size. Figure 7(a) shows chip-off memory 
load tr

ows the total chip-off memory traffics, and Figure 7(d) 
shows the run time of these implementations. In Figure 
7(a), the load traffics of P2Q2d1 are nearly 2/3 of the 
other two implementations whatever the array size is. 
This is because input loop-carried stream reuse optimiza-
tion finds the loop-carried stream reuse, improves the 
locality of the SRF and consequently reduces the load 
memory traffics. In Figure 7(b) the store traffics of dif-
ferent implementations are the same because there is 
only input stream reuse, which has no effect on store 
traffics. From Figure 7(c), we can see that because loop- 
carried stream reuse reuses 2 input streams as one stream 
in the SRF, it cut down the total memory traffics obvi-
ously. In Figure 7(d), when the array size is 64, the run 
time of P2Q2d1 is larger than the other two implementa-
tions. When the array size is 128, the run time of P2Q2d1 
is a little larger than the other two implementations. The 
reason for above is that when the array size is small, the 
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he total chip-off m
or

out. All
th

r, we give the algorithms of identifying lo

sentative mi-
robenchmarks and scientific stream programs with

ke advantage of architec-
tu

d S. A. McKee, “Hitting the memory wall: 
Implications of the obvious,” Computer Architecture 

ors,” In Proceed-

ttp://merrimac.stanford.edu/. 

, No-

 Proceedings of the 2004 SIGGRAPH 

on 

 computing programs on imagine,” Advances 

lishers, Boston, MA, 2001.  

 Engineering, 

ications,” Mas-

gust 2003.  

GPLAN ‘91 

esidual variant of 

stream length of P2Q2d1 is much shorter than and the 
number of streams are larger than the other two imple-
mentations. As a result, the overheads to prepare to load 
streams from chip-off memory to the SRF weigh so 
highly that they can’t be hidden, including the time the 
host writes SDRs(Stream Descriptor Register) and 
MARs(Memory Access Register).With the increase of 
the array size, the run time of P2Q2d1 is smaller and 
smaller than the other two implementations. This is be-
cause with the increase of the stream length, the over-
heads to load streams into the SRF weigh more and more 
highly and consequently the overheads to prepare load-
ing streams can be hidden well. The memory traffics of 
P2Q2d1 are the least and consequently the P2Q2d1 pro-
gram performance is the highest. 

Figure 8 shows the performance of P2Q2d1, P3Q3d1, 
P3Q3d1O and P3Q3d2 with array size of 64. Figure 8(a) 
shows chip-off memory load traffics, Figure 8(b) shows 
store traffics, Figure 8(c) shows t em-

y traffics, and Figure 8(d) shows the run time of them. 
These applications are representative examples of loop- 
carried stream reuse. In Figures 8(a), 8(b) and 8(c), chip- 
off memory load, store and total traffics have similar 
characteristics as those in Figure 7. In Figure 8(d), the 
performances of all applications except P2Q2d1 have 
been improved by stream reuse optimization. The reason 
for the reduction of P2Q2d1 performance has been given 
above. The results show that these representative appli-
cations optimized by loop-carried stream reuse all get 
similar performance increase as that in Figure 7. 

Figure 9 shows the effects of stream reuse on the 
memory traffics of scientific programs used in our ex-
periments. Figure 10 shows the speedup yielded by sci-
entific applications with stream reuse over with  

on C

ese applications are optimized by input stream reuse. 
From results, we can see that because all these applica-
tions are constrained by memory access, the improve-
ment of application performance brought by stream reuse 
is nearly in proportion to the amount of streams that can 
be reused. 
 
4. Conclusions and Future Work 
 
In this pape op- 

[carried stream reuse for scientific applications and of 
exploiting the stream reuse. Several repre
c  and Conference on Programming Language Design and Im-

plementation, ACM, New York, 1991. 

[14] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and 
C. H. TongSIAM, “A quasi-minimal r

without our optimization are performed on Isim which is 
a cycle-accurate stream processor simulator. Simulation 
results show that the optimization method can improve 
the performance of scientific stream program constrained 
by memory access efficiently. 

In the future, we are devoted to developing more pro-
gramming optimizations to ta

 
 

ral features of the stream processor for scientific com-
puting applications. 
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