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Abstract 
For stabilized saddle-point problems, we apply the two iteration parameters 
idea for regularized Hermitian and skew-Hermitian splitting (RHSS) method 
and establish accelerated RHSS (ARHSS) iteration method. Theoretical anal-
ysis shows that the ARHSS method converges unconditionally to the unique 
solution of the saddle point problem. Finally, we use a numerical example to 
confirm the effectiveness of the method. 
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1. Introduction 

Consider the stabilized saddle-point problem 

* ,
B E y f

Ax b
E C z g

    
≡ = ≡    −    

                  (1) 

where p pB ×∈  is a Hermitian positive definite matrix, q qC ×∈  is a Hermi-
tian positive semidefinite matrix, p qE ×∈  is rectangular matrix, * q pE ×∈  is 
the complex conjugate transpose of E and pf ∈  and qg ∈ . In addition, the 
null spaces of the matrices C and E do not overlap, i.e., ( ) ( ) { }0null C null E =∩ , 
then in accordance with [1], we know that the stabilized saddle-point problem 
(1) admits a unique solution; see also [2] and its reference therein. For stabilized 
saddle-point problem, it has a broad background in scientific computing and 
engineering applications. For example, it frequently appears in Navier-Stokes 
equations, finite element methods, regularized and weighted least-squares prob-
lems. For more details, see [3] [4] [5] [6] [7]. 

When 0=C , the stabilized saddle-point problem (1) degenerated into stan-
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dard saddle-point problem. Benzi and Golub [8] proposed the Hermitian and 
skew-Hermitian splitting (HSS) iteration method to solve the standard sad-
dle-point problem. This iteration method is a direct generalization of the HSS 
iteration method initially proposed in [9]. To improve the convergence rate of 
the HSS iteration method, Bai, Golub and Pan [10] proposed the preconditioned 
HSS (PHSS) iteration method, and then Bai and Golub [11] proposed the acce-
lerated HSS (AHSS) iteration method by calculating the HSS iteration sequence 
with different parameters. Bai and Benzi [12] proposed the regularized Hermi-
tian and skew-Hermitian splitting (RHSS) iteration method to solve the standard 
saddle-point problem. The biggest highlight is that the condition number of 
iterative systems can be improved by regularizing the matrix. In addition, Beh-
zadi and Abdollahi [13] combined the AHSS iteration method and the RHSS 
iteration method to build the accelerated RHSS (ARHSS) iteration method for 
the standard saddle-point linear system, and experimental results show that the 
ARHSS iteration method is better than the HSS iteration method and the RHSS 
iteration method. 

Recently, based on the regularized Hermitian and skew-Hermitian splitting of 
the stabilized saddle-point matrix A in (1): 
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where 1Q  is a Hermitian positive semidefinite matrix and ω  is a non-negative 
constant. Bai [2] extended the RHSS iteration method for the standard sad-
dle-point problem to the stabilized saddle-point problem as follows: 
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           (3) 

where I is the identity matrix and α  is a positive constant. And Bai proved the 
RHSS iteration method converges unconditionally to the exact solution of the 
stabilized saddle-point problem (1). Numerical results on stabilized saddle-point 
problems in [2] show that the RHSS iteration method significantly outperforms 
the Hermitian and skew-Hermitian splitting iteration method in iteration counts 
and computing times. 

In this paper, inspired by Behzadi and Abdollahi [13] and Bai [2], we know 
that the accelerated RHSS iteration method has advantages over the HSS itera-
tion method and the RHSS iteration method on the standard saddle-point prob-
lem. So we extend the accelerated RHSS iteration method for the standard sad-
dle-point problem to the stabilized saddle-point problem, and establish the 
ARHSS iteration method for the stabilized saddle-point problem. Then we con-
firm the convergence of the ARHSS iteration method. Finally, experimental re-
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sults show that the ARHSS iteration method is more effective than the HSS ite-
ration method and the RHSS iteration method for the stabilized saddle-point 
problem (1). 

The remainder of this work is organized as follows. In Section 2, we propose 
the ARHSS iteration method for the stabilized saddle-point problem (1). In Sec-
tion 3, we give the convergence property of the ARHSS iteration method. In Sec-
tion 4, A numerical experiment is given to show the effectiveness of the method. 
In Section 5, we end the paper with some brief conclusions. 

2. The ARHSS Iteration Method 

In this section, we derive the ARHSS iteration method for solving (1). Let 
q qQ ×∈  be a Hermitian positive semidefinite matrix and ω  be a prescribed 

non-negative parameter. Then we can split the stabilized saddle-point matrix 
n nA ×∈  in (1), and obtain the regularized Hermitian and skew-Hermitian 

(RHS) splitting: 
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        (4) 

By applying the regularized Hermitian and Skew-Hermitian (RHS) splitting to 
(4), we then obtain the iteration scheme 
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with α  and β  positive constants. 
By iterating alternatively between these two fixed-point systems as 
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and 
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So, we obtain the ARHSS iteration method for solving the stabilized sad-
dle-point problem (1) as follows: 

The ARHSS iteration method. Let α  and β  be positive constants, ω  be 

a non-negative constant and p pQ ×∈  be a Hermitian positive semidefinite 

matrix. Give an initial guess ( ) ( ) ( )( )0 0 0, nx y z
∗ ∗ ∗

= ∈ , for 0,1,2,k = �  until 

the iteration sequence ( ){ } ( ) ( )( ),k k k nx y z
∗ ∗ ∗ 

= ⊂ 
 

  converges, compute the 

next iterate ( ) ( ) ( )( )1 1 1,k k k nx y z
∗ ∗ ∗

+ + += ∈  according to following procedure: 

(i) solve for ( )1 2k py + ∈  from the linear subsystem 

( ) ( ) ( ) ( )1 2 ;k k kI B y Iy Ez fα α++ = − +  

(ii) compute 

( ) ( ) ( )1 2 1 2 ;k kf I B y fα+ += − +  

and 
( ) ( )( ) ( ) ( )1 *2 1 2 ;k k kg I Q C z E y gβ ω+ = + + − + +

 

(iii) solve for ( )1k qz + ∈  from the linear subsystem 

( ) ( ) ( ) ( )1 21* 2* 11 11 ;k k kI Q C E E z E f gβ ω
α α

+ + + + + + + = + 
   

(iv) compute 

( ) ( ) ( )( )1 1 1 21 .k k ky Ez f
α

+ + += − +
 

3. The Convergence Property of the ARHSS Iteration Method 

In this section we prove the unconditional convergence of the ARHSS iteration 
method. We know that calculating the spectral radius of the iterative matrix 
( ), ,L α β ω  is the easiest way to prove the convergence of ARHSS iteration me-

thod. From (5) and (6), we easily know ( ), ,L α β ω  can be equivalently rewrit-
ten as 

( ) ( ) ( )1, , , , , , ,L M Nα β ω α β ω α β ω−=  
where 

( ) ( )

( )*
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1, ,
2 1

I B I B E
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α β ω α

β ω

 + + =   − + + +   
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and 
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 − − − =   + + −   
To prove the convergence of the ARHSS iteration method, we first introduce a 

lemma. 
Lemma 3.1. ([2], Theorem 3.1) For the stabilized saddle-point problem (1), 

the RHSS iteration method (3) converges unconditionally to the exact solution 
of the stabilized saddle-point problem (1). 

In the following theorem, we prove the unconditional convergence of the 
ARHSS iteration method. 

Theorem 3.2. For the stabilized saddle-point problem (1), assume that p pB ×∈  
is Hermitian positive definite, q qC ×∈  is Hermitian positive semidefinite and 

p qE ×∈  satisfies ( ) ( ) 0null nC ull E =∩ . Let , 0α β >  be prescribed positive 
constant, ω  be a given non-negative constant and q qQ ×∈  be a given Her-
mitian positive semidefinite matrix. Then it holds that ( )( ), , 1Lρ α β ω < , i.e., 
the ARHSS iteration method converges unconditionally to the exact solution of 
the stabilized saddle-point problem (1). 

Proof. There are two cases to consider. 
Case I: If β α≥ , according to the ARHS splitting, we obtain 
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� �
       (8) 

where ( )Q I Qβ α= − +� . Since Q�  is Hermitian positive semidefinite matrix, 
relations (7) and (8) are exactly the RHS splitting of A. By Lemma 3.1, this split 
converges to the exact solution of the saddle point linear system (1). 

Case II: If β α< , according to the ARHS splitting, we obtain 

( ) ( )

( )*

00
10

A H S

EB
I I

E Q CQ C
β β

ωω

+ −= Λ + − Λ −

     
= + − −       − − + −+      

��
       (9) 

and 

( ) ( )

( )*

0 0
=

1 0

A S H

E B
I I

E Q C Q C
β β

ω ω

+ −= Λ + − Λ −

      
+ − −       − + + − −     

� �
      (10) 

where ( )Q I Qα β= − +� . Since Q�  is Hermitian positive semidefinite matrix, 
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the relations (9) and (10) are exactly the RHS splitting of A. By Lemma 3.1, this 
split converges to the exact solution of the saddle point linear system (1). The 
desired result holds by Case I and Case II. Therefore, we complete the proof. 

4. Numerical Experiment 

In this section, a numerical example is given to illustrate the effectiveness of the 
ARHSS iteration method for the stabilized saddle-point problem (1). We com-
pare the number of iteration steps (denoted as IT) and computing times in 
seconds (denoted as CPU) of the ARHSS iteration method with the HSS itera-
tion method and the RHSS iteration method. All our tests are started from the 
initial vector ( )0 0x = . All iterations are terminated as the current residuals sa-
tisfy ( ) 610kb Ax b−− ≤ ×  or the number of iterations steps exceeds 5000. In ad-
dition, all the computations were implemented in MATLAB [version 9.1.0.441655 
(R2016b)] in double precision on a personal computer with 1.60 GHZ central 
processing unit [Intel(R) Core(TM)i5-5250U] and 4.00 GB memory. 

Example 4.1. ([2], Example 4.3) Consider the nonlinear image restoration 
problem 

( )
2 2

22
min ,f s Ky yβ− +�                    (11) 

where f�  and py∈  represent the observed and the original images, respective-
ly, : ps →   denotes a nonlinear point spread function and [ ]( ) p p

ijK K ×= ∈  
is a blurring matrix. When this regularized nonlinear least-squares problem (11) 
is solved by the Gauss-Newton iteration method, at each step for the currently 
available approximant [ ] [ ] [ ]( )1 2

, , ,c c c c p
y y y y= � , we need to solve a linear 

system of the form 

( ) ( )2
c cI K D K y K D f s Ky DKyβ  + = − + 

� 

 
to obtain the next approximant, where [ ] [ ]( ) [ ]1 2

, , , p p
pD diag D D D ×= ∈�   is 

a diagonal matrix with its diagonal entries being given by 

[ ]
[ ] [ ]1

, 1, 2, , .
p

cj ij j

i
K y

sD i p
ξξ

==∑

∂
= =
∂

�

 

This linear system can be equivalently reformulated into the stabilized sad-
dle-point problem (1), in which 

2 , ,B D E K C Iβ−= = =  

and 

( )1 , 0.c cf D f s Ky Ky g−  = − + = 
�

 

In actual computations we set 

254 254: : 254f
p p

 
=  
 

�


 
and 
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508 508 508 5080.5 : : 254.5 , 254.5 : : 0.5cy
p p p p

    
= + − +    

    



 
and take 310β −= , 

( ) ( ) [ ]
2

2

130log , exp , , 1, 2, , ,
22ij

i j
s K i j pξ ξ

µµ

 − −
 = =

π
=

 
 

�

 
with 2µ = . Here, the notation “:” is a standard MATLAB symbol used in indi-
cating a row vector of the form 

: : , , , , , ,f l f f f lx x x x x x x k x xδ δ δ   = + +   � �
 

for which fx  and lx  are the first and the last elements, xδ  is a prescribed 
increment such that l fx x−  is its multiple and k is a non-negative integer 

ranging from 0 to l fx x
xδ
−

. 

For this example we have p q= , so that the dimension of the stabilized sad-
dle-point matrix p pA ×∈  is 2n p= . Note that the Toeplitz matrix E is highly 
ill-conditioned with rapidly decaying singular values so that it is almost 
rank-deficient, especially when the problem size p becomes sufficiently large. 
Besides, we take the regularization matrix to be 

( ) .Q C E Eαγ ω γ= − + 

 

Taking Q into (5) and (6), we get 
( ) ( )( ) ( ) ( )1 2 * *1 2 ;k k kg I C E E z E y gβ αγ γ+ = + − + + +

 

and 

( ) ( ) ( ) ( )21 * 1 2* 11 11 .k k kI C E E z E f gβ αγ
α α

+ + + + + + = + 
   

So, in the specific algorithms, the parameter ω  does not need to be deter-
mined. In our experiments, let the parameter γ  be taken as the optimal value 
of [[2], Example 4.3], and the optimal values of the parameters α  and β  can 
be determined by experience and trial runs. For example, first, suppose the 
ranges of α  and β  are ( )0,1 , and then divide it into 100 equal parts. Second, 
fix parameter α  to a certain value in ( )0,1 , and then find the corresponding 
optimal parameter β  by trial runs. Third, using the second step method, fix 
parameter β  to a certain value in ( )0,1 , and then find the corresponding op-
timal parameter α  by trial runs. Finally, we choose the best parameters α  
and β  through experience and trial runs. 

In Table 1, we list the best parameters ,α β  and regularization parameter γ  
for the three iteration methods including HSS, RHSS and ARHSS with different 
mesh number p. Through these optimal parameters, we list the experimental re-
sults of the three methods in Table 2. The experimental results show that com-
pared with HSS and RHSS, the ARHSS iteration method takes the least CPU and 
the smallest IT to converge to the solution of (11). 
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Table 1. Optimal parameter and regularization parameter. 

p 512 1024 1536 2048 

HSS α 1 2 4 5.2 

RHSS 
α 1 1 1 0.98 

γ 0.2 0.18 0.15 0.11 

ARHSS 

α 1 1 1 1 

β 0.9 0.9 0.9 0.96 

γ 0.2 0.18 0.15 0.11 

 
Table 2. IT and CPU. 

p 512 1024 1536 2048 

HSS 
IT 623 806 1216 1651 

CPU 7.360713 17.068340 36.843068 61.9992798 

RHSS 
IT 747 717 691 555 

CPU 2.804141 7.434071 10.852548 12.2928 

ARHSS 
IT 659 551 609 535 

CPU 2.532601 5.497928 9.359197 11.253577 

5. Conclusion 

For stabilized saddle-point problem, we extend the accelerated RHSS iteration 
method for the standard saddle-point problem to the stabilized saddle-point 
problem. The convergence property of the ARHSS iteration method is carefully 
studied, and the numerical result illustrates that the ARHSS is more effective for 
the stabilized saddle-point problem. In this paper, optimal iteration parameters 
can only be determined experimentally. So, how to establish practical formulas 
for computing the optimal iteration parameters is worth further study. 
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