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Abstract

This paper develops a mixed Finite Element Method (mFEM) based on both
classical rectangular elements (with equal nodal points for all degrees of free-
dom) and Taylor-hood elements to solve Poisson-Nernst-Planck (PNP) equa-
tions with steric effects. The Nernst-Planck (NP) equation for ion fluxes is modi-
fied to incorporate finite-size effects in terms of hard-sphere repulsion. The
resultant modified NP and Poisson equation representing electrostatic poten-
tial is then coupled to form a system of the equation that describes a realistic
transport phenomenon in an ion channel. Consequently, we apply mFEM based
on both Taylor-hood and classical rectangular elements to discretize the 2D
steady system of equations with iterative linearization for the nonlinear com-
ponents. The numerical scheme is first validated using a 2D analytical solution
for PNP equations, the steric components varied and the effects on concentra-
tion analyzed and compared against PNP and modified PNP for two monova-
lent ion species. Classical rectangular elements presented a better comparable ap-
proximate solution than Taylor-hood.

Keywords
Modified PNP, Lennard Jonnes, Hard-Sphere, Taylor-Hood

1. Background

Biological ion channels are proteins located in the membranes of the cells of our
body with a central pore that allows and controls the passage of charged ions
such as calcium (Ca"), potassium (K*), Sodium (Na®") and so on. These chan-
nels support transfer across the membrane when opened by an appropriate stim-
ulus. The concentration of these ions is one of the crucial factors in regulating many

physiological functions including signal transfer in the nervous system, regulat-
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ing the secretion of hormones in the cells, etc. Thus furthering understanding of
the dynamics and mechanism of the ion channel is vital for medical intervention
in a broad range of diseases areas and the determination of new research trends
in medical fields [1].

One of the most popular continuum theories describing ion transport in such
a complex biological system is the Poisson Nernst-Planck (PNP) model [2]. The
PNP equations describe the electro diffusion of ions under the effect of electric
field induced by ions charge themselves. The model uses a combination of, first-
ly, Poisson’s equation to describe how ions and the channel protein to create elec-
trical potential and secondly, Nernst-Planck equations to describe migration and
diffusion of ions in gradients of concentration and electrical potential. Further-
more, the two components of the PNP model form, also known as the “drift-di-
ffusion equations” which is widely used to describe behaviour of semiconductors, so-
lid-state devices like transistors, nano-devices in biophysics and physical chem-
istry as illustrated in [2] [3] [4] [5].

Among the popularly applied numerical techniques for PNP model include
Finite Difference (FD) [5] [6] [7], spectral methods [4] [8] and Finite Element
Methods (FEM) [9] [10] [11] [12] [13]. The most preferred and appropriate numer-
ical method amongst them for biological channels is FEM, this is due to the inherent
capability to adequately handle irregular geometries and non-uniform boundaries.
A number of researchers have applied different types of FEM in the study of ste-
ric PNP models, for example, [9] generalized the Borukhov model to obtain a size
modified PNP (SMPNP) that was able to treat non-uniform particle sizes. The ob-
jective was to show that: 1) Size Modified Poisson-Boltzmann (SMPB) model was
implied by SMPNP equations under certain boundary and interface conditions and
can be reproduced through the numerical solution of the SMPNP. 2) The side eff-
ects in the SMPNP effectively reduce the densities of highly concentrated coun-
ter-ions around the biomolecule. An accurate finite element method and conver-
gent Gummel iteration were developed for the numerical solution of a completely
coupled non-linear system of SMPNP.

The validity of the PNP model was extended by adding an Excess Chemical Po-
tential (ECP) correction to account for finite ion size and water occupation by [4].
The modification of the standard drift-diffusion solution methodology was ac-
complished by adding an outer iteration for the correction, achieving feasible con-
vergence rates with simple test structures. Under equilibrium conditions in the ab-
sence of fixed charge on the membrane, PNP theory predicted uniform ion den-
sities while PNP/ECP predicted non-uniform charge distribution. [10] presented
a mathematical model for finite-size effects using a regularized Lennard Jones (L])
repulsive potential under an energy variational framework and its numerical veri-
fication to recover layering behaviour. Edge finite element method was used to
solve a system of modified PNP and employed convex iteration scheme to ensure
self-consistency between ionic concentrations and electrostatic potentials. Both

PNP with L] repulsive potential and Density function theory hard-sphere poten-
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tial have the same overall behaviour of ion concentration. Ion concentration near
the boundary was found to be larger than in bulk.

Thereafter, [13] proposed linearized local conservative mixed FEM for solving
time-dependent PNP equations, where the NP and Poisson fluxes were introduced
as new vector-valued variables. These methods were employed for spatial discreti-
zation, backward Euler with linearisation for temporal discretization hence the sys-
tem decoupled and solved iteratively for each time step. Additionally, [14] deve-
loped a modified PNP macroscopic model accounting for size exclusion effects re-
sulting in nonlinear mobilities. The numerical simulation of the model indicated
decreasing behaviour in conductance which leads to current saturation, behaviour
was not detected in the PNP case. Finally, it is important to note that FEM sim-
ulation of PNP with steric effects is mostly limited to 1D cases see [10]. This is de-
spite realistic computationally expensive 3D ion channel see [6], a major contri-
buting factor being difficulty in numerical convergence.

Consequently, this study adopts approximation of the L] potential in the en-
ergy functional with hard-sphere repulsion using band limit function which cut-off
higher frequencies and preserve spatial frequencies in Fourier modes. The approxi-
mation is done with help of a cutoff length (o) approaching zero, see [8] to sim-
plify the kernel in the functional. As a result, the improved energy function is used
to derive equations of PNP with steric effects (mPNP), which is simple and numeri-
cally viable. The paper proposes and analyzes the mixed FEM method based on
Taylor-hood elements and classical FEM using the bilinear element with equal
degrees of freedom to discretize the domain. Furthermore, FEM algorithm is en-
forced over the domain with iterative linearization to solve the decoupled system
of highly nonlinear mPNP and PNP equations for two monovalent ion species in
2D. Accordingly, the study analyses their concentration behaviour in the chan-
nel with changing steric values. In the previous study, we analyzed the existence
of approximate solution of a 2D mPNP system, see [15] and numerical simulation
using mFEM in [16], the current study intends to improve the accuracy of nu-
merical approximate solutions obtained in the previous simulation and offer a vali-

dation scheme.

2. Mathematical Model

Given that classical PNP model have known limitations, for example, it neglects
the finite size effects of ion particles and does not account for non-electrostatic
interaction between ions see, [4] [9] [17] [18]. As a result the PNP model cannot
adequately describe the flow behaviour of biological ion channel calling for im-
provement. Consequently, in recent years, mathematical studies in this area have
modified the PNP equation to include finite volume effects and electrostatic in-

teractions.

2.1. Poisson-Nernst-Planck Equation

The Poisson-Nernst-Planck mathematical model for analyzing ion transport is given
by:
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L _v.p|ve +Ecva |, i=1L N (2.1a)
at KT
N
-V (VD)= p, + . 7€C;. (2.1b)
i=1

In the Nersnt-Planck (NP) Equation (2.1a), ¢, and z are concentration and
valence for the ith ion species. ¢ is the electrostatic potential, K is the Boltz-
mann constant, 7'is the absolute temperature, N is the number of ions, e is the
unit charge and D, is the diffusion coefficient of ion species. In the Poisson Equa-
tion (2.1b), & is the coupling energy constant and p, representing permanent

charge density.

2.2. Poisson-Nernst-Planck Equation with Steric Effects

This subsection considers a continuum flow in a two dimensional problem to rep-
resent a channel in cell membrane. The energy variational approach is used to de-
rive a system of differential equations including finite size effects of ions using the
Lennard Jonnes repulsive potential. This potential introduces the ion interaction
which is modeled as hard spheres in a rectangular space with unit thickness. The

contribution of the repulsive potential to the total free energy functional is given
by:

Ez.[Q[KBTﬁlzci Inci+%[po+ﬁ1:ziecij¢jdx
J. J. (a +a, )12

2 pxyf?
given that a and a; are the radii of the /* and /" ions and &; becomes

(2.2)
¢ (x)c; (v)dydx

their coupling energy constant. The main computational challenge is the in-
accuracy and inefficiency in simulation due to the effects of high frequencies
in the kernel of potential term in (2.2). In order to explore the flow with high
accuracy, this paper employs a band-limit function which depends on a cut-off
length (o) to eliminate the high spatial frequencies and preserve the bounded
spatial frequencies, see [8] [19]. The cutoff length is taken to be small parame-
ter tending to zero for better approximation. Using this band-limit function and
fourier analysis an approximate energy functional is derived which reduces the
numerical complexity of the repulsive term in the L] potential describing ion
interaction.

The Energy functional in (2.2) is replaced by an equivalent approximate en-

ergy functional derived in [19] and represented as:

N 1 N
E, :J’Q(KBT;q Inc, +E(p0 +;ZieCiJ¢)dX

Nog
+I]12(a+a)sjc dde

(2.3)
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Wy
12-d

area of the d-dimensional unit ball. Applying the energy variational method, we

where S_ = %, the dimensional space d <3 and W, is the surface

obtain a new mathematical model for NP equation given by:

«_Db V. civ5E” =-V-J, i=1L ,N (2.4)
ot KT oc

where the flux J; is given by:

Dic, Dc, & 12
J,=-D\Vc,———-z7eVg-——=> VS _g.(a,+a;) c (y)dy.
i i i KBT i ¢ KBTE o'lj(l ]) J(y)y
Equation (2.4) forms a system of NP equations with steric effects, which satis-
fies the dissipation law given below:
dE,
dt

- Dic 2
=_IQZF|V(KBT logc; +ze¢+ 4 )| (2.5)
i=1 B

o

o
where 1 = is the chemical potential. Simplifying (2.4), we obtain rates of

i
concentration for the two ions ¢, (negative) and C, (positive) in steady state

given by:

D, |:V -(Vcn +%Cnv¢j+ S,V -(gnnchcn +0,,C,VC, ):I =0, (2.6a)

B

Ze
D, [v-[wp tT cpv¢J+ S,V +(9pC,VC, + 0reC, VE, )} =0.  (2.6b)

B

12

12 12 .
where 0,, =¢&, (2a11) s O = €1 (a1 + a2) s O =6 (2a22) . Coupling
(2.6) and (2.1b) and taking p, =0, we obtain the system of mPNP equations.

3. Numerical Schemes
Classical and Taylor-Hood Domain Discretisation

Case I: The study examined use Classical rectangular element models the flow
where bilinear elements are prescribed on each node sharing all the three com-
ponents for concentration and potential in the coupled system. Shape functions
for which uses local coordinates(7,& ) to express these components in form of 4
noded bilinear elements M as illustrated in Figure 1(a), representing nodes for
j=1,2,3,4. These bilinear interpolation functions are used for both concentra-
tion, ¢, and C, and potential, ¢ components, resulting into 12 unknown varia-

bles for each element.
1
M1=Z[1—§—77+§77]1 -1<(&,m)=1 (.1)

Case II: Taylor-hood elements discretization over the domain proposes nine
nodes for concentration and four nodes for potential variables where all the flow
variables are defined as illustrated in Figure 1(b). Shape functions using local

co-ordinates (77, ) are used to expressed these components in form of four-noded
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Figure 1. The (a) Classical domain consisting of 4-nodes (O ) pro-
viding bilinear elements for both concentration and potential com-
ponents, and the (b) Taylor-hood multi-grid composed of 9-
noded (e ) concentration measurements and () bilinear poten-
tial nodes.

bilinear elements given in (3.1) and nine-noded elements denoted by N, for

j=1L ,9 anexample of first node in the element is given by:
1
N, =7 ¢(1=¢)n(l-n). (3.2)

Thus the interpolation functions N; are used for concentration components,
¢, and C, while bilinear interpolation functions M, are used for potential com-
ponent, ¢ resulting into 20 unknown variables for each element in Taylor-hood
elements.

Taylor-hood elements are established to be well-posed and numerically stable

while bilinear elements are unstable [20] [21]. However, Taylor-hood imposes com-
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putational challenges due to many degrees of freedom for the variables whereas
the bilinear elements easy to implement particularly when applying mesh refine-
ment of the domain. Lastly, both elements are comparable since they produce the

same order of potential interpolation.

4. Finite Element Discretization and Linearization

We employ Sobolev function to represent the domain given C° (f_l) to be a
space of continous function at the closure of the domain, €, L? (Q) aspace
of square integrable functions and Hg(Q) being functions of L*(Q) whose
derivatives are square integrable functions with values vanish at the boundary of

the domain. These space functions are used to describe the finite dimensional
spaceon QeR® tobe C, = {Ci eC’ (ﬁ)m(Hé (Q))z} and

D, = {d) eC’ (ﬁ) r\(Lf, (Q))} ,for i=n, p.Itis therefore permissible to express

parameter values C,, C, and ¢ are expressed in form of the basic functions of

P
C, and @, given by:

ndof,, ndofe, ndofq,
c,= 2 Ngc,. ¢,=> Nc,;, ®=) M, (4.1)
i1 =1 i1
where C;, C,; and @; are the parameter measurements at the nodes of each

elements and N; ={N,,L ,NyeC,} and M; ={M,;L ,M, e®,} are the sha-
pe functions for concentration and potential respectively and whilst ndof is
the degree of freedom for each variable. To overcome the nonlinearity in the mPNP

equations, the unknowns are written in iterative form as:

ckt=ck+C,, cit=ck+C, O =0"+d (4.2)
where cf,cf and @ are previous known values and €,,6, and @ are the
correction values. Hence the nonlinear terms are linearized as shown in Equa-
tion (4.3):

Kby ak o wkoeak | 2wk | ~kpa
¢, V¢, ~c, Ve, +¢, Ve, +¢,VC, (4.3)

For novelty in computation, welet o, =Z,e/K,T, a, = Zpe/KBT ,
S,=S,gnn, S,=S_gnp and S, =S_gpp. Using the above notations we in-
tegrate (2.6) and (2.1b) over the domain, then by applying Gauss-Divergence the-
orem to the diffusive terms results into weak form of concentration and potential
given by:

D, jg[vén + o (ckVd+6,VO" )+, (ckve, +C, Vel )
+S, (cﬁvép +¢€,vey ):|-VWdQ (4.4)

= [ f-w—D, [ Vek +acf V" +Scivel +S,¢vek |- vwdQ
J'Qchi)-Vv—.[rv-Z%—e(én +6,)-vdQ = IQ( f, —e(cﬁ +c,k)))-de (4.5)

given ¢ is the unit outward normal and weC,,ve ®, are the weight func-

tions for concentration and potential respectively. Since achieving convergence
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for highly nonlinear system is computationally expensive, we refine the meshes

in the domain and decouple our system to obtain convergence of the iterative nu-

merical scheme illustrated in Figure 2 below.

5. Numerical Results and Discussion
5.1. Solutions for the PNP Problem

Case I: To validate the numerical scheme, we construct a 2D steady PNP problem
with known analytical solution this is by modifying the 3D PNP equation in [22].
We start by considering analytical solution of the form (5.1a)-(5.1d) in domain,

Qe R? defined as:
®(r)=acosxcosy, reQ,

c,(r)=a,cosxcosy+f,

cp(r)=a3cosxcosy+ﬁ2,

F =a,cosxcosy

(5.1a)
(5.2b)
(5.3¢)
(5.4d)

satisfying the steady state PNP equations for two monovalent ion species ¢, and

C, given by (5.2a)-(5.2¢):

[ Initial conditions c¢;g, ®¢ ]

( boundary conditions ]

{Solve Poisson’s equation @J

Solve NP equation
for ¢; and update ®

[ Repeat ] {update ¢; and @ iteratively]

If‘c?ew _ C?ld| S
tol;
|¢new _ (I)old‘ <
tol

No

yes

{ Exit: Output ¢; and ® ]

Figure 2. Flow chart for numerical simulation of

mPNP equations, given i=(n,p).
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F,=V-D,(Vc, +,c, VD), (5.2a)

F,=V-D,(Vc, +a,c,VO), (5.2b)
np

-V (eVO0) = zec;. (5.2¢)
i=1

when taking D, =1, Dp =08, ¢,=-1, a,=1,

(al,az,as,a4) =(0.2,0.2,0.4,80) and (f,,f,)=(0.3,-0.3). Given e=g¢5, ,
&, is the vacuum permittivity and &, is the relative permittivity. Prescribing
Neumann boundary condition for concentration in two opposite vertical walls of

the channel and Dirichlet boundary conditions for exit and entry of the channel
Q=[0,1x0,1] walls satisfying:

(Ve, —ac,V®)-v =0, (5.3a)

(Ve, +eye, V@) -v =0, (5.3b)

VO .y =0, (5.3¢)
¢(r)=k(r), ® =h(r), reoQ. (5.3d)

where v is the unit outward normal.

The numerical solution of PNP equations (5.2a)-(5.2¢c) was in agreement with
the analytical solution for Concentration and Potential as illustrated in Figure 3
and Figure 4. Increasing the number of elements, N improved the accuracy of
the numerical solution such that when N =16x16, the approximate solution were

established to be very accurate hence validating the numerical scheme.

5.2. Solutions for mPNP Problem

In this subsection, we consider a two dimensional steady state mPNP equations
given by (2.6) and (2.1b) for two ion species denoted by n and p, with valencies
takentobe 2z, =-1 and z,=1,andradii a =15 Aand a, =2.0 A, respective-
ly. The constant diffusion coefficients was taken as D, =2.0305x10° and

D, =1.335 x10™° for negative and positive ions, respectively. The flow is assumed
to be in the ydirection at X =0.5. The impact of steric components S,,S, and
S, on concentration of two monovalent ion species is determined and discussed
for Taylor-hood and bilinear elements.

Dirichlet conditions prescribed at the channel walls for concentration and po-
tential in the domain, Q= [O,1>< O,l] , no flux boundary conditions are imposed
for both concentration and potential, respectively and electro-neutrality condi-
tion is assumed for the charge densities given by:

¢, (x.0)=c,(x,0)=0g1

c,(x1)=c,(x1)=0

®(x,0)=9g2, ®(x,1)=0; onoQ,i=n,p (5.4)
J;-v=0, (&V®)-v=0

z,c,+z,c,=0

where g1>0,g2>0 are constants, J; isthe concentration flux and v is the
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Figure 3. Contours for (a) analytical and (b) numerical Concentration, ¢, satisfying the
PNP equations (5.2a)-(5.2¢).

unit outward normal.

Case II: A four-noded rectangular element, each sharing nodal points for po-
tential and concentration components was utilized to obtain the following re-
sults. The three steric effects S,,S, and S; are varied and analyzed for con-
centration profile with the aim to demonstrate their effect on the positive and

negative ion flow in an electro-neutral biological channel environment under the
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Figure 4. Potential, ® contours for (a) analytical and (b) numerical solutions of the PNP
equations.

boundary condition in (5.4).
Results illustrated in Figure 5 demonstrate effect of repulsive forces of cations
in the flow whence other steric components are held constant. On the other

hand, Figure 6 and Figure 7 accounts for the attractive force of the constituent
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Figure 5. Variation of ionic concentration ¢, and ¢, with finite size effects, S, and PNP equ-
ation across the domain, at Xx=0.5.

opposite ions and repulsive of anions, respectively, all of which are responsible

for ion flow fluctuations.
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Figure 6. Variation of ionic concentration with finite size effects, S, across the domain at

x=05.

The above three critical forms in variation implies that radius size of an ion

plays a role in ion interaction and competition as in the subsequent analysis.
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Figure 7. Variation of ionic concentration with finite size effects, S, across the domain at
x=05.

Upon increasing the positive steric effects S, the repulsive forces between ion in-

creases resulting into reduction in cations being selected to through the channel
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see, Figure 6(b). These repulsive forces are very strong hence prevents of anions
as displayed in Figure 6(b). Varying the attractive element of the steric effect, S,
increases the attractive forces between the ions resulting in gradual increase in
flow and accumulation of anions and accelerated decrease of the cations in the
channel as shown in Figure 7. This may be due to frequent collision between cat-
ions which have larger radius hence reaches equilibrium faster than anions. Lastly,
insignificant variation of the negative steric effects S increases the repulsive forces
between the anions enhancing steady reduction in their diffusion and concentra-
tion in the channel, see Figure 8(a) whereas the flow of cations remain constant,
as evident in Figure 8(b). Consequently, we realize significant contribution of both
attractive and repulsive element of steric effect compared to ion concentration.
But overally, contribution of the increase in the attractive component of the steric
effect S, in the flow pronounces anion and diminishes cation flows significantly as
in Figure 7(a) and Figure 7(b) respectively.

It can, therefore, be deduced that the repulsive components plays the least role
in the selectivity of ion species while the attractive components have more impact
on the flow of ions. However flow of the anions is enhanced in all the situations
compared to the cations upon varying the repulsive components S, and ;. This
may be as a result of the size/radius of the ion. The diffusion of cations is also ob-
served to be faster than anions in all the variations, this may be as a result of bulk
mobility of the anions which is higher than the cations in the channel.

Case III: Taylor-hood multi-grid with 9 nodes rectangular elements for each
concentration components and 4 noded rectangular elements for potential com-
ponents was adopted to discretize and solve the mPNP system of equations. Given,
specific values of steric effects S, S, and S, the estimated concentration profiles c,
and ¢, obtained are similar and showed convergence for gradual increase in the
number of iterations as illustrated in Table 1. Whereas execution of infinitesimal
variation of steric effect, S, results into insignificant variation in the approximate
solutions of the flow components, see Figure 8. This loss of accuracy and con-
vergence is largely because of the instability in the system due to nonlinearity and
loss of information from non shared nodes.

The results obtained with mPNP equations demonstrated the impact of varia-
tion of finite size on ion interaction in the channel, which is not viable with PNP
equations. Simulation with bilinear elements exhibited numerically stable solu-
tions of the mPNP model compared to Taylor-hood elements, this may be as a con-
sequence of few degrees of freedom of potential nodes updating the concentration
nodes in each element in the domain. Further, results with Taylor-hood elements
introduced oscillations in the approximate solution and some negative concentra-
tion with varied steric component. Therefore, it is importance to address this chall-
enge in order to obtain desired results. Consequently, we investigated the con-
vergence of the iterative scheme after number of iterations, as illustrated in Ta-
ble 1 and results with Taylor-hood elements displayed instability in convergence

compared to bilinear elements and PNP equations.
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Figure 8. Concentration profile for (a) ¢, and (b) ¢, for various, S and PNP equations when

x=05.
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Table 1. Convergence of exact PNP, bilinear (cFEM) and Taylor-hood (TH) elements after
iterations 7.

Maximum absolute errors in

Iterations (/) cFEM TH Exact PNP
20 0.0700 0.0028 8.62e-2
40 0.0032 0.00125 5.4e-3
60 0.00253 0.00064 3.3691e—4
100 0.00194 0.00114 4.2114e-5
140 0.0014 0.00106 5.2643e-6

6. Conclusion

The main objective of the study was to develop PNP with steric effects consisting
of L] hard-sphere potential which was modified using a band limit function to
reduce the complexity of computation. A two-dimensional steady-state numeri-
cal solution of the mPNP system of equations showing the effects of variation of
steric effects on ion flow and concentration is discussed for a rectangular chan-
nel. In fact, we have observed the effects of repulsive and attractive steric forces
on ion flow and deduced the role played by radial size in selectivity. The Mixed
Finite element approach based on Taylor-hood and bilinear elements enabled the
establishment of distinction between the flows in relation to steric components
qualitatively. We validated our numerical scheme by obtaining analytical and nu-
merical solutions on the 2D PNP equation and convergence of the scheme com-
pared to mPNP equations. Lastly, it is fundamental to note that an anion has a
smaller size compared to a cation, therefore, easing selectivity and flow in the chan-
nel as established in the study. Effects of potential variation are also worth exam-
ining for such a flow in addition to computational efficiency in triangular elements

in Taylor-hood method.
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