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1. Introduction

In the 1990s, C. Foiao proposed the concept of an exponential attractor. The ex-
ponential attractor has a compact positive invariant set with finite fractal dimen-
sion and is exponentially attractive to the solution orbit. The exponential attrac-
tor has deeper and more practical properties. Compared with the global attractor,
the exponential attractor has a uniform exponential convergence rate on the in-
variant absorption set of its solution. The exponential attractor is more robust
under numerical approximation and perturbation. The family of inertial mani-
folds is concerned with the long-time behavior of the solution of a dissipative
evolution equation, which is a finite-dimensional invariant Lipschitz manifold
and attracts all solution orbits in the phase space with an exponential rate. The

family of inertial manifolds is an important link between finite-dimensional and
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infinite-dimensional dynamical systems. In this paper, we study the family of
exponential attractors and inertial manifolds of the following nonlinear Kir-

chhoff equations
u, + M(”D’"u"Z )(_A)z'" ut B(-AY"u, +g(u) = f(x). (1.1)
u(x,t):0,%:O,i:1,2,~-,2m—1,x66§2,t>0, (1.2)
u(x,0) =ty (x).1, (x,0) =, (x).x € Q = R". (1.3)

where m>1,and meN", QeR"(n>1) isabounded domain, 0Q denotes

the boundary of Q, g(u,) isa nonlinear source term, ,B(—A)2m u, isa strong-

t
ly dissipative term, £ >0, f(x) isan external force term.

In reference [1], Fan Xiaoming constructed the spatial discretization based on
the wave equation on R”, and studied the exponential attractor of the second-order

lattice dynamical system with nonlinear damping:

u, — BAu, +h(u,)—Au+Au+gu=q

In reference [2], Yang Zhijian et al. studied the exponential attractor of Kir-
chhoff equation with strong damping of nonlinear term and supercritical nonli-

near term:

u,— 0'(||Vu||2)Aut —¢(||Vu||2)Au +f(u) = h(x),

u|aQ = O,u(x,O) =Uuy (x)a“, (x70)=u1 (x),x e Q.

They prove the existence of the exponential attractor by using the weak quasi-
stability estimate; in reference [3], Xu Guigui, Wang Libo and Lin Guoguang
studied a class of second-order nonlinear wave equations with time delay under
the assumption that the delay time is small:

2
(2—;;+aaa—t;—ﬂAaa—L;—Au +g(u) = f(x)—i—h(t,ut),
t>0,>0,6>0.

The existence of inertial manifolds. Need to know more references [4]-[17].

2. Basic Assumption

For convenience, space and symbols are defined as follows:
H=1(Q), H"(Q)=H"(Q)nH(Q),
Hy" Q)= H™ (Q)NH, (Q), E,=H™(Q)xL(Q),
E, =H"" (Q)ng (Q),k=1,2,---2m . (-) and || represent the inner
product and the norm on A space, then (u,v)= Ju(x)v(x)dx, () =[ul-
Q

Nonlinear function g(u,) meets the following conditions:

(H) 2<p<—2"

,A>2myp22,n<2m.
n—2m

(H,) geCtk=12,--,2m.
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e 2o
(H,) M(s)eC2([O,+oo),R*),1£y0<M(s)<,ul,y= !

d m |12
M,a"vz u <.
(Hy) "g’(s)"wSCZ'
3. Exponential Attractors

In order to prove the need of later, so the inner product and norm of E, are
defined

VU, =(u,v,) e E,i=12,
(ULU),, = (V2" 0, V2" uy )+ (Vi Vi, ) (3.1)
[0, =(.0,), =" u] +[v*n[ (3.2)

Let U=(u,v)eE,, v=u, +é&u,

—1_ “1_'8/11_2"! SsSmin{’BAzm It “1_'8 " 4 ﬁ }
4’ B ’\juﬁm

B

then the Equation (1.1) is equivalent to
U +HU=F(U) (33)
where

EUu—v
. [ﬁ(_A)M v+(1-Be)(-a)" u —€v+€2uj
0

(1= (ol )) (-7 w1 (3) - )

By definition, we know that E,E, are two Hilbert spaces, E, is dense and
compactin Ey,let S(7) isthe mappingof E; to E,, i=0,k.

F(U)=

Definition 3.1. [4] If there is a compact set 4, C E,, A, attracts all bounded
sets in E, , and it is an invariant set under S(¢), S(z)A4, =4,, Vt=0. Then

we say that a semigroup S(¢) has a family of (E,,E,)-compact attractors
A,.

Definition 3.2. [5] If 4, c M, c B, and
1) S()M, =M,, Vt>0;
2) M, has finite fractal dimension, d, (M, )<+w;
3) There exist universal constants 7 > 0,0 > 0, such that
dist(S(t),Bk,Mk)Sne_‘”,t >0,
where, dist,, (A"’B"):Snyigsfk |x—y|Ek, B, is the positive invariant set of
XEAy
S(t) in E, . The compact set M, € E, is called a family of (E,,E,) expo-
nential attractors for the system (S(t),E, )

Definition 3.3. 5] if there exists limited function /(¢), such that
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|S(t)u—S(t)v|Ek Sl(t)|u—v|Ek NVu,vek,. (3.4)

Then the semigroup S(¢) is Lipschitz continuous in E, .

Definition 3.4. [5] If &< (0,lj and exists an orthogonal projection P, of

8

rank A, such that for V(u,v)e E,
|S(t,,)u—S(t*)v|Ek §§|u—v|Ek , (3.5)

or

|QN(S(t*)u—S(t*)v)

S|PN (S(t*)u—S(t*)v) (3.6)

Eg E

Then S(¢) is said to satisfy the discrete squeezing property in E, , where
Oy=1-P,.

Theorem 3.1. [5] Assume that

1) S(r) possesses afamily of (E,,E,)-compact attractors A4, ;

2) In E,, there exists a compact set B, with positive invariance to the ac-
tion of S(7);

3) S(t) is Lipschitz continuous and is squeezed in B,. S(¢)B, possessesa
family of (E,,E,)-compact attractors M,, M, = |J S(1)M.,

0<t<t«
M,=4, v {0 OS (. )j (E g )] . The fractal dimension of M, satisfies
j=li=1

d,(M,)<cN,+1, where, N, is the smallest N which makes the discrete
squeezing property established.

Proposition 3.2. [6] After making reasonable assumptions about A7 (s) and
g(u,), the initial boundary value problem (1.1)-(1.3) has a unique smooth solu-

tion and the solution has the following properties:
lwn s, =¥l 1 < CCr) Qo ), =7 + 7o < €(R).

The solution S(¢)(uy,v,)=(u(¢),v(t)) of the equation is expressed by Theo-
rem 3.1, then §(r) is a semigroup of continuous operators in £, , we have the
ball

2

B = {(u,v) ek, :"(u,v)"Eo < C(RO )} 3.7)

2

B, ={(wv) e £ :|(wr)}, <C(R)) (3.8)

are absorbing sets of S§(¢) in E, and E, respectively.
Lemma 3.1. For any U =(u,v) € E,, there is
n 2
(HU,U) 2k |U[;, +k [V
Proof. By

(Ul ,Uz) = (Vz"”kul V2R, ) + (Vkv1 , Vv, )

Ey

and

2

B

"Ul "; = (U17U1 )Ek = ||V2m+kul||2 +||Vkv1
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then
(HU,U) = (V*"* (u=v),V*"*u)+(V H, V") 69)
3.9
_ (8V2m+ku’V2m+ku) _(V2m+kvyv2m+ku) + (VkH,VkV).
where H = f(-A)"v+(1-pe)(-A)" u—ev+eiu.
From the Young’s inequality and the Poincare’s inequality, we can get

CAME (V" (B-A)" v+ (1= o) (-A)" u-zv+ gzu),Vkv)

L B L R v e L

|2 B % ||V2m+k

+ (Vz"’*ku,vzm”‘v) - 3||Vkv||2 +&’ (Vku, Vkv) ,

1
> _822172m - ||v2m+/t | ||V2m+k
2¢
2
i

g (Vku,Vkv) > g’ 4" "V"'*ku vy

| J (3.11)

_ _L;n||v2m+ku |2 _ A . &' ||V2m+k

where 2, (>0) is the first eigenvalue of the operator —A.
Derived from Formula (3.9) to Formula (3.11)

(HU,U)> &zm_g "ka" N g_ﬁ_ﬂ{_z'" ||Vzm+ku
2 2

|2

LB AT Nigama
2 2 2 '
Due to
2m 2m I -2m
—;1 S(';"Smin{ﬁﬂ" byl 'BA &—Zm}
then
2m —2m 2m 4
&_5>0 g_&_ﬂ“_>() ﬁ_ﬁ_ll_g>0
2 ST 2 2 72 2 2
thus
2
(HU,U)>k, ||U||; +k, ||v2’"*"v| :
where

Let S(t :UE) ( (),v( )) , Where

) where ¥ =4, (t)+g;7( .

Let W(t)=S(Z) ()V U() V( )= w(t),z(t)) ; where
=w, (t)+ew(t),then W (t) satisfies

W, (t)+ HU -HV +F(V)-F(U)=0, (3.12)
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w(0)=U,-V,. (3.13)

To verify that the Formulas (1.1)-(1.3) has an exponential attractor, it is ne-
cessary to prove that the dynamical system S(¢) is Lipschitz continuous on
E,.

Lemma 3.2. (Lipschitz property). For any U,,V, € E,,T 20, there is

s, =s @], <" v, =Wl

Proof. We can get the inner product of W (z) and Formula (3.4) in E,

space,
S o (0 v ()« [(—Arm“éw,vkz(o]

(ol )y (ol oy avtao] - ca
+(Vk(g(ut)—g(ﬁt)),vkz(t)):o.

A proof similar to lemma 3.1, obtained

(HU=HV, W (1), >k ||W(t)||; +hy [V 2 (1) 2E

k

(3.15)

From Young’s inequality and Poincare’s inequality and the mean value Theo-

rem, we can get
k
S GOREORT0) B

> __||V2m+k
2

V2m+k

2
W| __||V2m+kz
2

(3.16)

2

e
s=|v7ul) 5 =[],

then

([l )y e o] oy a0 |

[M(f)(—Af"”'iw viz(o) |+ M ()90

|2 +i||V2m+k |||V2m+kz

VY

< +

(3.17)

2
< ﬂ"VZerkW o +c¢, ||V2m+kw

,u1+C |2 yI+C

||V2m+k

||V2m+k

()Hv" ), VEz( ))‘

( 5w(t)),sz(t))‘
‘( )‘ (3.18)

W( ()~ (@)).V
=g'(s )\( ).Vz (1)< C
<C, ‘ VEz(t),V (1) )‘

<c, IIV"z(r)IIZ+%IIV”*"w )IIZ T
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then
S OF <26 O (28 =1- 4 =) |7 2(0)]
<14 2+ Gy +8C, 7" ) [V || +(26, +2G,)|[V*=( || (3.19)
<G -

where

Cs =max {1+ g, +Cy +£C, 17", 2C, +£C, }.
By Gronwall’s inequality, we can get
prof <o), =), 020

where b=2C;.
Then

IsU,-S@WL, <e I, Kl

Apparently, —A is an unbounded self-adjoint closed positive operator, and
(—A)_1 is compact, we know that there is an Orthonormal basis of H through
the basic theory of spectral spacing, it is made up of the eigenvector w, of —A,
so that

~Aw, =Aw;,0< A <Ay << A —> 40, j > o0,

P, is an orthogonal projectionin E,. O, =1-P,.
Next, were going to use

2m

H > ||u|| VueQ, (H4'” (Q)ﬁHé (Q)), O ull < ||,u eH.

Lemma 3.3. For any U,V € E,,

T
0, (1)=0, (U(1) =V (1) =0 (1) =(,.2, ) » then
2 - 1[ 32'1+n
O, <[ S o
Proof. Apply O, (t) to Equation (3.4), we get
w, (1)+0, (HU-HV)+Q, (F(V)-F(U))=0. (3.21)

The sum of (3.11) and W, (t) is the inner product of E, , we get

1d 2 2 e 2
S O a7, (O +& 722, (1) )
+0, (F(V)-F(V)).V"z, (1)) =0.
Known by Young’s inequality and hypothesis condition
_[Qno (—A)ZWZ W, Vk j ||V2m+k V2m+kzn0
(3.23)

>_ ||V2m+k 2
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(o, (Il Joay s Ji-a 5, 0
(MO ), 2, )]+ 1(8)-5) (-0 s, ()

2 2
M "mG | LA "Vzw ” +C"Vzwwno"”VzmznU

< +

(3.24)

2

V2m+k

M +C, ”Vz ek,

2 M+C xS

zgﬂ(gw»—gngv%% |=\V%f®ﬁme9%UD‘

—g'(5)|(V*, (.52, () £ C[(V* (2, ()=2m, (). ¥z, (1))
<G[(V'z, (1).V'z, ()| -G |(V*w, (1), V', (1)) (3.25)
of + 250

<Gz, v (o <5V O

(144 +Cy +6C ﬂ(z [V, || +(2C,+£C,) VP2, ( ||2
Replace (3.13) with (3.12) to get
S OF 28 o, O #2114~ 2, 0
<(1+4+, +gcg/1;fm ||v2"”’ (o) +(2¢, +&C,) |z, (o) -

(3.26)

By Gronwall’s inequality, we can get

—2k1 31112;; bt 2
P, @ <l @F 2+ 2w )]

_ —2k1t 3/1112’:: bt (3‘27)
= e P of

Thus lemma 3.3 is proved.

Lemma 3.4. (Discrete squeezing property). For any U,V € E,, if
|7 (s(r)va=s(r))], <|(r=r)(s(7")vs-5(r7)1)

Ej Ey

then

”S U, -S(T°)Y,

1
<l

Proof. If

“Pno (s(7")u,-s(r"))| <

Ej

(-2 )Y s(r))

Ey

Is(r")u,-s ("), ;
-, st [ (507 )5t

SZH([—P )(S(77)U, - S(1°)%,) i

Ex
2m
oo SR o Yoy,
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Let T° be big enough

e < L (3.29)
256
andlet n, be bigenough
Cidim 1
T T < (3.30)
2k +b 256

Replace the Formulas (3.17) and (3.18) into the Formula (3.16), we get

sl||U0 ~Vall, - (3.31)

“S(T“)UO—S(T*)VO <3

Theorem 3.3. Under the appropriate assumptions above, (u,,v,)€ E,,
k=12,--2m, feH, v=u,+su,

ﬂggﬁmin{ﬂ%zm}%—“l_ﬂ&zmﬂ ﬁ,z },
2-p4 2 g 24"

then the solution semigroup of the initial boundary value problem (1.1)-(1.3)
has a family of (E,,E,) exponential attractors on £,

= U S(t)(AkU[GUS(T*)J‘(EO»U}

*
0<t<T J=

and the fractal dimension is satisfied d,(M,)<cN,+1.
Proof: According to Theorem 3.1, Lemma 3.2, Lemma 3.4, Theorem 3.3 is easy

to prove.

4. Inertial Manifolds

Definition 4.1. [18] Assum S=S§ (t)t20 is a solution semigroup of Banach
space E, = H;""“ (Q)xH; (Q), k=12,--,2m,asubset u, E, satisfies the
following three properties:

1) u, isfinite dimensional Lipschitz manifold;

2) p is positively invariant, S(7)u, < 1,,V1=0;

3) u, attracts exponentially all the orbits of the solution, and u € E, , there

are constants 7 >0,y >0, then
dist(S(t)u,ﬂk ) <ye™,t20.
It is said that 4, is an inertial manifold of {S (t)}t>0 .

Definition 4.2. [19] Let A:E, — E, be an operator and assume that
FeC,(E,,E,) satisfies the Lipschitz condition

|F@)-F)|, <tlv-7l, . vVeE. (4.1)

If the point spectrum of the operator A can be divided into two parts o,
and o,,where o, isfinite,

A, =sup{Re/1|/160'1}, AZ:inf{Re/H/leoz}, (4.2)

Ekf :span{@f|ﬂiedi,i=l,2}. (4'3)
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and satisfies the condition
Ay —A >4, (4.4)
and the orthogonal decomposition

E,=E, ®E, (4.5)

set B:E, —>E, and P,:E, — E, areboth continuous orthogonal projections,
then the operator A is said to satisfy the spectral interval condition.

Lemma 4.1. [18] Let the eigenvalues ,uf ( jZl) be non-decreasing, and
me N, there exists N >m, such that s, and uj are consecutive adja-
cent values.

Equation (1.1) is equivalent to the following first order evolution equation

U,+AU =F(U), (4.6)
where
UeE, U= (u,v)T =(u,u, )T ,
0 -1
A = 1P 2m 2m |
m(foral)-ay" p(-a)

F(U):(fm?g(ut)]

a graph defined on E, by the quantity product:
U.y), =(M-V" u, v 3)+ (n7), (4.7)

where U = (u,v)T V= (y,z)T €E,, 7,z respectively represents the conjuga-
tion of yand z v,ze H;""(Q), u,ye H;""* (Q). VU €E,, there s

(AULU), =—(M V", V2" i)+ (M (||Vu||: )(—A)Z'" u+ B(-A)"u, ,v)
> —(M V2", VL) 4 M (VP 0, V) 4 B (=AY, —A")

> g >o.
(4.8)

Therefore, the operator A is monotonically increasing, and (AU U ) E isa

nonnegative real number.
The characteristic equation AU =AU, U =(u,v) €E, isequivalent to
—-v=Au (4.9)

M (||vmu||i)(—A)2’” ut f(=A)"v=Iv. (4.10)
Therefore, A satisfies the following eigenvalue problem
Aut M (||vmu||P )(_Aym u—PA(-A)" u=0,
P

u|ag = (_A)zm u

(4.11)
=0.

oQ

Given by Formulas (4.11) and (4.12), the corresponding eigenvectors take the
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form

2m
U; :(”J"_lji”./>’/‘j =4 (4.12)

where 4, (j>1) is the eigenvecrootof (-A)™ in H;"(Q).
For Vj2>1,thereis

[ e e

Take the position of (4.12) uin u; and use (—A)k u to get the inner prod-

uct
Il (ol | -y =0 s

Consider the Formula (4.16) as the quadratic equation of 4, as follows:

B —AM u.
lji:ﬂﬂ, N /1,' (4.15)

2

Theorem 4.1. If N, € N is large enough, when N = N,, the following in-
equality holds

%((ﬂw DN —4M(S))—1)21F- (4.16)

then the operator A is said to satisfy the spectral interval condition.

Proof. Because all the eigenvalues of A are positive real numbers, and the
known sequence {A;,}NZI and {i;,}NZ] is incremented.

This theorem is then proved in four steps.

Step 1: Known non-subtractive sequence of A, according to lemma 4.1, for
VmeN, IN>2m makes A, and A,

V. adjacent, the eigenvalues of the op-

erator A can be decomposed into

oy = {2, A4 Imax (4], 4} < 45, (4.17)
oy = {147 | 2 < Ay <min{A7, 47|} (4.18)
Step 2: The corresponding E, can be decomposed into
E, =span{U;, Ul | 4,4 €a}, (4.19)
E,, =span{U;, U | 4;, % €0, }. (4.20)

In order to make the two subspace orthogonal and satisfy the interspectral
Formula (4.4).
A, = Ay, A, = 4y, further decomposition E, =E.+E,, Le.

Ec =span{U; |2, <2y < A7}, (4.21)
Ey = span{Us | Ay < 4} (4.22)

andlet E, =E, ®F,.
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Next, we specify the quantity product of the eigenvalues over E, , makes £,

and E, orthogonal, here are two functions
®:E, >R, y:E, >R.
O(UV)= B(V" 1, V" 5) +2(V 2,9
$2(VII V)4 (VY ) (423)
_4M(||vmu||: )(Vkﬁ,v"y)+(z B B)(V vy,
(U ) =V u, vy ) 4 (V2 V) - (VR v )

’ . (4.24)
—4M ("V’”u”p )(V’fz,_l, ka) + (IBZ _ 1)(V2m+kﬁ’ Vzmu\y).

where U = (u,v)T V= (y,z)T eE,, 7,z respectively represents the conjuga-
tion of yand z
Set VU =(u,v) € E, , then

O (U,U) = B(V>"*u, V"0 )+ 28(V "5,V )
+2B(V72" e, VL) + 4(V R, V)

—4M(|

V'"u"p )(th_t,vku)+(2ﬂ2 _ﬂ)(v2n1+kl7,v2m+ku)
’ ) , (4.25)

2 12
Zﬂ"VZWku _4||V—2m—kv|| _ﬂz ||V2m+ku

AM (s)|[V"Hu

2 =BVl 4
=Vl |0l = (5% 4 ()

Since f is sufficiently large, can Be obtained ®(U,U)>0, VUE€E,,
thus @ is positive definite.
In the same way, VU =(u,v) € E,, there is

Y (U,U) - (v2m+ku’ v2m+k17) + (V—Zm—kv,VZnHku) _ (V—Zm—kv,VZchE)

_4M(||Vmu||1p] )(Vkﬁ,vku)+(ﬂ2 _1)(V2m+kﬁ,V2m+ku)

R , , (4.26)
> "Vzm*ku —4M (s)"V"’”‘u + (ﬂz - 1)||Vzm+ku
> (ﬂz,u_lz. —4M (s))"Vku"2 .
¥(U,U)=0, ¥ are positive definite.
Specifies the inner product of E, :
((U.r)), =(RU.BYV)+¥(RU.RY). (4.27)

where P, and P, aremapsof E, - E, and E, —» E, respectively.

The above formula can be abbreviated to

(U.r), =e@Ur)+¥UY). (4.28)

In the inner product of E,, E, and E, orthogonal. If Ey and E. or-

thogonal, just have to prove it

DOI: 10.4236/jamp.2022.103062 911 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.103062

G. G. Lin, Y. G. Wang

(v).v7)),, =o(v)

= BV u, VI )+ 2B (=AY LV )
+2B(=AV " VI )+ A=AV =2V )
_4M(||V'"u||i )(Vkﬁj,vku )+ (28 - B) (VP v

vohu [ +aza |

J

= BV hu [ -28(4 +47)

M ()| [ + (282 - B) | [ (4.29)

=2, 2B 4] )+ 4 4 (5) =0

J

According to (4.13), and
A +/1j+ = pu;. (4.30)
/1;/1; =Muy,. (4.31)

Step 3: Further estimating the Lipschitz constant /. of F where
FU)=(0./(x)-g(,)) , g:H(Q)—>L(Q).1f VU () €k,
U= (u,v)T , V= (ﬁ,ﬁ)T = (y,z)T € E, , then

[F@)-F ), <[P*(2(u)-2 ()]
<Gylle” )], " (s )]
=G Hg(k) (5)“00 e, =
<l |u-v], -

(4.32)

Step 4: Now verify that the spectral interval condition A, —A, >4/, holds.
Then

Ay =Ny =2y, — Ay :g(/ﬁm _:L‘N)"'%(\/R(N)_\/R(N"'l))' (4.33)

where R(N) :,leuf, —4M,u§,.
There exists N, =20, such that for VN 2N,

. B’ B 4M
R (N)=1 \/,Bz,uf. SaG) () . We can get

JRON) = JR(N +1) + 8212 =4M (5) (1 — 11y)

= m(ﬂNﬂRl (N'H)_IUNRI (N))’

According to assumption (H,), we can easily see that

tim (JR(V) = JRON 1) 48} =4M (s) (4t = 1)) =0, (4.35)

N>+

(4.34)

Then according to (4.16) and (4.32)-(4.35), we have

A, - A, 2%((/1]\”1 —yN)(ﬁ— B i —4M(s))—1) >4l (436)

So the spectral interval condition holds.
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Theorem 4.2. Under the assumption of Theorem 4.1, the initial boundary
value problem (1.1)-(1.3) has the family of inertial manifolds /4, on the space

E, , and the form is

h, = graph(m) = {§k+m(§k):§k eEk]} (4.37)
where E, ,E;, is defined in Formulas (4.19)-(4.20), m: E, —>E, isa Lip-
schitz continuous function.
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