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Abstract 
Background: This study is aimed towards an exploration of mutant genes in 
primary liver cancer (PLC) patients by using bioinformatics and data mining 
techniques. Methods: Peripheral blood or paraffin-embedded tissues from 8 
patients with PLC were analyzed using a 551 cancer-related gene panel on an 
Illumina NextSeq500 Sequencer (Illumina). Meanwhile, the data of 396 PLC 
cases were downloaded from The Cancer Genome Atlas (TCGA) database. 
The common mutated genes were obtained after integrating the mutation in-
formation of the above two cohorts, followed by functional enrichment and 
protein-protein interaction (PPI) analyses. Three well-known databases, in-
cluding Vogelstein’s list, the Network of Cancer Gene (NCG), and the Cata-
log of Somatic Mutations in Cancer (COSMIC) database were used to screen 
driver genes. Furthermore, the Chi-square and logistic analysis were per-
formed to analyze the correlation between the driver genes and clinicopatho-
logical characteristics, and Kaplan-Meier (KM) method and multivariate Cox 
analysis were conducted to evaluate the overall survival outcome. Results: In 
total, 84 mutation genes were obtained after 8 PLC patients undergoing gene 
mutation detection with next-generation sequencing (NGS). The top 100 
most mutate gene data from PLC patients in TCGA database were down-
loaded. After integrating the above two cohorts, 17 common mutated genes 
were identified. Next, 11 driver genes were screened out by analyzing the in-
tersection of the 17 mutation genes and the genes in the three well-known 
databases. Among them, RB1, TP53, and KRAS gene mutations were con-
nected with clinicopathological characteristics, while all the 11 gene muta-
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tions had no relationship with overall survival. Conclusion: This study inves-
tigated the mutant genes with significant clinical implications in PLC pa-
tients, which may improve the knowledge of gene mutations in PLC molecu-
lar pathogenesis. 
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1. Introduction 

As the second leading cause of cancer death, the incidence of primary liver can-
cer (PLC) has shown a significant increase in almost all countries, especially in 
Asia [1]. Despite advances in many aspects of PLC treatment, including surgical 
treatment, arterial embolization, and systemic chemotherapy, the 5-year average 
survival rate is less than 10% [2] [3]. The emergence of molecular targeted drugs 
provides new treatment options for patients, but currently, there is no effective 
target for PLC. Therefore, analysis of genetic mutations in malignant progres-
sion and identification of biomarkers that would predict tumor behavior to re-
search and develop novel target drugs are urgently needed. It is also the core 
target of tumor genomics in information mining. 

Next-generation sequencing (NGS), a mainstream technology in oncology, is 
an ability to produce millions of reads in a single run. Compared with traditional 
gene sequencing (known as Sanger sequencing), NGS makes abundant parallel 
sequencing with higher throughput and lower cost [4]. Hence, the gene expres-
sion profile, mutational genes, and hotspot mutations in pathological samples 
from PLC patients could be detected on a large scale by NGS technology, fur-
thermore, through bioinformatics analysis, key genes related to the disease can 
be screened out, which might pave the way toward novel therapeutic targets and 
molecular targeted drugs [5]. Recently, an increasing number of databases have 
been developed based on the sequencing of cancer genome, among which The 
Cancer Genome Atlas (TCGA) database provides relevant data such as tumor 
gene expression, the copy number variation (CNV), gene mutation, DNA me-
thylation, and clinical patient prognosis. It can also provide important clues for 
exploring the mechanism of PLC development and searching for therapeutic 
targets [6] [7].  

In this study, a 551 panoramic cancer gene panel was designed and 84 genetic 
mutations have been identified using targeted NGS in 8 PLC patients. Seventeen 
common mutations were obtained, following integrating top 100 genes with the 
highest mutation frequency of 396 PLC cases from the TCGA database. Subse-
quently, the functional enrichment analysis was performed and a protein-protein 
interaction (PPI) network was constructed. After interaction with 3 driver gene 
databases, 11 driver mutants were screened and visualized, furthermore, their 
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correlations with clinical characteristics and survival were evaluated. The present 
study aimed to identify mutant genes related to clinical prognosis in PLC, 
searching for promising molecular targets in tumor progression, and develop 
more efficacious targeted agents in PLC therapy. 

2. Patients and Methods 
2.1. Patients and Samples 

Eight patients with PLC admitted to the Affiliated Hospital of Chengde Medical 
University from 2018 to 2020 were recruited, including 5 males and 3 females 
with an average age of 59.500 ± 15.464 years. Of them, 7 had late-stage hepato-
cellular carcinoma (HCC) tumor and 1 had early-stage intrahepatic cholangi-
ocarcinoma (ICC) tumor. This study was approved by the Ethics Review Com-
mittee of Chengde Medical University, and all patients provided written in-
formed consent.  

The mutation status of 396 PLC cases filtered for “primary tumor” and “liver 
and intrahepatic bile ducts” were downloaded from the official website of TCGA 
(https://portal.gdc.cancer.gov/). Of 396 patients, 254 with complete clinical data 
were included, detailed information of who was obtained to analyze the corre-
lation between mutation and clinicopathological characteristics or overall sur-
vival.  

Peripheral blood (5 ml) was drawn in EDTA tubes and processed immediately 
(centrifugation 1500 g, 5 min, 4˚C) to collect plasma and buffy coats, which were 
aliquoted and stored at −80˚C until further use. 

Postoperative paraffin-embedded tissue sections were collected, 10 pieces with 
a thickness of 5 μm, and stored in a refrigerator at −20˚C for use. DNA was iso-
lated from whole blood, plasma, and tissue using the QIAampDNA Mini Kit 
(Qiagen, Hilden, Germany) following the manufacturer instructions. 

2.2. Library Construction and Target Capture Sequencing 

The genomic DNA samples were broken into 150 - 200 bp fragments and ligated 
to Illumina sequencing adaptors to build a sequencing library using Accel-NGS 
2S Plus DNA library kit (Swift Biosciences, Ann Arbor, Michigan) in strict ac-
cordance with the instructions. The captured DNA fragments were sequenced 
on the Illumina NextSeq500 Sequencer (Illumina, California, USA) using a can-
cer-related gene panel consisting of 551 widely known cancer-associated genes.  

2.3. Identification of Mutant Genes 

The mutation genes of 8 clinical cases were visualized using R software, in which 
each row represented a mutated gene, and column represented a patient. The 
mutation types of the genes were exhibited, including single nucleotide poly-
morphic (SNP), single nucleotide variants (SNV), and insertion/deletion (In-
Del).  

TCGA PLC cancer data were screened by ticking “primary tumor” and “liver 
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and intrahepatic bile ducts” options from the official TCGA website. In the “Ex-
ploration” pattern, the “Mutations” and “OncoGrid” were selected sequentially, 
and then the waterfall maps of the top 50 mutated genes in 200 most mutated 
patients were downloaded. 

Intersection of the mutation genes in 8 clinical cases and the top 100 mutated 
genes from the TCGA dataset was taken using Venn online website  
(http://jvenn.toulouse.inra.fr/app/example.html) [8]. 

2.4. Functional Enrichment Analysis 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
database (http://david.ncifcrf.gov, version 6.8) was performed for Gene Ontolo-
gy (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis of the mutated genes. GO is a biological model 
framework, which describes gene functions and divides them into three parts: 
biological process (BP), cellular component (CC), and molecular function (MF). 
KEGG is an information resource for understanding biological systems and ge-
nomic functions at the molecular level. The ggplot2 program package of R soft-
ware was loaded to visualize the enrichment analysis results obtained from the 
DAVID database. 

2.5. Construction of PPI Network 

PPI network was constructed after importing the name list of mutated genes 
from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
online database (https://www.string-db.org/), and at the same time, the species 
source was limited to Homo sapiens [9]. 

PPI network data was imported into Cytoscape software (version 3.7.2). A 
functional module was identified using the Molecular Complex Detection appli-
cation (MCODE) plug-in. Next, using the cytoHubba plug-in, the top 10 hub 
genes were selected according to the maximal clique centrality (MCC) method. 

2.6. Screening and Visualization of Driver Genes 

An intersection between the identified mutant genes and the driver genes from 
three databases, including Vogelstein’s list [10], the Network of Cancer Genes 
(NCG) [11], the Catalog of Somatic Mutations in Cancer database (COSMIC) 
[12] was taken using the Venn online website. 

2.7. Statistical Analysis 

All statistical results were conducted using SPSS version 25.0. The Chi-square 
test and Fisher’s exact test were used to compare the differences in categorical 
variables. Factors with p < 0.100 in the Chi-square test were included in logistic 
regression to analyze the interactions between mutation status and clinicopa-
thological characteristics. Kaplan-Meier (KM) survival analysis and the log-rank 
test were used to estimate patient survival and quantify the differences between 
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groups. Factors with p < 0.100 in KM survival analysis were included in multiva-
riate Cox analysis to identify independent prognostic factors. The results are 
presented as estimated odds ratios (OR) or hazard ratios (HR) with respective 
95.000% confidence interval (95% CI) and p-values. The value of p < 0.050 was 
regarded as statistically significant. 

3. Results 
3.1. Identification of 17 Mutated Genes 

Eighty-four mutated genes were identified in the blood and tissue samples from 
8 PLC patients through the high-throughput detection of 551 panoramic cancer 
genes. As shown in Figure 1(A), the most common mutation type was SNP 
(73.362%), followed by SNV (20.524%) and InDel (6.114%). The five most fre-
quently mutated genes were CDA, ERCC1, SLC19A1, NOS3, ABCB1. A waterfall 
map, exhibiting the top 50 mutated genes in 200 most mutated PLC cases, was 
downloaded from TCGA of the Genomic Data Commons (GDC) data portal  
 

 
Figure 1. Visualization and screening for common mutants in PLC. (A) Genetic waterfall plot of 8 PLC patient mutations identi-
fied by NGS technology. (B) Waterfall plot showing the top 50 mutant genes in 200 PLC patients from TCGA database. The two 
rows at the top were CNV and mutation frequencies of each case, and the middle panel represents gene mutation patterns with 
different mutation types color coded differently. (C) Two-set Venn diagram showing the 17 common mutated genes from 8 clini-
cal cases and TCGA patients. 
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(Figure 1(B)). Among them, the most commonly mutated gene was TP53 
(36.500%), CTNNB1 (33.500%), and ARID1A (12.000%). Other genes had a 
mutation prevalence of <10.000%. Afterwards, the intersection of 84 mutated 
genes from 8 patients and the top 100 most frequently mutated genes from the 
TCGA database were analyzed by Venn software. Ultimately, 17 common mu-
tated genes were obtained (Figure 1(C)). 

3.2. Functional and Interactional Analysis of 17 Mutant Genes 

To extensively investigate the function and mechanism of the 17 mutated genes, 
GO and KEGG analyses were performed using the DAVID online application 
(Figures 2(A)-(D)). The GO analysis results demonstrated that the 17 mutated 
genes were significantly enriched for regulation of nucleobase-containing com-
pound metabolic process, regulation of nitrogen compound metabolic process, 
and cellular macromolecule biosynthetic process in the BP category. With re-
gards to CC analysis, 17 mutated genes were markedly enriched in nucleoplasm, 
chromosome, and nucleoplasm part. The top 3 significantly enriched MF terms 
included heterocyclic compound binding, organic cyclic compound binding, and 
DNA binding. Furthermore, 17 mutated genes were mainly enriched in P53 sig-
naling pathway, cell cycle, and HTLV-I infection in the KEGG analysis. 

To explore the interaction between the 17 mutant genes, a PPI network was 
constructed using the STRING database. As shown in Figure 2(E), a total of 17 
nodes and 76 edges were mapped in the PPI network, with a local clustering 
coefficient of 0.795 and a PPI enrichment p value < 1.0e–16. Then, a significant 
module, consisting of 10 nodes and 44 edges, with a score of 9.778, was identi-
fied by the MCODE plugin of Cytoscape (Figure 2(F)). Using the cytoHubba 
plugin and MCC algorithm, the top 10 hub genes were identified from the net-
work (Figure 2(G)). 

3.3. Screening of 11 Driver Genes 

The three databases, Vogelstein’s list, NCG database, and COSMIC database, in-
cluding 125, 711 and 576 driver genes, respectively, are commonly studied for 
the analysis of tumor driver genes. After analyzing the intersection of 17 mutant 
genes and driver genes in the above 3 well-known databases, 11 driver genes 
were screened out, including ARID1A, ARID2, ATM, CDKN2A, KRAS, NF1, 
NF2, PTEN, RB1, STAG2, TP53 (Figure 3(A)). Mutant status of the 11 driver 
genes in 8 PLC patients and 396 cases from the TCGA database were visualized 
using the MafTools routine package of the R language in Figure 3(B) and Fig-
ure 3(C), respectively. It is worth mentioning that the mutation rates of TP53 
gene were 75.000% and 29.000% in the above two cohorts, respectively, with the 
highest mutation frequency. 

3.4. Correlation of Driver Gene Mutations with  
Clinicopathological Characteristics 

After integrating 8 clinical patients and 254 TCGA cases with completed clini-
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copathological data, the correlations between mutations for 11 driver genes and 
clinicopathological features were analyzed using the Chi-square test. The results  
 

 
Figure 2. Functional enrichment analysis and PPI network construction of 17 mutated genes. (A) The top 20 significantly 
enriched biological process. (B) The top 20 significantly enriched cell component. (C) The top 20 significantly enriched molecular 
function. (D) The top 20 significantly enriched KEGG pathway. (E) PPI network of 17 mutant genes. (F) A significant module 
consisting of 10 nodes and 44 edges in the PPI network. (G) The top 10 hub genes in the PPI network. 
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Figure 3. Screening and visualization of 11 driver genes. A: The driver genes in the three databases of Vogelstein’s list, NCG, and 
COSMIC were intersected with 17 mutated genes, and 11 driver genes were obtained by Venn diagram. (B) and (C) depict the 
distributions of 11 driver genes in 8 clinical patients and 396 TCGA cases, respectively. 

 
showed that 6 driver genes, including ARID2, CDKN2A, KRAS, NF1, RB1, 
TP53, were statistically significantly associated with clinical or pathological fea-
tures (Table 1) (p < 0.100), while other 5 driver genes, including ARID1A, 
ATM, NF2, PTEN, STAG2, had no correlation with clinicopathological parame-
ters (Supplementary Table S1) (p > 0.100). 

To further explore the role of the 6 driver genes with statistical significance, 
logistic regression analysis was used to assess the relationship between mutation 
status of driver genes and clinicopathological characteristics (Table 2). First, we 
assessed the influence of age, sex, and race on ARID2, CDKN2A, RB1, and TP53 
gene mutations. Patients under the age of 60 were prone to RB1 mutations (p =  
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Table 1. Six statistically significant driver genes with clinical characteristics of 262 PLC patients. 

Clinical  
characteristics 

No. of 
patients 

ARID2 CDKN2A KRAS NF1 RB1 TP53 

Mut χ2 p Mut χ2 p Mut χ2 p Mut χ2 p Mut χ2 p Mut χ2 p 

Total 262  

Sex  

Male 169 10 
0.439 0.508 

8 
0.068 0.795 

6 
0.000 1.000 

8 
1.566 0.211 

8 
2.416 0.120 

55 
5.192 0.023# 

Female 93 3 3 3 8 9 18 

Age  

<60 134 7 
0.040 0.842 

4 
0.157 0.692 

4 
0.005 0.944 

8 
0.009 0.925 

13 
4.666 0.031# 

49 
10.340 0.001# 

≥60 128 6 6 5 8 4 24 

Race  

Asian 156 11 
3.570 0.059# 

11 
6.147 0.013# 

3 
1.650 0.199 

9 
0.077 0.782 

13 
2.163 0.141 

62 
27.080 

<0.001
# non-Asian 106 2 0 6 7 4 11 

Pathological typing  

HCC 225 13 

2.020 0.338 

9 

1.130 0.685 

5 

7.027 0.028# 

11 

6.138 0.038# 

16 

5.632 0.047# 

69 

8.015 0.012# ICC 34 0 2 4 4 0 3 

cHCC-ICC 3 0 0 0 1 1 1 

Primary site  

Liver 228 13 
1.010 0.315 

9 
0.004 0.947 

5 
5.541 0.019# 

12 
0.417 0.151 

17 
1.621 0.203 

70 
7.046 0.008# 

Intrahepatic bile duct 34 0 2 4 4 0 3 

Treatment type  

Pharmaceutical 
therapy, NOS 

132 7 
0.066 0.798 

4 
0.903 0.342 

5 
0.000 1.000 

8 
0.001 0.975 

8 
0.080 0.777 

42 
2.071 0.150 

Radiation therapy, 
NOS 

130 6 7 4 8 9 31 

T stage  

T1 - T2 183 10 
0.068 0.795 

9 
0.301 0.584 

5 
0.338 0.561 

12 
0.033 0.855 

10 
1.049 0.306 

51 
0.000 0.997 

T3 - T4 79 3 2 4 4 7 22 

M stage  

M0 248 13 
0.061 0.805 

10 
0.000 1.000 

7 
2.363 0.124 

15 
0.000 1.000 

16 
0.000 1.000 

68 
0.135 0.713 

M1 14 0 1 2 1 1 5 

N stage  

N0 252 13 
0.000 1.000 

10 
0.017 0.897 

8 
0.077 0.782 

16 
0.022 0.882 

17 
0.038 0.846 

71 
0.042 0.837 

N1 10 0 1 1 0 0 2 

Stage  

I - II 177 10 
0.190 0.663 

9 
0.494 0.482 

5 
0.177 0.674 

12 
0.431 0.512 

10 
0.633 0.426 

50 
0.040 0.841 

III - IV 85 3 2 4 4 7 23 

Categorical variables were compared using the Chi-square test or Fisher’s exact test, #p < 0.1. Mut, mutated type; HCC, hepatocel-
lular carcinoma; ICC, intrahepatic cholangiocarcinoma; cHCC-ICC, combined hepatocellular carcinoma and intrahepatic cholan-
giocarcinoma. 
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Table 2. Analysis of correlation between mutated genes and clinicopathological characteristics. 

clinical 
characteristic 

ARID2 CDKN2A KRAS NF1 RB1 TP53 

P OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI 

Age 
(<60 vs. ≥60) − − − − 0.040* 3.331 

1.056 - 
10.501 

0.002* 2.498 
1.418 - 
4.400 

Sex (Male vs. 
Female) − − − − − 0.024* 2.010 

1.096 - 
3.688 

Race 
(Asian vs. 
non-Asian) 

0.078 3.945 
0.856 - 
18.173 

0.060 7.310 
0.922 - 
57.810 − − − <0.001* 5.696 

2.824 - 
11.491 

Primary site 
(Liver vs. Bile 
duct) 

− − 0.011* 0.168 
0.043 - 
0.661 − − 0.014* 4.578 

1.354 - 
15.476 

Pathological 
typing 

− − 

    

HCC Reference Reference Reference Reference 

ICC 0.011* 0.170 
0.043 - 
0.670 

0.122 0.386 
0.115 - 
1.288 

− 1.950E+07 1.950E+07 0.015* 4.571 
1.351 - 
15.458 

cHCC-ICC − 5.450E+06 5.450E+06 0.072 0.103 
0.009 - 
1.222 

0.134 0.153 
0.013 - 
1.781 

0.921 0.885 
0.079 - 
9.920 

HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; cHCC-ICC, combined hepatocellular carcinoma and 
intrahepatic cholangiocarcinoma; OR, odds ratio; CI, confidence interval. *p < 0.05. 

 
0.040), while those over 60 years of age were likely to have TP53 mutations (p = 
0.002). Male patients are more likely to have TP53 mutations compared with 
female patients (p = 0.024). With regard to, Asian cases had a higher incidence 
of TP53 mutations than non-Asians cases (p < 0.001). In addition, we also ana-
lyzed the influence of KRAS and TP53 driver gene mutations on primary site 
and pathological typing. Compared to wild-type cases, patients with KRAS mu-
tations had a 5.952-fold greater risk of primary site locating bile duct (p = 0.011) 
and had a 5.882-fold higher risk of developing HCC (p = 0.011). Patients with 
TP53 gene mutations had a 4.578-fold greater risk of the primary site locating 
liver (p = 0.014) and had a 4.571-fold higher risk of developing ICC, than 
wild-type patients (p = 0.015). 

3.5. Survival Analysis of Driver Gene Mutations in PLC 

As shown in Figure 4(A) and Figure 4(B), KM survival analysis showed that 
among the 11 driver genes, NF2 (p = 0.092) and RB1 (p = 0.094) mutations as-
sociated with poor patient prognoses. In addition, the PLC patients with T3 - T4 
stage (p < 0.001) or late clinical stage (p < 0.001) have relatively short survival 
time (Figure 4(C), Figure 4(D)). Based on a criterion of p < 0.100 in the KM 
analysis, multivariate Cox analysis was carried out. The results revealed that all 
the above 4 parameters, including NF2 (p = 0.117), RB1 (p = 0.185), T stage (p = 
0.873), clinical stage (p = 0.365), were not the independent prognosis factors in 
PLC patients (Figure 4(E)). 
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Figure 4. Overall survival analysis for driver genes and clinical characteristics. The KM curves of (A) NF2 mutation, (B) RB1 mu-
tation, (C) T stage, and (D) clinical stage. E: Multivariate Cox analysis for NF2 mutation, RB1 mutation, T stage, and clinical stage. 

4. Discussion  

The occurrence and development of liver cancer is a complex process involving 
multiple genetic events, diverse etiologies, and genomic heterogeneity, which 
manifests not only in different patients but also in individual tumor nodules 
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from a single case. NGS technologies have allowed a high-throughput, compre-
hensive characterization of cancer genomes at unprecedented rates, which could 
improve the cancer genetic map and our understanding of the genetic landscape 
in liver cancer [13]. In Morishita’s study, 50 genes associated with tumor devel-
opment were targeted, and the relationship between the genetic mutations and 
the clinical characteristics of HCC patients was investigated using an NGS plat-
form [14]. Lu et al. [15] provided a mutation spectrum of HCC tissue in 12 
western Chinese cases using NGS with a panel of 372 cancer-associated genes, 
assisting in the investigation of the mechanism of liver carcinogenesis. Kan et al. 
[16] conducted whole-genome sequencing analysis on 88 HCC patients by the 
NGS technology, which not only verified multiple gene mutation sites that had 
been reported but also found new sites of BRCA2 and IGF1R gene mutations. In 
this study, a panel containing 551 cancer-associated genes was used in the NGS 
platform to analyze the gene mutations of 8 PLC cases, which is a relatively large 
panel up to now, providing a comprehensive genetic landscape survey of PLC 
patients. 

A total of 84 mutant genes were identified, corroborating the progression of 
PLC development is the accumulation of multiple genetic events. Given the 
number of our cases analyzed is low, a PLC TCGA dataset was included in this 
study. After integrating the two cohorts, 8 clinical PLC cases and 396 PLC TCGA 
patients, 17 common mutated genes were obtained. Among them, 12 genes, in-
cluding TP53, ARID1, ARID2, ATM, ATR, CDKN2A, KMT2C, KRAS, NF1, 
PTEN, RB1, and RECQL4, has been reported previously in NGS-based study of 
the liver cancer genome [17] [18] [19], while other 5 gene mutations, including 
KMT2D, NF2, STAG2, TSC2, ZFHX3, have never been verified in PLC, which 
remain to be further explored. Of the above 17 mutant genes, TP53 has a high 
mutation rate of 29.455% (119/404). Consistent with our data, the NGS result in 
59 liver cancer tissues showed the most mutated gene was also TP53 (35.600%) 
[14]. In addition, TP53 was the most frequently mutated gene in 12 HCC pa-
tients studied by Lu et al. [15], with mutation rates reported up to 41.670%. 

In order to further investigate the biological function and potential pathways 
of the 17 mutated genes, GO and KEGG analysis were performed using David 
online analysis platform. Notably, the result of the GO analysis showed that the 
17 mutation genes were mainly enriched in metabolic process and macromole-
cule biosynthetic process. As we know, the liver is an important metabolic organ 
of the human body, and liver dysfunction induces intracellular redox imbalance, 
leading to the damage of intracellular biomolecules. Recent studies have re-
ported that metabolic rearrangement contributes to the increased risk of PLC. 
Ikeno et al. [20] demonstrated GLUT-1 expression was significantly higher in 
tumors with mutated KRAS than in tumors with wild-type KRAS. High meta-
bolic tumor volume is associated with KRAS mutation and poor postoperative 
outcomes in ICC patients. To meet the metabolic requirements for cancer cell 
growth, the de novo nucleotide synthetic pathway is activated to support the bi-
ology activities of cancer cells, including nucleic acid and protein synthesis, 
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energy preservation, signaling activity, glycosylation mechanisms, and cytoske-
letal function. Both oncogenes and tumor suppressors have been identified as 
key molecular determinants for de novo nucleotide synthesis. Oncogenic KRAS 
maintains high intracellular nucleotide levels by enhancing de novo synthesis of 
purines and pyrimidines through upregulating MYC-mediated transcriptional 
activation of ribose-5-phosphate isomerase A (RPIA), which has been shown to 
play a crucial role in the development of HCC [21]. Additionally, the inactiva-
tion of tumor suppressor TP53 has been shown to fuel nucleotide synthesis in 
tumor cells that contributes to the maintenance of homeostasis and the prolife-
ration of cancer cells. Moreover, the top 2 significantly enriched KEGG terms 
were p53 signaling pathway and cell cycle. The tumor suppressor p53 plays a 
major role in cell cycle arrest and/or apoptosis, and p53 mutations and function-
al inactivation are linked to the pathology of PLC. He’s results showed that ab-
normal expression of p53 and cyclinD1 can lead to the progression of HCC by 
regulating G1/S transformation [22] [23]. 

Genes with acquired mutations or abnormal expression that are causally asso-
ciated with cancer progression are called driver genes. Identifying and under-
standing genetic driver mutations dramatically facilitates the development of 
targeted cancer therapies. For this reason, we screened 11 driver genes by com-
paring the 17 mutated genes with the data from 3 databases, including Vogels-
tein’s list, NCG database, and COSMIC database, which have been often utilized 
to identify driver genes. In 2013, Bert Vogelstein reviewed 125 driver genes con-
taining 71 tumor suppressor genes and 54 oncogenes, which had been defined by 
the 20/20 rule in a total of 294,881 mutations [9]. Since then, in many researches, 
the driver genes in Vogelstein’s list have been regarded as well-known oncogenes 
and tumor suppressor genes undergoing copy number alterations in the com-
mon solid tumors, such as colon, lung, prostate, breast, etc. [24] [25] [26]. The 
NCG is an open-access database of 2372 genes, consisting of 1661 predicted 
driver genes in cancer and 711 known cancer-driving genes which contains data 
on gene mutations [11]. Bioinformatic analysis of an HCC dataset from the 
Gene Expression Omnibus (GEO) database was performed to identify can-
cer-related genes which were followed by imported into the NCG database and 
identified several driver genes, including ATC, CCND1, CREBBP, FTCD, MDH2, 
PPPARG, and TP53 [27]. The COSMIC database is currently the most compre-
hensive database of mutations in cancer, containing 576 securable driver genes 
[12]. El-Ayadi et al. [28] firstly reported a medulloblastoma case with concurrent 
IDH1 and SMARCB1 mutations after searching the catalog of somatic mutations 
in the COSMIC database. In this study, the above 3 databases were combined to 
screen driver genes from 17 mutation genes, which significantly improved accu-
racy and reliability. 

The correlations between the 11 driver genes and clinicopathological charac-
teristics of 262 PLC patients were performed by logistic regression analysis. The 
results showed that only 3 mutant genes, RB1, TP53, and KRAS had statistical 
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significance. The RB1 gene, which was the first tumor suppressor gene identi-
fied, has a negative regulation function on cell growth and can promote cell 
death. In this study, we found that patients under the age of 60 were prone to 
RB1 mutations, and the same result was also mentioned in Chaudhary’s study 
[29]. To reveal the possible link between 10 driver genes and age, they conducted 
Mann-Whitney-Wilcoxon tests for the continuous age variable in 6 HCC co-
horts. The results confirmed that RB1 is the driver gene significantly and pre-
ferably prevalent in younger patients. In addition, Chaudhary et al. also demon-
strated that TP53 was preferred in males, and in terms of associations with race, 
TP53 showed higher relative risk in Asians. This coincides with our study, in 
which male or Asian patients were more likely to have TP53 mutations. TP53, as 
a well-known tumor suppressor gene, seems to have a higher risk of developing 
HCC in this study, however, Hill et al. [30] reported TP53 loss enhanced repro-
gramming of hepatocytes to biliary cells, which may be a mechanism facilitating 
the formation of hepatocyte-derived ICC. Another mutant gene with statistical 
significance, KRAS, increased the risk of ICC, which has been supported by Levi 
S. In their study, all the 15 cholangiocarcinomas patients showed a KRAS muta-
tion at codon 12, and 9 of them contained 2 or more mutations [31]. 

5. Conclusion 

The pattern of genetic alterations in cancer driver genes in PLC patients is highly 
diverse, which partially explains the low efficacy of available therapies. There-
fore, it may be a new option to try to use NGS technology to find the driver 
genes and carry out targeted drug delivery. In this study, 17 mutated genes and 
11 mutation driver genes in PLC were identified through bioinformatic analysis 
of TCGA PLC data and NGS detection of clinical samples. Among them, RB1, 
TP53, and KRAS have relationships with clinicopathological characteristics, in-
cluding age, gender, race, primary sites, and pathological type. This study pro-
vided significant clues and basis for further understanding the molecular patho-
genesis, drug development, and treatment of PLC.  

Acknowledgements 

This work was supported by the National Natural Science Foundation of China 
(grant number 81703001), Hebei Province Medical Science Research Project 
(grant number 20210247), Chengde Medical University Scientific Research Ma-
jor Projects (grant number KY2020005), Key Laboratory of Family Planning and 
Eugenics of National Health and Family Planning Commission (grant number 
201502), Hebei Province Key Research and Development Projects (grant num-
ber 19277783D) and Project for Science and Technology Innovation Guidance 
Fund of Hebei Provincial Department of Science and Technology.  

Conflicts of Interest 

The authors declare that they have no competing interests. 

https://doi.org/10.4236/ojgas.2022.121001


L. Li et al. 
 

 

DOI: 10.4236/ojgas.2022.121001 15 Open Journal of Gastroenterology 
 

References 
[1] Lin, D.C., Mayakonda, A., Dinh, H.Q., Huang, P., Lin, L., Liu, X., Ding, L.W., 

Wang, J., Berman, B.P., Song, E.W., Yin, D. and Koeffler, H.P. (2017) Genomic and 
Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer Research, 77, 
2255-2265. https://doi.org/10.1158/0008-5472.CAN-16-2822 

[2] Greten, T.F., Lai, C.W., Li, G. and Staveley-O’Carroll, K.F. (2019) Targeted and 
Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology, 156, 
510-524. https://doi.org/10.1053/j.gastro.2018.09.051 

[3] Wang, H., Lu, Z. and Zhao, X. (2019) Tumorigenesis, Diagnosis, and Therapeutic 
potential of Exosomes in Liver Cancer. Journal of Hematology & Oncology, 12, Ar-
ticle No. 133. https://doi.org/10.1186/s13045-019-0806-6 

[4] Wu, K., Huang, R.S., House, L. and Cho, W.C. (2013) Next-Generation Sequencing 
for Lung Cancer. Future Oncology, 9, 1323-1336. https://doi.org/10.2217/fon.13.102 

[5] Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: A Revolutionary Tool for 
Transcriptomics. Nature Reviews Genetics, 10, 57-63.  
https://doi.org/10.1038/nrg2484 

[6] Gao, J., Ciriello, G., Sander, C. and Schultz, N. (2014) Collection, Integration and 
Analysis of Cancer Genomic Profiles: From Data to Insight. Current Opinion in 
Genetics & Development, 24, 92-98. https://doi.org/10.1016/j.gde.2013.12.003 

[7] Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) The Cancer Genome At-
las (TCGA): An Immeasurable Source of Knowledge. Contemporary Oncology, 19, 
A68-A77. https://doi.org/10.5114/wo.2014.47136 

[8] Bardou, P., Mariette, J., Escudié, F., Djemiel, C. and Klopp, C. (2014) Jvenn: An In-
teractive Venn Diagram Viewer. BMC Bioinformatics, 15, Article No. 293.  
https://doi.org/10.1186/1471-2105-15-293 

[9] Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., 
Lin, J., Minguez, P., Bork, P., von Mering. C. and Jensen, L.J. (2013) STRING v9.1: 
Protein-Protein Interaction Networks, with Increased Coverage and Integration. 
Nucleic Acids Research, 41, D808-D815. https://doi.org/10.1093/nar/gks1094 

[10] Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A. and 
Kinzler, K.W. (2013) Cancer Genome Landscapes. Science, 339, 1546-1558.  
https://doi.org/10.1126/science.1235122 

[11] Repana, D., Nulsen, J., Dressler, L., Bortolomeazzi, M., Venkata, S.K., Tourna, A., 
Yakovleva, A., Palmieri, T. and Ciccarelli, F.D. (2019) The Network of Cancer 
Genes (NCG): A Comprehensive Catalogue of Known and Candidate Cancer Genes 
from Cancer Sequencing Screens. Genome Biology, 20, Article No. 1.  
https://doi.org/10.1186/s13059-018-1612-0 

[12] Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M., 
Shepherd, R., Leung, K., Menzies, A., Teague, J.W., Campbell, P.J., Stratton, M.R. 
and Futreal, P.A. (2011) COSMIC: Mining Complete Cancer Genomes in the Cata-
logue of Somatic Mutations in Cancer. Nucleic Acids Research, 39, D945-D950.  
https://doi.org/10.1093/nar/gkq929 

[13] Alekseyev, Y.O., Fazeli, R., Yang, S., Basran, R., Maher, T., Miller, N.S. and Remick, 
D. (2018) A Next-Generation Sequencing Primer—How Does It Work and What 
Can It Do? Academic Pathology, 5, 1-11. https://doi.org/10.1177/2374289518766521 

[14] Morishita, A., Iwama, H., Fujihara, S., Watanabe, M., Fujita, K., Tadokoro, T., 
Ohura, K., Chiyo, T., Sakamoto, T., Mimura, S., Nomura, T., Tani, J., Yoneyama, 
H., Okano, K., Suzuki, Y., Himoto, T. and Masaki, T. (2018) Targeted Sequencing of 

https://doi.org/10.4236/ojgas.2022.121001
https://doi.org/10.1158/0008-5472.CAN-16-2822
https://doi.org/10.1053/j.gastro.2018.09.051
https://doi.org/10.1186/s13045-019-0806-6
https://doi.org/10.2217/fon.13.102
https://doi.org/10.1038/nrg2484
https://doi.org/10.1016/j.gde.2013.12.003
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1126/science.1235122
https://doi.org/10.1186/s13059-018-1612-0
https://doi.org/10.1093/nar/gkq929
https://doi.org/10.1177/2374289518766521


L. Li et al. 
 

 

DOI: 10.4236/ojgas.2022.121001 16 Open Journal of Gastroenterology 
 

Cancer-Associated Genes in Hepatocellular Carcinoma Using Next-Generation Se-
quencing. Oncology Letters, 15, 528-532. https://doi.org/10.3892/ol.2017.7334 

[15] Lu, J., Yin, J., Dong, R., Yang, T., Yuan, L., Zang, L., Xu, C., Peng, B., Zhao, J. and 
Du, X. (2015) Targeted Sequencing of Cancer-Associated Genes in Hepatocellular 
Carcinoma Using Next Generation Sequencing. Molecular Medicine Reports, 12, 
4678-4682. https://doi.org/10.3892/mmr.2015.3952 

[16] Kan, Z., Zheng, H., Liu, X., Li, S., Barber, T.D., Gong, Z., Gao, H., Hao, K., Willard, 
M.D., Xu, J., Hauptschein, R., Rejto, P.A., Fernandez, J., Wang, G., Zhang, Q., 
Wang, B., Chen, R., Wang, J., Lee, N.P., Zhou, W., Lin, Z., Peng, Z., Yi, K., Chen, S., 
Li, L., Fan, X., Yang, J., Ye, R., Ju, J., Wang, K., Estrella, H., Deng, S., Wei, P., Qiu, 
M., Wulur, I.H., Liu, J., Ehsani, M.E., Zhang, C., Loboda, A., Sung, W.K., Aggarwal, 
A., Poon, R.T., Fan, S.T., Wang, J., Hardwick, J., Reinhard, C., Dai, H., Li, Y., Luk, 
J.M. and Mao, M. (2013) Whole-Genome Sequencing Identifies Recurrent Muta-
tions in Hepatocellular Carcinoma. Genome Research, 23, 1422-1433.  
https://doi.org/10.1101/gr.154492.113 

[17] Janku, F., Kaseb, A.O., Tsimberidou, A.M., Wolff, R.A. and Kurzrock, R. (2014) 
Identification of Novel Therapeutic Targets in the PI3K/AKT/mTOR Pathway in 
Hepatocellular Carcinoma Using Targeted Next Generation Sequencing. Oncotar-
get, 5, 3012-3022. https://doi.org/10.18632/oncotarget.1687 

[18] Li, M., Zhao, H., Zhang, X., Wood, L.D., Anders, R.A., Choti, M.A., Pawlik, T.M., 
Daniel, H.D., Kannangai, R., Offerhaus, G.J., Velculescu, V.E., Wang, L., Zhou, S., 
Vogelstein, B., Hruban, R.H., Papadopoulos, N., Cai, J., Torbenson, M.S. and Kinz-
ler, K.W. (2011) Inactivating Mutations of the Chromatin Remodeling Gene ARID2 
in Hepatocellular Carcinoma. Nature Genetics, 43, 828-829.  
https://doi.org/10.1038/ng.903 

[19] Anjanappa, M., Hao, Y., Simpson, E.R., Bhat-Nakshatri, P., Nelson, J.B., Tersey, 
S.A., Mirmira, R.G., Cohen-Gadol, A.A., Saadatzadeh, M.R., Li, L., Fang, F., Ne-
phew, K.P., Miller, K.D., Liu, Y. and Nakshatri, H. (2018) A System for Detecting 
High Impact-Low Frequency Mutations in Primary Tumors and Metastases. Onco-
gene, 37, 185-196. https://doi.org/10.1038/onc.2017.322 

[20] Ikeno, Y., Seo, S., Iwaisako, K., Yoh, T., Nakamoto, Y., Fuji, H., Taura, K., Okajima, 
H., Kaido, T., Sakaguchi, S. and Uemoto, S. (2018) Preoperative Metabolic Tumor 
Volume of Intrahepatic Cholangiocarcinoma Measured by 18F-FDG-PET Is Asso-
ciated with the KRAS Mutation Status and Prognosis. Journal of Translational 
Medicine, 16, Article No. 95. https://doi.org/10.1186/s12967-018-1475-x 

[21] Saliani, M., Jalal, R. and Ahmadian, M.R. (2019) From Basic Researches to New 
Achievements in Therapeutic Strategies of KRAS-Driven Cancers. Cancer Biology 
& Medicine, 16, 435-461. 

[22] He, L., Fan, X., Li, Y., Chen, M., Cui, B., Chen, G., Dai, Y., Zhou, D., Hu, X. and Lin, 
H. (2019) Overexpression of Zinc Finger Protein 384 (ZNF 384), A Poor Prognostic 
Predictor, Promotes Cell Growth by Upregulating the Expression of Cyclin D1 in 
Hepatocellular Carcinoma. Cell Death & Disease, 10, Article No. 444.  
https://doi.org/10.1038/s41419-019-1681-3 

[23] Chen, S.L., Liu, L.L., Wang, C.H., Lu, S.X., Yang, X., He, Y.F., Zhang, C.Z. and Yun, 
J.P. (2020) Loss of RDM1 Enhances Hepatocellular Carcinoma Progression via p53 
and Ras/Raf/ERK Pathways. Molecular Oncology, 14, 373-386.  
https://doi.org/10.1002/1878-0261.12593 

[24] Springer, S.U., Chen, C.H., Rodriguez, Pena. M.D.C., Li, L., Douville, C., Wang, Y., 
Cohen, J.D., Taheri, D., Silliman, N., Schaefer, J., Ptak, J., Dobbyn, L., Papoli, M., 
Kinde, I., Afsari, B., Tregnago, A.C., Bezerra, S.M., VandenBussche, C., Fujita, K., 

https://doi.org/10.4236/ojgas.2022.121001
https://doi.org/10.3892/ol.2017.7334
https://doi.org/10.3892/mmr.2015.3952
https://doi.org/10.1101/gr.154492.113
https://doi.org/10.18632/oncotarget.1687
https://doi.org/10.1038/ng.903
https://doi.org/10.1038/onc.2017.322
https://doi.org/10.1186/s12967-018-1475-x
https://doi.org/10.1038/s41419-019-1681-3
https://doi.org/10.1002/1878-0261.12593


L. Li et al. 
 

 

DOI: 10.4236/ojgas.2022.121001 17 Open Journal of Gastroenterology 
 

Ertoy, D., Cunha, I.W., Yu, L., Bivalacqua, T.J., Grollman, A.P., Diaz, L.A., Karchin, 
R., Danilova, L., Huang, C.Y., Shun, C.T., Turesky, R.J., Yun, B.H., Rosenquist, 
T.A., Pu, Y.S., Hruban, R.H., Tomasetti, C., Papadopoulos, N., Kinzler, K.W., Vo-
gelstein, B., Dickman, K.G. and Netto, G.J. (2018) Non-Invasive Detection of Uro-
thelial Cancer through the Analysis of Driver Gene Mutations and Aneuploidy. 
Elife, 7, Article No. e32143. https://doi.org/10.7554/eLife.32143 

[25] Merid, S.K., Goranskaya, D. and Alexeyenko, A. (2014) Distinguishing between 
Driver and Passenger Mutations in Individual Cancer Genomes by Network Enrich-
ment Analysis. BMC Bioinformatics, 15, Article No. 308.  
https://doi.org/10.1186/1471-2105-15-308 

[26] Tian, R., Basu, M.K. and Capriotti, E. (2014) ContrastRank: A New Method for 
Ranking Putative Cancer Driver Genes and Classification of Tumor Samples. Bio-
informatics, 17, i572-i857. https://doi.org/10.1093/bioinformatics/btu466 

[27] Shangguan, H., Tan, S.Y. and Zhang, J.R. (2015) Bioinformatics Analysis of Gene 
Expression Profiles in Hepatocellular Carcinoma. European Review for Medical and 
Pharmacological Sciences, 19, 2054-2061. 

[28] El-Ayadi, M., Egervari, K., Merkler, D., McKee, T.A., Gumy-Pause, F., Stichel, D., 
Capper, D., Pietsch, T., Ansari, M. and Bueren. A.O. (2018) Concurrent IDH1 and 
SMARCB1 Mutations in Pediatric Medulloblastoma: A Case Report. Frontiers in 
Neurology, 9, Article No. 398. https://doi.org/10.3389/fneur.2018.00398 

[29] Chaudhary, K., Poirion, O.B., Lu, L., Huang, S., Ching, T. and Garmire, L.X. (2019) 
Multimodal Meta-Analysis of 1,494 Hepatocellular Carcinoma Samples Reveals 
Significant Impact of Consensus Driver Genes on Phenotypes. Clinical Cancer Re-
search, 25, 463-472. https://doi.org/10.1158/1078-0432.ccr-18-0088  

[30] Hill, M.A., Alexander, W.B., Guo, B., Kato, Y., Patra, K., O’Dell, M.R., McCall, 
M.N., Whitney-Miller, C.L., Bardeesy, N. and Hezel, A.F. (2018) Kras and Tp53 
Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. 
Cancer Research, 78, 4445-4451. https://doi.org/10.1158/0008-5472.CAN-17-1123 

[31] Levi, S., Urbano-Ispizua, A., Gill, R., Thomas, D.M., Gilbertson, J., Foster, C. and 
Marshall, C.J. (1991) Multiple K-ras Codon 12 Mutations in Cholangiocarcinomas 
Demonstrated with a Sensitive Polymerase Chain Reaction Technique. Cancer Re-
search, 51, 3497-3502. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.4236/ojgas.2022.121001
https://doi.org/10.7554/eLife.32143
https://doi.org/10.1186/1471-2105-15-308
https://doi.org/10.1093/bioinformatics/btu466
https://doi.org/10.3389/fneur.2018.00398
https://doi.org/10.1158/1078-0432.ccr-18-0088
https://doi.org/10.1158/0008-5472.CAN-17-1123


L. Li et al. 
 

 

DOI: 10.4236/ojgas.2022.121001 18 Open Journal of Gastroenterology 
 

Supplementary 

Supplementary Table S1. Five driver genes that were not statistically significant with clinical characteristics of 262 PLC patients. 

Clinical  
characteristics 

No. of 
patients 

ARID1A ATM NF2 PTEN STAG2 

Mut χ2 p Mut χ2 p Mut χ2 p Mut χ2 p Mut χ2 p 

Total 262  

Sex   

Male 169 15 0.142 0.706 11 0.712 0.399 7 1.011 0.315 5 0.000 1.000 3 0.000 1.000 

Female 93 7   3   1   3   2   

Age  

<60 134 14 1.500 0.221 7 0.008 0.930 5 0.086 0.769 2 1.307 0.253 4 0.725 0.394 

≥60 128 8   7   3   6   1   

Race  

Asian 156 15 0.744 0.388 9 0.138 0.710 5 0.000 1.000 5 0.000 1.000 3 0.000 1.000 

non-Asian 106 7   5   3   3   2   

Pathological typing  

HCC 225 19 0.270 1.000 13 0.584 0.747 7 0.921 1.000 6 2.200 0.347 3 4.294 0.179 

ICC 34 3   1   1   2   2   

cHCC-ICC 3 0   0   0   0   0   

Primary site  

Liver 228 19 0.000 1.000 13 0.067 0.796 1 0.000 1.000 6 0.244 0.622 3 1.308 0.253 
Intrahepatic bile 

duct 
34 3   1   1   2   2   

Treatment type  

Pharmaceutical 
therapy, NOS 

132 11 0.001 0.970 7 0.001 0.977 5 0.114 0.736 4 0.000 1.000 3 0.000 1.000 

Radiation therapy, 
NOS 

130 11   7   3   4   2   

T stage                 

T1 - T2 183 13 1.319 0.251 8 0.586 0.444 3 0.669 0.102 5 0.005 0.945 3 0.000 1.000 

T3 - T4 79 9   6   5   3   2   

M stage                 

M0 248 19 1.721 0.190 12 0.843 0.358 7 0.013 0.908 8 0.000 1.000 4 0.219 0.640 

M1 14 3   2   1   0   1   

N stage                 

N0 252 21 0.000 1.000 13 0.000 1.000 8 0.000 1.000 7 0.133 0.715 5 0.000 1.000 

N1 10 1   1   0   1   0   

Stage                 

I - II 177 13 0.785 0.375 8 0.316 0.574 3 2.134 0.144 5 0.000 1.000 3 0.000 1.000 

III - IV 85 9   6   5   3   2   

Categorical variables were compared using the Chi-square test or Fisher’s exact test. Mut, mutated type; HCC, hepatocellular car-
cinoma; ICC, intrahepatic cholangiocarcinoma; cHCC-ICC, combined hepatocellular carcinoma and intrahepatic cholangiocar-
cinoma. 
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