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Abstract 
The term “hydraulics” is concerned with the conveyance of water that can 
consist of very simple processes to complex physical processes, such as flow in 
open rivers, flow in pipes, the flow of nutrients/sediments, the flow of ground-
water to sea waves. The study of hydraulics is primarily a mixture of theory 
and experiments. Computational hydraulics is very helpful to quantify and 
predict flow nature and behavior. The mathematical model is the backbone of 
the computational hydraulics that consists of simple to complex mathemati-
cal equations with linear and/or non-linear terms and ordinary or partial dif-
ferential equations. Analytical solution to these mathematical equations is not 
feasible in the majority of cases. In these consequences, mathematical models 
are solved using different numerical techniques and associated schemes. In 
this manuscript, we aim to review hydraulic principles along with their ma-
thematical equations. Then we aim to learn some commonly used numerical 
techniques to solve different types of differential equations related to hydrau-
lics. Among them, the Finite Difference Method (FDM), Finite Element Me-
thod (FEM) and Finite Volume Method (FVM) have been discussed along 
with their use in real-life applications in the context of water resources engi-
neering. 
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1. Introduction 

Hydraulics is a subfield of fluid mechanics that studies the behavior of water at 
rest and in motion. This term is frequently used in connection with hydrodynam-
ics to refer to the forces acting between water and its boundaries and their effects 
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on subsequent flow patterns. To measure and predict flow behavior, it is critical 
to apply physical conservation rules, which will be discussed in detail in the sub-
sequent section. Although they attempted to solve numerous fluid motion prob-
lems strictly theoretically, assuming an ideal fluid (frictionless or non-viscous), their 
results were still extremely effective in specific scenarios and conditions. On the 
other hand, hydraulics developed mathematical formulas to handle real-world 
fluid flow problems using experimental data from numerous laboratory experi-
ments and field observations. Ludwig Prandtl’s essential idea of boundary layer 
combined hydrodynamics and hydraulics. Additionally, the illustrious research 
of Reynolds, Froude, Prandtl, and von Karman persuades us that studying fluids 
requires a combination of theory and experiment. Here, we can trace the evolu-
tion of hydraulics all the way back to 200 BCE [1] (Figure 1). 

Hydraulics originated around the time of Archimedes, who established the 
now-famous rules of floating bodies. Following Galileo (1564-1642), Gastelli 
(1577-1644), Torricelli (1600-1647), and Guglielmini (1655-1710) developed 
mathematical models for barometers, flow from containers, steady flow, and re-
sistance in rivers. When Newton (1642-1727) published his famed laws of mo-
tion, they expanded our quantitative understanding of fluid resistance in terms 
of velocity gradient and drag on spheres. Following Newton, Daniel Bernoulli, 
Leonhard Euler, Clairaut, d’Alembert, Lagrange (1736-1813), Laplace (1749-1827), 
and Gerstner (1756-1832) contributed significant concepts on fluid flow and 
surface waves to hydrodynamics. Additionally, De Pitot invented a tube for mea-
suring speed; Chezy devised a formula for open channel resistance; Borda con-
ducted orifice-related experiments; Bossut installed a towing tank; and Venturi 
 

 

Figure 1. Contributors in hydrodynamics and hydraulics (sources: Google image). 
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experimented with the flow in varying cross-sections, all of which contributed to 
the field of hydraulics’ enrichment [1]. 

Coulomb (1736-1806) conducted flow resistance studies concurrently with 
Ernst Brothers (1795-1878) and Weber (1804-1891), all of whom made signifi-
cant contributions to the field of hydraulics. As a result, the Buron (1790-1873), 
Fourneyman (1802-1867), Coriolis (1792-1843), Francis (1815-1892), and Russel 
(1808-1882) all made significant contributions to engineering. The Hagen 
(1797-1889), Poiseuille (1799-1869), and Sazon Weisbach (1806-1871) all con-
tribute significantly to pipe flow, whereas Saint-Venant (1797-1886) contributes 
to open channel flow. On the other hand, Dupuit (1804-1866), Bresse (1822-1883), 
Basin (1829-1917), Darcy (1803-1858), and Manning (1816-1897) conducted re-
search on both open channel hydraulics and pipe flow. William Froude (1810-1879) 
and Robert Froude (1846-1924) in particular provide a valuable criterion for clas-
sifying the flow based on their ship model tests. Additionally, Osborne Reynolds 
did a successful experiment based on streamline analysis to discern between the 
laminar and turbulent flow. Navier (1785-1876), Cauchy (1789-1857), Poisson 
(1781-1840), Saint-Venant (1797-1886), Boussinesq (1842-1929), Stokes (1819- 
1903), Lord Rayleigh (1842-1919), Lamb (1849-1934), Helmholtz (1821-1894), and 
Kirchoff (1824-1887) all made significant contributions to the development of 
theoretical and applied hydrodynamics during the nineteenth century. Addition-
ally, Euler’s equation of motion for an ideal (non-viscous) fluid had advanced sig-
nificantly. However, it does not account for certain significant observed results, 
such as the decrease in pipe pressure. As a result, engineers in practice created their 
own empirical hydraulics. Recent computational hydraulics is one of several do-
mains of science in which computer technologies enable an intermediate mode of 
operation between pure theory and experiment. This discipline, which is frequently 
referred to as computational hydraulics, is more of a synthesis of hydraulics and 
hydrodynamics than an independent development. The objective of computa-
tional hydraulics is to use computers to mimic various physical processes involv-
ing seas, estuaries, rivers, canals, and reservoirs. We will explore fundamental hy-
draulic processes and their quantification in this article, focusing on water re-
source applications such as open channels, pipes, groundwater, and coastal waves 
[1]. 

2. Hydraulics of Open Channels 

Open channel flows deal with the flow of water in open channels, where the pres-
sure at the surface of the water is ambient and the pressure at each portion is pro-
portional to the depth of the water. Pressure head is the ratio of pressure and the 
specific weight of water ( P γ ). Elevation head (Z) is the height of the section 
under consideration above a datum and Velocity head ( 2 2V g ) is attributed to 
the average velocity of flow in that vertical section. Hence, the total head can be 
expressed by the Equation (1). 

2

2
P VZ

gγ
= + +                        (1) 
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In an open channel, water flow is primarily due to the gradient of the head 
and gravity. The Open Channels are primarily used for irrigation supply, indus-
trial and domestic water supply [2]. 

2.1. Conservation Laws 

Mass Conservation, Momentum Conservation and Energy Conservation are the 
main conservation laws used in open Channel. A control volume commonly con-
sidered under the Conservation of Mass, the overall mass change in the control 
volume due to inflow and outflow, is equal to the net rate of weight change in 
the control volume. This results to the classical continuity equation balancing the 
inflow, out flow and the storage change in the control volume. Since we only find 
water that is regarded as incompressible, that is, it is possible to disregard the 
impact on density [2]. 

AV Q=                            (2) 

The rate of change of momentum in the control volume under the Conserva-
tion of Momentum is equal to the net forces acting on the control volume. Since 
the water under consideration is flowing, external forces are acting upon it. This 
leads ultimately to the Newton’s second law of motion [2]. 

2Q yA Constant
gA

+ =                        (3) 

Energy conservation states that neither energy can be generated nor destroyed, 
it only changes its form. The energy would be in the form of potential energy 
and kinetic energy, primarily in open channels. The elevation of the water parcel 
is due to potential energy, while the kinetic energy is due to the movement of the 
parcel. In the context of open channel flow the total energy due these factors be-
tween any two sections is conserved, that leads to the classical Bernoulli’s equa-
tion. 

2

2
VZ y Constant

g
+ + =                       (4) 

This equation must account for the energy loss between the two sections when 
used between two sections, which is due to the resistance of bed shear etc. to the 
flow [2]. 

2.2. Types of Open Channel Flows 

The flow in an open channel is classified as Sub critical flow, Super Critical flow, 
and Critical flow depending on the Froude number ( rF ), where the Froude 
number can be described as 5: 

r
VF
gy

=                           (5) 

Types of open channel flow can be further categorized on the basis of time 
and space parameters (see Figure 2(a)). Flow is said to be steady when discharge  
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Figure 2. (a) Types of open channel flows; (b) Specific energy curve for a given discharge. 
 
does not change along the course of the channel flow. On the other hand, as the 
discharge varies over time, flow is said to be unsteady. When both the depth and 
discharge are the same at any two sections of the channel, flow is said to be uni-
form. Furthermore, flow is said to be gradually varied whenever the depth changes 
gradually along the channel, whenever the flow depth changes rapidly along the 
channel the flow is termed rapidly varied flow. Whenever the flow depth gradu-
ally varies due to the change in discharge, the flow is called a spatially varied flow 
[2]. Steady uniform flow (kinematic wave), steady non-uniform flow (diffusion 
wave) and unsteady non-uniform flow (dynamic wave) can be seen as types of po- 
ssible flow based on the above classification. 

2.3. Specific Energy and Specific Force 

Specific energy is defined as the energy acquired by a section of water due to its 
depth and the velocity with which it is flowing, specific Energy E is given by, 

2

2
VE y

g
= +                          (6) 

where y is the depth of flow at that section and v is the average velocity of flow. 
Specific energy is minimum at critical condition (see point C in Figure 2), and 
the corresponding depth at point C is termed as critical depth yc. This yc can be 
measured for a specific section under steady flow [2]. 

Specific force is defined as the sum of the momentum of the flow passing through 
the channel section per unit time per unit weight of water and the force per unit 
weight of water [2]. 

2QF yA
gA

= +                         (7) 

The specific forces of two sections are equal provided that the external forces 
and the weight effect of water in the reach between the two sections can be ig-
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nored. The term specific force is very useful to quantify the property of rapidly 
varied flow such as hydraulic jump [2]. At the critical state of flow the specific 
force is a minimum for the given discharge. When the specific energy is minimal, 
flow is critical. Also, the flow has to go through critical conditions if the flow 
changes from sub critical to super critical or vice versa. Sub-critical flow-the 
depth of the flow is higher, although the velocity is lower and the super-critical 
flow-the depth of the flow is lower, but the velocity is higher. Critical flow is the  

flow over a free over-fall. For Specific energy to be a minimum d 0
d
E
y
= : 

2

3

d d1
d d
E Q A
y ygA
= −                           (8) 

However, d dA T y= ∗ , where T is the width of the channel at the water sur-

face, then applying d 0
d
E
y
= , will result in following: 

2 22

3 21; ;c c c c

c cc c

Q T A A VQ
T T ggA gA

= = =                      (9) 

For a rectangular channel c
c

c

A
y

T
= . Following the derivation for a rectangular 

channel, 

1c
r

c

V
F

gy
= =                            (10) 

The same notion applies to trapezoidal and other cross-sections [2]. The crit-
ical flow state describes an unique relationship between depth and discharge that 
is very useful in the design of flow measurement structures. 

2.4. Uniform Flows 

This is one of the most important principles of open channel flow. The most 
important uniform flow equation is Manning’s equation stated as: 

2 3 1 21V R S
n

= ∗ ∗                         (11) 

where R = the hydraulic radius = A/p and p = wetted perimeter = ( )0,f y S , y = 
depth of the channel bed, S0 = bed slope (same as the energy slope, Sf) and n = 
the Manning’s dimensional empirical constant. Uniform Flow concept is used in 
most of the open channel flow design. The uniform flow implies that there is no 
acceleration of the flow due to the weight portion of the flow being balanced by 
the resistance of the shear of the bed. In terms of discharge the Manning’s Equa-
tion (11) is given by: 

2 3 1 21Q A R S
n

= ∗ ∗ ∗                       (12) 

This is a non linear equation in y the depth of flow for which most of the 
computations will be made. Derivation of uniform flow equation is given below, 
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where sinW θ  = weight component of the fluid mass in the direction of flow, 

0τ  = bed shear stress and P x∆  = surface area of the channel. The force bal-
ance equation can be written as: 

0 0 0sin 0 sin 0 sinAW p x A x p x
p

θ τ γ θ τ τ γ θ− ∆ = → ∆ − ∆ = → =       (13) 

Now A/p is the hydraulic radius, R, and sinθ  is the slope of the channel So. 
The shear stress can be expressed as: 

2

0 2f
VCτ ρ=                           (14) 

where fc  is resistance coefficient, V is the mean velocity ρ  is the mass den-
sity. Therefore the Equation (14) can be written as: 

2 2
2f o o o

f

V gC RS V RS V RS
C

ρ γ= → = → =             (15) 

where C is Chezy’s constant. For Manning’s equation, 
1
61.49 R

n
=                           (16) 

2.5. Gradually Varied Flow 

Flow is said to be gradually varied whenever the depth of flow changed gradually. 
The governing equation for gradually varied flow is given by: 

2

d
d 1

o f

r

S Sy
x F

−
=

−
                        (17) 

where the variation of depth y with the channel distance x is shown to be a func-
tion of bed slope oS , Friction Slope fS  and the flow Froude number rF . This 
is a non linear equation with the depth varying as a non linear function (Figure 
3). 
 

 

Figure 3. (a) Steady uniform flow in an open channel; (b) Total head at a channel section. 
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Gradually varied flow can be derived from the conservation of energy at two 
sections of a reach of length x∆ , can be written as: 

2 2
1 2

1 22 2o f
V Vy S x y S x

g g
+ + ∆ = + + ∆                 (18) 

Now, let 2 1y y y∆ = −  and 
2 2 2

2 1 d
2 2 d 2
V V v x

g g x g
 

− = ∆ 
 

, 

Then the above equation becomes: 
2d

d 2o f
vy S x S x x

x g
 

∆ = ∆ − ∆ − ∆ 
 

                 (19) 

Dividing through x∆  and taking the limit as x∆ , approaches zero gives us: 
2d d

d d 2 o f
y v S S
x x g

 
+ = − 

 
                    (20) 

After simplification, can be done in terms of Froude number and the general 
differential equation can be written as Equations (21) to (23): 

2

d
d d1

d 2

o fS Sy
x V

y g

−
=

 
+  

 

                       (21) 

2 2 2 2
2

2 3 2

d d 2 d 1
d 2 d d2 2 r

V Q Q A Q F
y g y y DgA gA gA
     − −  = = = = −       

     
        (22) 

2

d
d 1

o f

r

S Sy
x F

−
=

−
                         (23) 

Numerical integration of the gradually varied flow equation will give the water 
surface profile along the channel. Depending on the depth of flow where it lies 
when compared with the normal depth and the critical depth along with the bed 
slope compared with the friction slope different types of profiles are formed such 
as M (mild), C (critical), S (steep) profiles. M (mild)-If the slope is so small that 
the normal depth (Uniform flow depth) is greater than critical depth for the given 
discharge, then the slope of the channel is mild. C (critical)-if the slope if the 
slope’s normal depth equals its critical depth, then we call it a Critical slope, de-
noted by C. S (steep)-if the channel slope is so steep that a normal depth less than 
critical is produced, then the channel is Steep, and water surface profile desig-
nated as S (see [1] [3]). 

2.6. Rapidly Varied Flow 

This flow has very pronounced curvature of the streamlines. It has pressure dis-
tribution that cannot be assumed to be hydrostatic. The rapid variation in flow 
regime often takes place in short span. When rapidly varied flow occurs in a 
sudden-transition structure, the physical characteristics of the flow are basically 
fixed by the boundary geometry of the structure as well as by the state of the flow. 
Channel expansion and channel contraction, Sharp crested weirs and Broad 
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crested weirs can be seen as examples. Specific force before and after the flow re-
gime can be considered same i.e., 1 2F F=  [2]. 

2.7. Unsteady Flows 

When the flow conditions vary with respect to time, we call it unsteady flows. 
Some terminologies such as wave is defined as a temporal or spatial variation of 
flow depth and rate of discharge. Wave length is the distance between two adja-
cent wave crests or trough. Amplitude is the height between the maximum water 
level and the still water level [4]. Wave celerity ( ) is the relative velocity of a 
wave with respect to fluid in which it is flowing with V. Absolute wave velocity 
( wV ) is the velocity with respect to fixed reference as below: 

wV V= ±                             (24) 

Plus sign indicates the wave is traveling in the flow direction and vice versa. 
For shallow water waves 0gy= , where y0 = undisturbed flow depth. Un-
steady flows occur due to following reasons: surges in power canals or tunnels, 
surges in upstream or downstream channels produced by starting or stopping of 
pumps and opening and closing of control gates. Furthermore, navigation looks 
can also generate waves in the navigation channel. Flood waves in streams, rivers, 
and drainage channels due to rainstorms and snow-melt, tides in estuaries, bays 
and inlets. Unsteady flow commonly encountered in an open channels and deals 
with translatory waves. A translatory wave is a gravity wave that propagates in 
an open channel and results in appreciable displacement of the water particles in 
a direction parallel to the flow. For purpose of analytical discussion, unsteady 
flow is classified into two types, namely, gradually varied and rapidly varied un-
steady flow. In gradually varied flow the curvature of the wave profile is mild, 
and the change in depth is gradual. In the rapidly varied flow the curvature of 
the wave profile is very large and so the surface of the profile may become vir-
tually discontinuous. Continuity equation for unsteady flow [5] in an open chan-
nel becomes: 

0f
V y yD V
x x t

∂ ∂ ∂
+ + =

∂ ∂ ∂
                    (25) 

For a rectangular channel of infinite width, the Equation (25) may be written 
as: 

0q y
x t
∂ ∂

+ =
∂ ∂

                        (26) 

When the channel is to feed laterally with a supplementary discharge of q′  
per unit length, for instance, into an area that is being flooded over a dike, then 
the equation becomes: 

0q y q
x t
∂ ∂ ′+ + =
∂ ∂

                      (27) 

The general dynamic equation for gradually varied unsteady flow is given by 
(see [5] [6]): 
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1 0y V V V
x g x g t

α ′∂ ∂ ∂
+ + =

∂ ∂ ∂
                 (28) 

3. Hydraulics of Pipe Flows 

Pipe flows are mainly due to pressure difference between two sections. The total 
head here also consists of the pressure head, elevation head and velocity head. 
The principle of continuity, energy, momentum is also used in this type of flow. 
For example, when designing a pipe, we use continuity and energy equations to 
obtain the appropriate pipe diameter. Then, applying the momentum equation 
[5] [6], for a given discharge, we get the forces that act on bends. The key factors 
in the design and operation of a pipeline are head losses, pressures and stresses 
acting on the material of the pipe, and discharge. Head loss for a given discharge 
relates to flow efficiency; i.e., an optimum size of pipe will yield the least overall 
cost of installation and operation for the desired discharge. Choosing a small 
pipe results in low initial costs, but due to high energy costs from significant head 
losses, subsequent costs may be excessively high. The design of conduit should 
be such that it needs least cost for a given discharge. The hydraulic aspect of the 
problem requires applying the one dimensional steady flow form of the energy 
equation. Energy equation can be written as: 

2 2
1 1 1 2 2 2

1 22 2p t L
P V P VZ h Z h h

g g
α α

γ γ
+ + + = + + + +            (29) 

where, 
P
γ

 = pressure head, 
2

2
V
g

α  = velocity head, Z = elevation head, hp =  

head supplied by a pump, ht = head supplied by a turbine and hL = head loss 
between 1 and 2. The kinetic energy correction factor is given by α , and it is 
defines as, where u = velocity at any point in the section. 

( )3

3

du A

V A
α = ∫                          (30) 

α  has minimum value of unity when the velocity is uniform across the sec-
tion. α  has values greater than unity depending on the degree of velocity vari-
ation across a section. For laminar flow in a pipe, velocity distribution is para-
bolic across the section of the pipe, and α  has value of 2.0. However, if the flow 
is turbulent, as is the usual case for water flow through the large conduits, the ve-
locity is fairly uniform over most of the conduit section, and α  has value near 
unity (typically: 1.04 1.06α< < ). Therefore, in hydraulic engineering for ease of 
application in pipe flow, the value of α  is usually assumed to be unity, and the 

velocity head is then simply 
2

2
V

g
. 

The head supplied by a pump is directly related to the power supplied to the 
flow as p pP Q hγ= , similarly, if head is supplied to turbine, the power supplied 
to the turbine will be t tP Q hγ= . The head loss term Lh  accounts for the con-
version of mechanical energy to internal energy (heat), when this conversion occurs, 
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the internal energy is not readily converted back to useful mechanical energy, there-
fore it is called head loss. Head loss results from viscous resistance to flow (fric-
tion) at the conduit wall or from the viscous dissipation of turbulence usually oc-
curring with separated flow, such as in bends, fittings or outlet works. Head loss 
is due to friction between the fluid and the pipe wall and turbulence within the 
fluid. The rate of head loss depends on roughness element size apart from veloc-
ity and pipe diameter. Further the head loss also depends on whether the pipe is 
hydraulically smooth, rough or somewhere in between. In water distribution sys-
tem, head loss is also due to bends, valves and changes in pipe diameter. Head loss 
for steady flow through a straight pipe can be written as below: 

0 w rA PAτ = ∆                           (31) 

04P Dτ∆ =                           (32) 
2

0 8f Vτ ρ=                          (33) 
2

2
P Vh f

D gγ
∆

= =
                        (34) 

This is known as Darcy-Weisbach equation. h S=L , is slope of the hydrau-
lic and energy grade lines for a pipe of constant diameter. Head loss in laminar 
flow can be calculated using Hagen-Poiseuille equation, which gives: 

2

32VS
D g

µ
ρ

=                           (35) 

Combining above equations with Darcy-Weisbach equation provides: 

64f
VD
µ

ρ
=                           (36) 

That can be further written in terms of Reynolds number: 

64

e

f
R

=                           (37) 

This relation is valid for 1000eR < . In turbulent flow, the friction factor is a 
function of both Reynolds number and pipe roughness. As the roughness size or 
the velocity increases, flow is wholly rough and f depends on the relative rough-
ness. Where graphical determination of the friction factor is acceptable, it is 
possible to use a Moody diagram. This diagram gives the friction factor over a 
wide range of Reynolds numbers for laminar flow and smooth, transition, and 
rough turbulent flow. The quantities shown in Moody Diagram (see details in [2]) 
are dimensionless so they can be used with any system of units. Minor losses caused 
by valves, bends and changes in pipe diameter. This is smaller than friction losses 
in straight sections of pipe and for all practical purposes ignored. Minor losses are 
significant in valves and fittings, which creates turbulence in excess of that pro-
duced in a straight pipe. A minor loss coefficient K may be used to give head loss 
as a function of velocity head. 

2

2m
Vh K

g
=                         (38) 
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A flow coefficient Cv which gives a flow that will pass through the valve at a 
pressure drop of 1psi may be specified. Given the flow coefficient the head loss 
can be calculated as: 

4 2
6

218.5 10
2 v

D Vh
gC

= ×                      (39) 

The flow coefficient can be related to the minor loss coefficient by: 
2

6
218.5 10
v

DK
C

= ×                       (40) 

Major losses are due to friction between the moving fluid and the inside walls 
of the duct. The Darcy-Weisbach formula is generally considered to calculate ma-
jor losses in pipes. This method is generally considered more accurate than the 
Hazen-Williams method. Additionally, the Darcy-Weisbach method is valid for 
any liquid or gas. Moody Friction Factor f can be calculated as below: 

( )

( )8 6 2

0.9

64 for 2100 i.e. laminar flow

1.325 for 5000 10 i.e. turbulent flow i.e. 10 10
5.74ln

3.7

e e
e

e

e

VDR R
R

ef R
De

D R

ν

− −

 = ≤ →
=  ≤ ≤ → → → ≤ ≤  
 + 
  

 (41) 

Major loss in pipes can also be calculated Using Hazen-Williams friction loss 
equation: 

0.63 0.54 where and or circular pipe
4

f
HW

h DV kC R S S R f= = =


    (42) 

Hazen-Williams is only valid for water at ordinary temperatures (40˚ - 75˚F). 
The Hazen-Williams method is very popular, especially among civil engineers, 
since its friction coefficient (CHW) is not a function of velocity or duct (pipe) 
diameter. Hazen-Williams is simpler than Darcy-Weisbach for calculations where 
one can solve for flow-rate, velocity, or diameter. When the flow conditions are 
changed from one steady state to another, the intermediate stage flow is referred 
to as transient flow. This occurs due to design or operating errors or equipment 
malfunction. This transient state pressure causes lots of damage to the network 
system [4] [7]. Pressure rise in a close conduit caused by an instantaneous change 
in flow velocity. If the flow velocity at a point does vary with time, the flow is 
unsteady. The terms fluid transients and hydraulic transients are used in practice 
[4]. Consider a pipe length of length L Water is flowing from a constant level 
upstream reservoir to a valve at downstream. Assume valve is instantaneously 
closed at time 0t t=  from the full open position to half open position. This re-
duces the flow velocity through the valve, thereby increasing the pressure at the 
valve. The increased pressure will produce a pressure wave that will travel back 
and forth in the pipeline until it is dissipated because of friction and flow condi-
tions have become steady again. This time when the flow conditions have be-
come steady again, let us call it 1t . So the flow regimes can be categorized into: 1) 
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Steady flow for 0t t< ; 2) Transient flow for 0 1t t t< < ; and 3) Steady flow for 

1t t> . Transient Transient-state pressures are sometimes reduced to the vapor 
pressure of a liquid that results in separating the liquid column at that section; 
this is referred to as liquid-column separation. If the flow conditions are re-
peated after a fixed time interval, the flow is called periodic flow, and the time 
interval at which the conditions are repeated is called period. The analysis of 
transient state conditions in closed conduits may be classified into two categories: 
lumped may be classified into two categories: lumped-system approach and dis-
tributed system approach. In the In the lumped system lumped system approach 
the conduit walls are assumed rigid and the liquid in the conduit is assumed in-
compressible, so that it behaves like a rigid mass, other way flow variables are 
functions of time only. In the distributed system approach the liquid is assumed 
slightly compressible. Therefore flow velocity varies along the length of the con-
duit in addition to the variation in time. The 1 D−  form of momentum equa-
tion for a control volume that is fixed in space and does not change shape may 
be written as: 

( ) ( )2 2d d
d out in

AV x AV AV
t

ρ ρ ρ= + −∑ ∫             (43) 

If the liquid is considered to be incompressible and the pipe is rigid, then at 
any instant the velocity along the pipe will be same, i.e., ( ) ( )2 2

out in
AV AVρ ρ= . 

Substituting for all the forces acting on the control volume we get: 

( )0
dsin
d

A A D AV
t

γ α τ ρ+ − =π                 (44) 

where, 
2

2
Vh

g
γ
 

= − 
 

 , α  = pipe slope, D = pipe diameter,   = pipe length,  

γ  = specific weight of fluid and 0τ  = shear stress at the pipe wall. Frictional 
force is replaced by fh Aγ , and 0 sinH h α= +  and fh  from Darcy-Weisbach 
friction equation. The resulting equation yields: 

2 2

0
d

2 2 d
f V V VH
D g g g t

− − =
                    (45) 

When the flow is fully established d 0
d
V
t
= . The final velocity 0V  will be: 

2
0

0 1
2
VfH

D g
 = + 
 

                     (46) 

We use the above relationship to get the time for flow to establish: 

2 2
0

2 dd D Vt
D f V V

=
+ −



                   (47) 

If the flow changes are rapid, it is important to take into account fluid com-
pressibility [4]. Changes are not instantaneous in the system, because in the 
piping system, pressure waves travel back and forth. The walls of the pipe must 
be rigid and the liquid slightly compressible [2] [4]. Assume that the flow veloc-
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ity at the downstream end is changed from V to V V+ ∆ , thereby changing the 
pressure from P to P P+ ∆ . The change in pressure will produce a pressure wave 
that will propagate in the upstream direction. By assuming that the velocity ref-
erence system travels with the pressure wave, the unsteady flow condition can be 
translated into steady flow. Using momentum equation with control volume ap-
proach to solve for p∆  (see details in [2] [4]). The system is now steady, the mo-
mentum equation now yield: 

( ) ( )( )( ) ( ) ( )PA P P A V a V V a V A V a V a Aρ ρ ρ− + ∆ = + + ∆ + ∆ + + ∆ − + + (48) 

4. Hydraulics of Ground Water Flow 

Velocity, discharge and head are the essential quantities used to characterize the 
flow of groundwater. They are followed by the Darcy’s law and some other me-
trics related to soil physical characteristics. The specific discharge is defined as 
the volume of water flowing through a unit area of soil per unit time, which has 
the unit of velocity. Specific discharge usually denoted by q and is defined as be-
low: 

Qq
A

=                            (49) 

where Q is the flow rate of water through a cross sectional area A. The average 
velocity of fluid at a certain point of the porous medium is called Seepage veloc-
ity. The seepage velocity is represented by v, and is defined as: 

e e

q Qv
n An

= =                         (50) 

where ne is the effective porosity of the soil. The effective porosity, ne is defined 
as ratio of the volume of continuous pore spaces (open to groundwater flow) of a 
soil sample to the total volume of the sample. For ground water flow, the total 
head denoted by h is defined as the sum of the pressure head, and the elevation 
head, z as follows: 

p
Ph z h z
gρ

= + = +                      (51) 

where P is the pressure at any point, ρ  is the density of water at the prevailing 
temperature. If streamlines are not perpendicular to the vertical piezometer, 
then hp may include the contribution of the vertical component of the velocity 
head for most groundwater flows, the velocity head constitutes a very small part 
of the total head and is usually neglected. The important relationship is that the 
specific discharge at a certain point is proportional hydraulic gradient at that 
point and the discharge occurs in the direction of decreasing gradient, which is 
known as Darcy’s law: 

d
dx
hq K
x

=                        (52) 

where qx is the specific discharge along the x direction, d
d
h
x

 is the gradient of  
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head causing the flow along the x direction, and K is known as hydraulic con-
ductivity. The hydraulic conductivity can be further expressed as: 

gK ρ
µ

=                           (53) 

If the hydraulic conductivity K is independent of position within a geologic 
formation, the formation is homogeneous. In this case, K is a constant. On the 
other hand, if K is dependent of position then it is called heterogeneous forma-
tion. If the hydraulic conductivity K is independent of the direction of mea-
surement at a point in the geologic formation, the formation is isotropic at that 
point. On the other hand, if K varies with the direction of measurement at a 
point, the formation is anisotropic at that point. In an aquifer with layered hete-
rogeneity, flow may occur parallel to the layers or across the layers or both. To 
simplify the flow calculations, it is possible to use estimates of equivalent K. If 
the layers are horizontal then the equivalent K for a flow parallel to the layers, Kx, 
and the same for a flow across the layers, Kz, are given by the following: 

1

n
i i

x
i

K D
K

=

= ∑ 
                      (54) 

1i

z
n i

i

K
D
K=

=
∑

                       (55) 

where 1i
n

iD
=

= ∑ ; iD  and iK  are thickness and hydraulic conductivity of 
the ith homogeneous layer. The Darcy law is for a homogeneous and isotropic 
medium. Assuming that the principal axes of K are aligned with the coordinate 
axes then the governing equation for a three dimensional anisotropic confined 
aquifer can be written as: 

x y z s
h h h hK K K S

x x y y z z t
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

        (56) 

Here,   is source or sink term. If the medium is homogeneous and isotrop-
ic, x y zK K K K= = = . In addition, if the aquifer is horizontal and has a con-
stant thickness b, then Kb= , and SS bS= , in two dimensions the equation 
becomes, 

2 2

2 2

h h S h
tx y

∂ ∂ ∂
+ =

∂∂ ∂ 
                   (57) 

where   is called the transmissivity of the aquifer, and S is called the storage 
coefficient. The above equation called the diffusion equation. For the steady state 
condition this equation becomes the well known Laplace equation: 

2 2

2 2 0h h
x y
∂ ∂

+ =
∂ ∂

                     (58) 

The two dimensional flow equation for an unconfined aquifer is given by: 

x y y
h h hK h K h S

x x y y t
 ∂ ∂ ∂ ∂ ∂  + = +  ∂ ∂ ∂ ∂ ∂   

           (59) 
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Here, yS  is called the specific yield, which is the quantity of water that can 
be drained out of a saturated volume of porous medium due to unit lowering of 
the water table. The above equation is also known as the Boussinesq equation. It 
is a nonlinear, second order partial differential equation but linear in 2h . 

5. Water Wave Dynamics 

Small-amplitude or linear wave theory is the most elementary wave theory de-
veloped by Airy (1845). With a large range of wave parameters, this theory is 
easier to apply, offering a reasonable approximation of wave characteristics. It is 
necessary to assert the key assumptions of this theory as below. Homogeneous, 
ideal and incompressible fluid, irrotational flow, surface tension and Coriolis ef-
fect is neglected, pressure at the free surface is uniform and constant, small am-
plitude and bed is a horizontal, fixed, impermeable boundary. Two dimensional 
irrotationality can be stated by Equations (60) and (61): 

u
x
φ∂

=
∂

                           (60) 

and: 

w
z
φ∂

=
∂

                           (61) 

where, φ  is known as velocity potential is a scaler function [8]. In addition, in-
compressible flow implies that there is another function termed as the stream 
function ψ  (62-63). 

x z
φ ψ∂ ∂
=

∂ ∂
                         (62) 

and: 

z x
φ ψ∂ ∂
= −

∂ ∂
                         (63) 

ψ  is orthogonal to the potential function φ . The lines of constant values of 
the potential function (i.e., equipotential lines) are mutually perpendicular to the 
lines of constant values of the stream function. Both φ  and ψ  satisfy the 
Laplace equation which governs the flow of an ideal water (see Equations (64) 
and (65) waves). 

2 2

2 2 0
x z
φ φ∂ ∂
+ =

∂ ∂
                       (64) 

and: 
2 2

2 2 0
x z
ψ ψ∂ ∂

+ =
∂ ∂

                      (65) 

The speed at which a wave form propagates is termed the phase velocity or 
wave celerity C L T= . Where, the length L is the horizontal distance between 
corresponding points on two successive waves and the period T is the time for 
two successive crests to pass a given point. The most commonly used terms to 
describe water wave dynamics are depicted in Figure 4, where, a progressive  
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Figure 4. Definition of elementary terms used to define a progressive sinusoidal wave [8]. 
 
wave represented by the spatial variable x, temporal variable t and η  denotes 
the displacement of the water surface relative to the SWL. As a result their phase 
can be defined as kx tθ ω= − , where k and ω  are described as wave number  

( 2k
L

=
π ) and angular frequency ( 2

T
ω =

π ) respectively. In this consequence, the 

wave profile can be written as following Equation (55): 

( )2 2cos cos
2

x t Ha kx t
L T

η ωπ π 
 


=


= − −                (66) 

Therefore, the amplitude of wave can be depicted as 
@
Ha = , where, H is the  

wave height. Wave motion can be often defined in terms of some dimensionless  

parameters such as wave steepness ( H
L

), relative depth ( d
L

) and relative height 

( H
d

). It is important to point out that sometimes relative depth and relative  

height quantified as kd and ka since they differ only by a constant factor of 2π. 
Water waves usually classified into three following categories based on relative  

depth: shallow water wave ( 10
20

d
L

< <  i.e., 0
10

k d <
π

< ∗ ), transitional water 

wave ( 1 1
20 2

d
L

< <  i.e., 
10

kdπ
< < π ) and deep water wave ( 1

2
d
L

< < ∞  i.e., 

kdπ < < ∞ ). In general, wave phase speed can be expressed as: 

( )tanh
2
gT kd=
π

                        (67) 

Therefore, the measurement of wave length can be: 

( )
2

tanh
2

gTL T kd=
π

=                      (68) 

In addition to different wave parameter, the local flow velocities and accelera-
tions during the passage of a water wave must often be calculated using Equa-
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tions (69)-(72). 

( )
( ) ( )

cosh
cos

2 cosh
k z dH gTu kx t

L kd
ω

+  = −               (69) 

( )
( ) ( )

sinh
sin

2 cosh
k z dH gTw kx t

L kd
ω

+  = −               (70) 

( )
( ) ( )

cosh
sin

coshx

k z du g H kx t
t L kd

α ω
+ ∂  = = −

∂
π

           (71) 

( )
( ) ( )

sinh
cos

coshz

k z dw g H kx t
t L kd

α ω
+ ∂  = = − −

∂
π

          (72) 

Water particle displacements from mean position for shallow/transitional-water 

(i.e., 1
2

d
L
< ) and deep-water waves (i.e., 1

2
d
L
> ) can be tracked by following 

equations: 

( )
( ) ( )

cosh
sin

2 sinh
k z dH kx t

kd
ξ ω

+  = − −             (73) 

( )
( ) ( )

sinh
cos

2 sinh
k z dH kx t

kd
ζ ω

+  = −              (74) 

Assuming, 
( )
( )

cosh
2 sinh

k z dH
kd
+  =  and 

( )
( )

sinh
2 sinh

k z dH
kd
+  = , we can re-

write Equation (73) and 74 in the form of 
2 2

2 2 1ξ ζ
+ =

 
. Therefore, water particle  

displacements follows elliptical orbit for shallow/transitional-water while circu-
lar orbit for deep-water waves. In other words, for shallow/transitional-water  

2 2
H L

d
=

π
  and 

2
H z d

d
+

= ; for deep-water waves 2exp
2
H z

L
= =

π
  .  

Water pressure waves are classified into three main components: dynamic com-
ponent due to acceleration, static component of pressure and atmospheric pres-
sure. Mathematically expressed using Equation (75). 

( )
( ) ( )

cosh
cos

2 cosh a

k z dHP g kx t gz P
kd

ρ ω ρ
+  ′ = − − +         (75) 

Therefore, relative pressure will be aP P P′= − . If pressure response factor is 

denoted by 
( )
( )

cosh
coshz

k z d
K

kd
+  =  then the Equation (75) becomes  

( )zP g K zρ η′ = − . Besides, pressure force, it is possible to divide water wave 

energy into traditional potential ( 21
16pE gH Lρ= ) and the kinetic  

( 21
16kE gH Lρ= ) form of energy. Therefore, the total energy per wave length 

and unit width can be written as 21
8

E gH Lρ= . Furthermore, the rate of energy  
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transfer by water wave is known as energy flux, that can be quantified using the 
Equation (76). 

( )
21 1 21

8 2 sinh 2
kd LP gH

kd T
ρ

 
= + 

  
               (76) 

The Equation (76) can simply written as the form of gP En EC= = , where 

gC  is commonly known as group velocity. Therefore, group velocity can be 
quantified using Equation (77). 

( )
1 21
2 sinh 2g

kd LC n
kd T

 
= = + 

  
                 (77) 

Coastal hydraulics usually considers problems near the shoreline and the key 
processes that can affect a wave as it propagates from deep into shallow water 
includes: shoaling, refraction, reflection, diffraction, breaking and damping. The 
transformation of the wave form due to interaction with bathymetry is known as 
wave shoaling. Wave refraction is the changes in the direction of wave propaga-
tion due to differences in wave velocity along the crest, which are generally illu-
strated by lines drawn perpendicular to the wave crest in the direction of wave 
propagation known as wave rays. The angle of the wave along a ray follows Snell’s 
law. Wave diffraction is the bending of wave crests (changes in direction) due to 
along crest gradients in wave height. The point at which wave form becomes un-
stable and breaks is known as breaking point and the phenomenon is known as 
wave breaking. Wave breaking occurs when water particles at the crest travel 
much faster/farther than water particles in the trough. Wave breaking may be 
classified in four types as spilling, plunging, collapsing, and surging [8]. 

6. Differential Equations for Water Movement 

Water movement is the key process in Water Resources Engineering. Most ma-
thematical models describing water movement are consisting of differential equ-
ations deriving from the fundamental principles of the conservation of mass, 
energy and momentum. The continuity equation for one-dimensional unsteady 
gradually-varied flow, the Belanger equation, and unsteady flow equation are 
some example of differential Equations. The highest derivative is called the order 
of the differential equation and the power of its derivative of the highest order is 
called the degree of the differential equation. In general, the differential equa-
tions for water movement are second-order partial differential equations. The con-
servation laws in physics can be described by a PDE of the general form (Equa-
tion (78)): 

2 2 2

2 2 0C C C C Ca b c d e fC g
x y x yx y

∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂∂ ∂
         (78) 

where a, b, c, d, e, f and g may be constants or functions of x and y or of C. If a, b, 
c, d, e, f and g are constants or functions of x and y, the equation is linear. If 
( )2 4 0b ac− > , the above equation is hyperbolic. For example wave equation is a 
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hyperbolic equation. If ( )2 4 0b ac− = , the above equation is parabolic. For ex-
ample diffusion equation is a parabolic equation. If ( )2 4 0b ac− < , the above eq-
uation is elliptic. The Laplace equation is an elliptic equation. Besides general form 
of PDE the conservation law can be seen as advection-diffusion process which is 
discussed in the following section. 

7. Modeling Advection-Diffusion Processes 

Advection-Diffusion process can be expressed by an equation known as advec-
tion-diffusion equation which comes from the conservation of contaminant 
mass. Advection refers to the transport of contaminants by the moving water 
where contaminants travel at the same velocity as the mass of water in which 
they are dissolved. Diffusion refers to the spreading of the contaminants in all 
direction due to the turbulence and non-uniform velocity distribution. Here, 
molecular diffusion is much smaller than that of turbulent diffusion. In addition 
to being advected and diffused, the amount of a contaminant dissolved in water 
may increase or decrease in time due to chemical reactions with other agents 
present in the environment. When such reactions are absent, the contaminant 
process is called a conservative process meaning that the total mass of the dis-
solved substance remains constant through the transport process. When such 
reaction processes are present, the contaminant process is called non-conservative 
indicating that the mass of the contaminant is growing or decaying at a certain 
rate. 

2

2f
C C Cu D rC
t x x

∂ ∂ ∂
= − + −

∂ ∂ ∂
                  (79) 

Wave equation, diffusion equation and Laplace equation is also example of 
Advection-Diffusion process. Analytical solutions for advection-diffusion-reaction 
processes can be found only for simplified problems. For complicated boundary 
conditions or initial conditions, one needs numerical methods to get solution for 
the problem. 

8. Transport of Particles in Water Movement 

In addition to water movement, transports of sediment, salt and pollutants lead 
to differential equations. Advection-diffusion process is a common process in trans- 
ports of sediment, salt and pollutants. Advection refers to the transport of con-
taminants by the moving water where contaminants travel at the same velocity as 
the mass of water in which they are dissolved. Diffusion refers to the spreading of 
the contaminants in all direction due to the turbulence and non-uniform veloci-
ty distribution. In an open channel flow, molecular diffusion is much lower com-
pared to turbulent diffusion. The general differential form of conservation of con-
taminant mass equation can be expressed as: 

yx zqq qC s
t x y z

∂∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
                   (80) 
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where, C is the mass concentration per control volume. In addition, Fick’s law 
define the flux ( ,x yq q  and zq ) due to an advection and a diffusion process, that 
can be written as: 

x x
Cq uC D
x

∂
= −

∂
                        (81) 

y y
Cq vC D
y

∂
= −

∂
                        (82) 

z z
Cq wC D
z

∂
= −

∂
                        (83) 

Apart from the general type of contaminants transporting particle, some other 
dissolved gas transport along with their reaction rate can also be part of hydrau-
lics, which is very important for the supply and treatment of water. 

9. Hydraulics Used in Water Supply and Treatment 

The concentration of a gas (such as O2) that can be present in solution is go-
verned by: 1) the solubility of the gas as defined by Henry’s Law; 2) temperature; 
3) presence of impurities (such as salinity); and 4) the partial pressure of the gas 
in the atmosphere. The saturation concentration of a gas dissolved in a liquid is  

a function of the partial pressure of the gas. Henry’s law states that g
g

T

x
P H

P
= ,  

where, Pg and xg is the mole fraction of the gas in air and in the liquid (water) 
respectively, PT is the total pressure and H is the Henry’s constant that depends 
on the type of gas. For example, dissolved oxygen (DO) is measured in standard 
solution units such as mmol/L, mg/L, mL/L, or ppt. O2 saturation is calculated as 
the percent of DO relative to a theoretical maximum concentration given the 
temperature, pressure, and salinity of the water. Well-aerated water will usually 
be 100% saturated. In general, lower temperatures, lower salinity, and higher 
atmospheric pressures lead to higher values of dissolved O2. Higher barometric 
pressures lead to higher values of saturated DO. The correction for barometric  

pressure may be written as 0 760
P uDO DO

u
−′ =
−

, where, P is the barometric  

pressure and u is the vapor pressure in mm (Hg). Microorganisms in water di-
gest organic material as food in the presence of O2 that lead to introduce a new 
term commonly known as the biochemical oxygen demand (BOD). The BOD on 
a water body depends on the microbial population dynamics which includes a 
lag phase, a constant growth phase, a stationary phase, and a decay phase. Ac-
cording to the popular mathematical model for the growth of BOD (i.e., the ex-
ponential model where the BOD grows asymptotically to the so-called ultimate 
BOD of the water), BOD can be written as ( )1 e kt

t uBOD BOD −= − , where k is 
the reaction rate constant (day−1). The rate constant at T temperatures is given 
by ( ) 20

20 1.047 T
Tk k −= . When a stream of untreated or partially treated sewage 

is discharged into a large body of water, the wastewater is diluted and their ulti-
mate BOD (i.e., oL ), DO and temperature ( oT ) of the river-wastewater imme-
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diately after mixing can be given by ( )w w r rQ L Q L Q+ , ( )w w r rQ DO Q DO Q+  
and ( )w w r rQ T Q T Q+  respectively, where, w rQ Q Q= + , wQ  = waste water flow 
rate and rQ  = river flow rate. Initial oxygen deficit after mixing is given by 

0O satD DO DO= − . The Streeter-Phelps equations (see 84) describe the DO “sag 
curve” obtained as a result of simultaneous deoxygenation and reoxygenation that 
occurs when wastewater is discharged into receiving stream. According to the 
Streeter-Phelps model 5, the oxygen deficit after time t ( 0t =  at the instant of 
mixing) is given by: 

( )0
0e e ed r rk t k t k td

t
r d

k L
D D

k k
− − −= − +

−
              (84) 

where, kd and kr are deoxygenation (day−1) and reoxygenation rate (day−1) re-
spectively. The time at which the dissolved oxygen is critical is given by: 

1 ln d o r o d o r
c

r d d o d

k L k D k D kt
k k k L k

 − +
=  −  

             (85) 

At this time, the critical (maximum) O2 deficit is given by: 

e d ck td o
c

r

k L
D

k
−=                        (86) 

The distance from the point of mixing to the critical location is given by 

c cx vt= , where, v = average stream velocity. 
In the treatment of wastewater, operations in which some transformation is 

effected through the use of chemical reactions are termed chemical unit opera-
tions. The rate at which a chemical reaction progresses depends on the nature of 
the reaction and hydraulics used to describe that nature is called reactor hydrau-
lics. Chemical reactions usually classified as zero order, first order, second order,  

and saturation reactions. Zero-order reactions may be expressed as d
d
C k
t
= −  

that leading to 0tC C kt= − . Similarly, for a first-order reaction follows 
d
d
C kC
t
= −  that leading to 0e kt

tC C −=  and for a second-order reaction follows 

2d
d
C kC
t
= −  that leading to 

0

1 1

t

kt
C C

= + . A reaction is classified as a saturation 

reaction if the rate of reaction saturates as the reaction progresses. This may be 

expressed as d
d
C kC
t a C
=

+
 that leading to 0

0ln t
t

C
a C C kt

C
+ − = . Required  

hydraulic detention time for various orders of reaction also depicted in Figure 5, 
which is very useful for water treatment reactor. There are several further com-
putational hydraulics applications that address water quality concerns [9]. 

10. Hydraulics of Sediment Transport 

Sediment transport function is very crucial to predict complex river [10] hy-
drodynamics and morphodynamics. For decades, various methods have been 
used to establish sediment transport functions or formulas. They are often differ  

https://doi.org/10.4236/ojmsi.2022.101001


S. Sarker 
 

 

DOI: 10.4236/ojmsi.2022.101001 23 Open Journal of Modelling and Simulation 
 

 

Figure 5. (a) Dissolved oxygen sag curve (Streeter-Phelps); (b) Hydraulic detention time for various orders of reaction. 
 
drastically from each other and from observations in the field. These formulas 
have been used to solve engineering and environmental problems. The sediment 
transport mechanics for cohesive and non-cohesive materials are different. Most 
of the sediment transport functions are proposed under the assumption of non- 
cohesive sediment. In this section, we will review of the basic concepts and ap-
proaches used in the derivation of incipient motion criteria and sediment trans-
port functions. Due to the stochastic nature of sediment movement, incipient 
motion is critical for the study of sediment transport, channel degradation and 
stable channel design. In other words, it is difficult to define precisely at what flow 
condition a sediment particle will begin to move, hence it depends more or less 
on definition of incipient motion. Significant progress has been made on the 
study of incipient motion, both theoretically and experimentally. Out of all ran- 
ges, the emphasis here is more on Shear Stress Approach and Velocity App- 
roach. 

A sediment particle is at a state of incipient motion when one of the following 
conditions is satisfied: L SF W= , D RF F=  and O RM M= , where, overturning 
moment due to FD and FL, and resisting moment due to FL and WS (see Figure 6). 
One of the most prominent and commonly used incipient motion criteria is the 
Shields diagram (1936) based on shear stress approach, where, where the central 
premise is the shear stress τ , the difference in density between sediment ( Sρ ) 
and water ( wρ ), the diameter of the particle (ds), the kinematic viscosity and the 
gravitational acceleration can be grouped into two dimensionless quantities that 
provides seminal plot to determine incipient motion (see Figure 6). 

*

1 2
c

w
s

dUd

τ
ρ
ν ν

 
 
  =                        (87) 

and: 

( )
1

c c

s S w S
s

w

d g
d

τ τ
ρ ρ ρ

γ
ρ

=
−   

−  
  

                  (88) 
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Figure 6. Sediment transport modes and forces acting on a single spherical sediment particle along with Shields and HJulstrom 
diagram [11]. 

 
where, Cτ  = critical shear stress at initial motion and *U  = shear velocity. 
Rouse (1939), White (1940), Brooks (1955), Liu (1958), Yang (1973), Govers (1987), 
Yalin and Karahan (1979) provides useful changes on the Shields diagram for 
practical use. While Lane (1953) developed stable channel design curves for tra-
pezoidal channels with different typical side slopes, however, recently USBR 
(1987) synthesized stable channel design criteria based on the critical shear stress 
required to move sediment particles in channels under different flow and sedi-
ment conditions [11]. 

On the other hand, Fortier and Scobey (1926) carried out an extensive field 
survey of the maximum permissible mean velocity values in the canals of differ-
ent materials. Hjulstrom (1935) carried out a detailed study of the movement of 
uniform materials at the bottom of the channels, which provides a convenient 
diagram (see Figure 6) based on the velocity approach. The relationship between 
sediment size and average flow velocity for erosion, transport and sedimentation 
can be illustrated by the Hjulstrom curve. Yang (1973) and Vanoni (1977) fur-
ther improved the velocity approach that Govers (1987) and Talapatra and 
Ghosh (1983) tested experimentally [11]. Yang used theoretical fluid mechanics 
to calculate critical velocity by providing FL, FD, FR, and WS equations, which in-
volve the fall velocity of the sediment particles. Sediment particle fall velocity is 
one of the crucial parameters used in most sediment transport functions or for-
mulas. Different methods have been developed for the computation of sediment 
particle fall velocity. Rubey’s (1933) introduce fall velocity formula  

( )1S sF d g Gω = − , where, F is a function of particles diameter, specific gravity 
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of sediment, kinematic viscosity of water and g, however for particle greater than 
1mm, F can be considered as 0.79 [11]. Yang and Simoes (2002) use a shape  

factor 
cSF
ab

=  for natural sand, where, a, b, c the length of the longest, the  

intermediate, and the shortest mutually perpendicular axes of the particle, re-
spectively. In water treatment, fall velocity commonly calculated based on the 
type of particle settling, that can be classified into four types: discrete particle 
settling, flocculent settling, hindered or zone settling, and compression settling. 
In addition, discrete particle fall velocity depends on the laminar, transition or 
turbulent region of flow that is defined in earlier section. Regime, regression, 
probabilistic, and deterministic approaches are the basic approaches used in the 
derivation of sediment transport functions or formulas. The concept of “regime” 
is similar to the concepts of “dynamic equilibrium” and “hydraulic geometry.” 
Various collections of regime equations have been formulated by various inves-
tigators, such as Blench (1969), Kennedy (1895) and Lacy (1929). Lacy’s (1929) 
regime equation describing the relationships among channel slope S, water dis-
charge Q, and silt factor Sf  for sediment transport can be written as  

5 3

1 60.0005423 SfS
Q

= . Leopold and Maddock’s (1953) hydraulic geometry rela-

tionships commonly known as bW aQ= , fy cQ=  and mV kQ= , where, W =  

channel width, y = channel depth, V = average flow velocity, Q = water dis-
charge and a, b, c, j, k, m are local constants. Yang et. al. (1981) applied the unit 
stream power theory for sediment transport, and the hydraulic geometry rela-
tionships between Q and S as jS iQ= , where, i, j, constants. Shen and Hung 
(1972), Karim and Kennedy (1990) proposed sediment transport function 
adopting regression approach by considering flow velocity, sediment discharge, 
bed-form geometry, and friction factor. The regression approach may provide 
fairly accurate results due to the fact that the sediment transport is such a com-
plex phenomenon and no single hydraulic parameter or combination of para-
meters can be found to describe sediment transport rate under all conditions. 
Einstein (1950) was a pioneer in sediment transport studies focused on a proba-
bilistic approach, which is under the assumption of the beginning and ceasing of 
sediment motion can be expressed in terms of probability and the movement of 
bedload is a series of steps followed by rest periods. In addition to that, Einstein 
used the hiding correction factor and the lifting correction factor to get the best 
fitted theoretical result with the observed experimental data. Although Einstein’s 
bedload function is not common in engineering applications due to complex 
computational procedures, it has however been used as a theoretical foundation 
for the formulation of other transport functions. For example, Colby and 
Hembree (1955) used modified Einstein methods for the computation of total 
bed-material load. On the other hand, the deterministic approach is the exis-
tence of one-to-one relationship between independent and dependent variables. 
Commonly used independent variables are water discharge, average flow veloci-
ty, shear stress, and energy or water surface slope. More recently, the use of 
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stream power and unit stream power have gained increasing attention as impor-
tant parameters to calculate sediment concentration. Bagnold (1966) introduced 
the stream power concept based on classical physics, while, Engelund and Han-
sen (1972), and Ackers and White (1973) later used the concept as the theoreti-
cal basis for developing their sediment transport functions. Yang (1972) defines 
unit stream power as the rate of energy per unit weight of water available for 
transporting water and sediment in an open channel with reach length x and  

total drop of y can be written as d d d
d d d
y x y VS
t t x
= = , where, V = average flow  

velocity, and S = energy or water surface slope. Besides that, Velikanov (1954) 
derived his transport function from the gravitational power theory and Pache-
co-Ceballos (1989) derived a sediment transport function based on power bal-
ance between total power available and total power expenditure in a stream. This 
principle is also applicable to understanding the evolution of the natural channel 
network [12] [13] [14] [15] [16]. 

In this section, we comprehensively reviews basic approaches and theories 
used in the determination of noncohesive sediment concentration. In the fol-
lowing section we will discuss some basic finite differences numerical techniques 
to solve governing equations. Finite element and finite volume are another two 
other numerical technique which will be covered under subsequent sections. 

11. Finite Difference Method 

In Finite difference methods (FDM), partial derivatives are replaced with finite 
differences approximations, which results in a set of algebraic equations. These 
algebraic equations can be solved explicitly or implicitly. FDM uses a structured 
grid and thus requires grid transformation in multidimensional flow case. A 
typical finite difference grid can be shown in Figure 5. Finite difference method 
is popular because of its simplicity in formulation and implementation. Based on 
different ways of discretization, different numerical schemes are developed. Some 
of them are shown as bellows: 

In a forward time difference, any partial time derivative of a function C can be 
expressed as Equation (89): 

1n n
j jC CC

t t

+ −∂
=

∂ ∆
                        (89) 

In a forward space difference, any partial space derivative of a function C can 
be expressed as Equation (90): 

1
n n
j jC CC

x x
+ −∂

=
∂ ∆

                       (90) 

In a backward space difference, any partial space derivative of a function C 
can be expressed as Equation (91): 

1
n n
j jC CC

x x
−−∂

=
∂ ∆

                       (91) 
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In a centered space difference, any partial space derivative of a function C can 
be expressed as Equation (92): 

1 1

2

n n
j jC CC

x x
+ −−∂

=
∂ ∆

                      (92) 

where t∆  and x∆  is the time and space discretization respectively. When space 
discretizations are done on the current time level, then the scheme is known as 
an explicit scheme. For example Equations (90) to (92) are the examples of ex-
plicit space discretized scheme. On the other hand, when space discretizations 
are done on the next time level or using both the current and next time levels, 
the generated scheme is known as an implicit scheme. For example, if Equation 
(91) is discretized as follows: 

1 1
1

n n
j jC CC

x x

+ +
−−∂

=
∂ ∆

                    (93) 

or: 
1 1

1 11
2

n n n n
j j j jC C C CC

x x x

+ +
− − − −∂

= +  ∂ ∆ ∆ 
              (94) 

then both will generate implicit schemes. An explicit scheme will not generate 
any systems of equation. Therefore, an explicit scheme can be solved directly. 
That means, unknowns at any nodal value can be calculated without solving other 
nodal values. On the contrary, an implicit scheme will generate a system of equ-
ations, and therefore, unknowns at any nodal value can not be solved indepen-
dently. Apart from that another popular implicit scheme is Box Finite Difference 
Scheme, which is also known as four-point implicit scheme. According to this 
scheme, time derivative can be expressed as: 

1 1
1 11

2

n n n n
j j j jC C C CC

t t t

+ +
+ + − −∂

= +  ∂ ∆ ∆ 
              (95) 

and space derivative can be expressed as: 
1 1
1 11

2

n n n n
j j j jC C C CC

x x x

+ +
+ + − −∂

= +  ∂ ∆ ∆ 
              (96) 

and C can be expresses as: 

( )1 1
1 1

1
4

n n n n
j j j jC C C C C+ +

+ += + + +                (97) 

In order to improve accuracy, further schemes such as the Crank-Nickelson 
Scheme, Box Finite Difference Scheme, Lax-Wendroff Scheme, MacCormack 
Scheme were proposed to solve advection-diffusion processes. Prior to solving 
the advection-diffusion equation or any governing equation, the initial condition 
of the system has to be specified. Solution of the governing equations also re-
quire boundary conditions. The most common type of boundary conditions are 
Dirichlet, Neumann, and Cauchy boundary conditions. Dirichlet condition oc-
curs when a portion of the boundary is at a prescribed concentration level (i.e., C  
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specified), Neumann condition occurs when a portion of the boundary has spe-

cified flow which is crossing the boundary curve normally (i.e., C
n

∂
∂

 specified),  

and Cauchy condition is a mixed boundary condition which represents some 
combination of the Direchlet and Neumann conditions on the boundary curve. 
It is important to mention that numerical method used to reformulate governing 
equations in an approximate manner where continuous operations replaced by 
discrete operations that causes truncation error. In addition, size of the discre-
tized solution domain (i.e., cells) causes round off error (Figure 7). Model dis-
cretization and numerical solution should be consistent (i.e., correct), conver-
gent (i.e., 0 0x ε∆ → → → ), and stable (i.e., error should not increase). 

12. Finite Element Method 

Another numerical technique used to obtain an approximate solution to a go-
verning differential equation is the Finite Element Method. This is relatively new 
to the field of computational hydraulics and is supported by rigorous mathe-
matical theory. FEM based on variational form of PDE, which derived using the 
method of weighted residuals. In this method, under a given boundary condition, 
the PDE (i.e., strong form) is used and the residuals are determined for the as-
sumed solution due to the fact that the assumed solution is not exact. Then push 
the residual to zero at various points or intervals using different weighted resi-
dual method. There are three commonly used weighted residual methods (i.e., 
Collocation, subdomain, and Galerkins method) in FEM. Among them Galer-
kins method is popular, where the integral of residual equation R, multiplied by 
a weighting function, w, is pushed to be zero. The weighting functions are cho-
sen to be the same form as each part of the approximate solution. If the residual, 

( )R u , for a given PDE, should equal 0 for the true solution. In other words, for 
approximate solution, non-zero residual measures accuracy hu u≈ . Here, we 
require that the weighted residual equal zero: 
 

 

Figure 7. (a) Schematic 1D space and time discretization; (b) Computational error as a 
function of x∆ . 
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( )d 0;wR u x w W
Ω

= ∀ ∈∫                      (98) 

and hu  is a linear combination of basic functions, can be expressed as 

( ) ( ) ( ),h j j
j

u x t u t xφ= ∑                      (99) 

Eventually, transforms governing equation into a system of linear equations 
( Ax b= ), which can be solved using matrix operations. The FEM can be explain 
by three phases prepossessing, processing/solution and post-processing. In pre-
possessing phases, model geometry is discretized or subdivided into a finite num-
ber of smaller pieces, each piece is called an element, and all intersection points 
are called nodes. The process of dividing geometry is called meshing, which is 
one of the key steps of the FEM. After that, one element is considered at a time 
and assumes a shape function that depicts the physical behavior of the element. 
The stiffness matrix of each element is then developed and assembled them into 
a global matrix system for the entire geometry. Apply the required boundary 
condition and initial condition to the global matrix system. In solution phase, 
primary unknown is computed from the global system of linear equation. Finally, 
in the post-processing phase, other derived variables are determined on the basis 
of the nodal value of the primary unknowns. 

For example, SLIM is a numerical model. The full form of SLIM is Second-ge- 
neration Louvain-la-Neuve Ice-ocean Model. It is a hydrodynamic model based 
on finite element method (FEM). The special advantage of finite element me-
thod is that, user can use this technique for unstructured grids. One can refined 
computational grid arbitrarily in the areas of interest that focusing the computa-
tional power where it is needed. In this model no need of nested grids. A single 
model is able to resolve both the large-scale features, such as in the open sea and 
also small-scale phenomena in rivers, coasts and estuaries. SLIM consists of a 1D 
river model, a 2D depth averaged model and 3D model. For 1D river model con-
sists of linear river where variable river width and cross-section, 2D model the 
domain is divided into triangular elements allowing accurate representation of 
complex geometry and 3D model uses triangular prismatic elements that are 
formed by extending the 2D mesh vertically. 

13. Finite Volume Method 

Besides computational hydraulics, majority of computational fluid dynamics 
(CFD) codes based on Finite Volume Method (FVM). This method is based on 
integral form of PDE, where the governing equation integrated over control vo-
lume. For example, the integral form of 1D advection-diffusion conservation law 
can be written as: 

d d dfv v v

C C Cv u v D v
t x x x

∂ ∂ ∂ ∂
= − +

∂ ∂ ∂ ∂∫ ∫ ∫             (100) 

The integral form is based on a control volume v. This v volume can be cell- 
centered or vertex-centered as shown in Figure 8. Typically, the special model 
domain divides into discrete control volumes. Then an assumption is made on 
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Figure 8. (a) Cell-centered and (b) Vertex-centered finite volume mesh along with (c) 
Midpoint approximation rule. 
 
how the value of integral changes within the control volume v, usually average 
value is taken at the center of the control volume v. 

( ) ( )1 , d
i

i V
i

C t C x t x
V

= ∫                    (101) 

The suitable time integration scheme is selected to solve the integral of Equa-
tion (101). Midpoint rule, Trapezoidal rule and Simpson’s rule are the most 
common approximations of integrals. In this method, all fluxes usually con-
verted to surface integrals. This is an exact procedure due to the fact that the vo-
lumes are defined as polygons or polyhedra. 

14. Concluding Remarks 

Hydraulics is a prerequisite for those interested in a career in Water Resources 
Engineering. The fundamental principles of hydraulics, the computational as-
pects of hydraulic system analysis and design, and various engineering applica-
tions of the concepts are discussed in this manuscript. This manuscript can assist 
in developing an appropriate learning environment for comprehending and 
conducting pipe and open channel flow research. 
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