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Abstract

The 2 + 1d Gross-Neveu model with finite density and finite temperature is
studied by the staggered fermion discretization. The kinetic part of this stag-
gered fermion in momentum space is used to build the relation between the

staggered fermion and Wilson-like fermion. In the large N, limit (the
number N, of staggered fermion flavors), the chiral condensate and fer-

mion density are solved from the gap equation in momentum space, and thus
the phase diagram of fermion coupling, temperature and chemical potential is
obtained. Moreover, an analytic formula for the inverse of the staggered fer-
mion matrix is given explicitly, which can be calculated easily by paralleliza-
tion. The generalization to the 1 + 1d and 3 + 1d cases is also considered.
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1. Introduction

The chiral phase transition in quantum chromodynamics (QCD) from the ha-
dronic phase at low temperature 7" (low density ) to the quark-gluon plasma
phase at high temperature (high density) has been studied intensively in the last
decade. Although the relative firm statements for the phase structure can be
made in two limit cases: finite 7"with small baryon density x, <7 and asymp-
totically high density ;> A, the phase structures at the intermediate ba-
ryon density are not clear. For a recent and review and related work of QCD
with finite density, see Ref. [1]-[9].

Since the chiral symmetry breaking and restoration are intrinsically non-
perturbative, the number of techniques is limited and most results come from
the lattice QCD. Unfortunately, the lattice QCD at finite density suffers from the
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notorious sign problem, especially for the intermediate or large baryon density.
For some simpler quantum field models, e.g., the dense two-color QCD [10], the
sign problem can be avoided. The recent progress of the sign problem in lattice
field models can refer to [11] and references therein. In the last decades, the
tensor network becomes very popular in condensed matter physics and high
energy physics, especial for lower dimension models, since probability is not
used and thus it is free of sign problem [12] [13] [14] [15].

This paper addresses a simplest four-fermion model with Z, symmetry:
Gross-Neveu model at non-zero temperature and density [16] [17] [18] [19]
[20]. The 2 + 1d Gross-Neveu model has an interesting continuum limit and
there is a critical coupling indicating the threshold for the symmetry breaking at
zero temperature and density. Although the 2 + 1d Gross-Neveu model is not
renormalisable in the weak coupling expansion, it is renormalisable in 1/ N,
expansion [16], where N s the number of flavors of fermions.

The symmetry breaking of Gross-Neveu model for the 1 + 1d case has been
studied extensively [21]-[29]. Recently, 2 + 1d Gross-Neveu model is used to
study the inhomogeneous phases [30] and the symmetry breaking [31].

Compared with the Wilson fermion, the staggered fermion is more adequate
for studying spontaneous chiral symmetry breaking. Another advantage of the
staggered fermion is due to the reduced computational cost since the Dirac ma-
trices have been replaced by the staggered phase factor. The reconstruction of
the Wilson-like fermion from the staggered fermion is rather technique, thus
needing a careful explanation of the physical fermions for lattice QCD [32] and
for Gross-Neveu model [18].

In this paper, we revisit the staggered fermion for the 1 + 1d, 2 + 1d and 3 +
1d Gross-Neveu model at non-zero temperature and finite density. The gap eq-
uation, which is based on the large N, limit, is solved in the momentum space.
Moreover, we derive an explicit formula for the inverse matrix of the staggered
fermion matrix, which is easy to be implemented by parallelization and thus
make the large scale calculation of the gap equation feasible.

The arrangement of the paper is as follows. The continuum 2 + 1d Gross-
Neveu model at finite density and non-zero temperature is introduced in Section
2. In Section 3, the 2 + 1d staggered fermion is shown and non-dimensional
quantities are introduced. The kinetic part of staggered fermion in the momen-
tum space is given in Section 4, where the trace of the inverse matrix and ele-
ments of inverse matrix are given explicitly in momentum space. In Section 5, the
results in Section 4 are generalized to the 1 + 1d and 3 + 1d staggered fermion.
The gap equation is given in Section 6, where the chiral condensate and fermion
density are calculated. The simulation results in the large N, limit are ob-

tained in Section 7. Finally, the conclusion is given in Section 8.

2. The Gross-Neveu Model

The Gross-Neveu model for interacting fermions in 2 + 1d is defined by the con-
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tinuum Euclidiean Lagrangian density at finite density

~2

£=v7(c75+ﬁ70+ﬁ1)l//—§vf

(7w) (1)

2 ~ . . . ~
where &= ZV:O 7,0,, M isthe chemical potential, m the bare mass, y and
y are an N, -flavor 4 component spinor fields. Here we choose the Gamma

matrices
Uv+l 0
v, = , v=0,1,2 (2)
0 0,4
—ill, I,
V3=, s Vs =Yt = (3)
ill, I,

where o, (i =1, 2,3) are the Pauli matrices. The Gamma matrices satisfies

YV ¥ 17, =0,20, wuyv=01235

There is a discrete Z, symmetry y — y, ¥ — —yy,, which is broken by
the mass term but not the interaction. Introducing the bosonic field o, the in-

teraction between fermions is decoupled with the Lagrangian density,

Ny

L=1,7(é9+[t7/0+n~1+0')1//+2—~20'2 (4)
g

The dimension of quantities for the 2 + 1d Gross-Neveu model is as follows
[#]=[w]=[@]=[m]=[c]=length™', [g]=length” (5)
The partition function for this model is

Z =[dydydoeT”
,IEUZ

= Ido-e 2 [det(é9+[zy0 + +a)]N" (6)
= J‘daexp(—j%az +N, ln[det(é9+,[z;/0 +rﬁ+a)])

B L . .
where j = .[o dx, IO dx,dx, with the inverse temperature S =1/7 and the space
size L. ¥ and y are antiperiodic in x, direction, and are periodic in x, and

x, directions. We want to calculate the chiral condensate for one flavor

1 olnZ 1 1/1 1
— =(-——|py, )==(=|0o)==2X 7
where ¥ = L’ is the volume of 2 + 1d system. In the second equality we used
0= Id&dwdaie_u = J.dy7dy/dae_j£ (-1)| ww +l0' (x)
5o (x) g’

Since the Lagrangian density is translation invariant, <l/7(x)1//(x)> and
<o-(x)> does not depend on x. This model in the large N, limit can be solved
exactly [18] in the chiral limit 7 =0, which is based on the saddle approxima-

tion (gap equation) in (6)
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14 d . -
0=-—2% +d—zln[det(é9+y7/0 +m+2)]

g
V - - -1
:—EZ+Tr(a’9+,uy0 +i+X)

V . - - -1 ©)
=—?Z+Ztr(zk+y70+m+2)
k
-1
:_§z+4(m+z)z[(1{0_m)2 YR +(n~1+z)2]
k v=1,2

where in the third equality we write the trace of operator in momentum space

and the summation over k =(k,,k,,k,)

k0=(2n—1)nT, k,=2nm/L, nn,eZ, v=1.2

3. The Staggered Fermion

The staggered fermion discretization of the action IE is

S= aza,gzp(x)( PIRLCE R )]V/(y)

a=1,2 2a
— ’Ix, afi —a il
+a2at;yl//(x)(2_a(:(e }S~‘l‘5x+6.y -¢ ﬂsfé‘)ﬂy*ﬁ )JV/(})) (9)

raa B 6 (I ()4 s 5T (3]

with staggered phase factor 7,.,=1, 7, :(—l)x‘)/“ s Mo =(—l)(x°+xl)/a .
aN_ =L, aN,=p=1/T. The boundary condition for w and Y are ac-
counted for by the sign s' and s

1_{—1 if x, =N, -1 2_{—1 if x, =0

s, = . . (10)
’ 1 Otherwise 1 Otherwise

Here ¢ is defined onlattice x by o(%)
1

px)=220(F) < o(¥)=22 ¢(x) (1)

_1
8 3] 8 (v

where [x,%]| denotes 8 dual lattices ¥ which is neighbour to x. The auxiliary

field on dual lattice for two dimensional Gross-Neveu model was first studied in Ref.

[33].
According to (5), the non-dimensional quantities are introduced by
ac—>o, ap—>@, ay >v, ay >y (12)
afi=p, am=m, a’g=g, xla—>x, a,=a,/a (13)

and thus the action in (9) can be rewritten as

S=q, glp(x)( PO N )Jt//(y)

a=1,2 2
— 77\- a —a
) 700

“a X+ ()7 (x)+ a3 5 T (5)

X
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The partition function for the Gross-Neveu model with N, flavors is:

z=| [Td7dy,doe™ (14)

where y, and ¥, denote the Grassmann fields of flavors i=0,---,N P -1 at

the sites x, o is the real field defined at the dual lattice sites ¥ . The action is

§= 2 V() Doy () + Zag (), (v, () +

ix,y

N 2
Yoy (5)
Zg 3

where
1'7’;“ ify=x+d, a=12
- 177x,a ify=x-a, a=12
2
_ 77);,0 au |1 : A
Dw = Tel s, if y=x+0 (16)
—Mef””‘sf if y=x-0
) )

a,m if y=x
0 otherwise

The derivative of this matrix D with respect to the chemical potential and bare
mass are rather simple

D, e e oD,

5 0 0° )
6(al,u) 2 *xxsby 2 T G(alm) )

The real matrix D(u,m) satisfies the following symmetry
D(p,m), , ==D(~p,=m), ,

EXD(/u’m)x,y 8)’ :_D(/u’_m)x,y :D(_ﬂ’m)y,x

Xo+X1+X2

where &, =(-1) is the parity of site x .

By integrating the Grassmann fields, the partition function in (14) can be re-

written as
Zz'l.l_[dO'()~C)€:7S°ff (17)
with the effective action
N
Seffzaz1 {Zaz(fc)—NflndetDW] (18)
g i ’
and
(D[4)),, =D., +ad(x)d,, (19)

The computational results, e.g., non-dimensional chiral condensate and fer-

mion density, depend on the non-dimensional quantities
(N,.g.pt.m,N,.N,)

The physical dimensional quantities can be recovered from the non-dimensional
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ones by introducing lattice size a according to (12), (13). For notation simplicity,

weset @, =a andthus g =1 in the following discussion.

4. Staggered Fermion in Momentum Space

The kinetic part in (15) in one flavor is Zw 7(x)D, , x(y) where

UTa if y=x+a, a=12

—'77“ ify—x—a, a=12
D, , = nxT’oe"s; if y=x+0

—nxT’oe"’f if y=x-0

m if y=x

0 otherwise

(20)

7 and y are the Grassmann fields defined on lattices. A Wilson-like fermion

can be obtained from the stagger fermion >’ 7 (x)D,,x(») [18].

Assume that N, and N, are even integers. Let Y =(Y,,Y,Y,) denotes a

site on a lattice of twice the spacing of the original, and 4 =(4,,4,,4,),4, =0,1

is a lattice vector, which ranges over the corners of the elementary cube asso-

ciated with ¥ so that each site on the original lattice x uniquely corresponds

to Aand ¥: x=2Y + 4. Introducing notation
2(x)=x(2Y+4)=x(4,Y)
A shift along 4 direction can be represented by
y(x+i)=z(2Y+A+p)=y(2(Y + @)+ A- 1)
= ;(5“/“,;((,4’,Y)+5A_ﬂ,A,;((A’,Y+[z))
Similarly,
x(x=f)= ;(@_M,;((A',YH 5A+iz,A’7f(A’>Y—:[’))

2 (x) is defined on the fine lattice sites x with lattice size a=1

{xz(xo,xl,xz),OSxo <N,,0<x,x, < Nx}

while y(4,-) on the coarse lattice sites ¥'with lattice size 2a =2

{2 =2(Y,..Y,),0< ¥, <N,/2,0<%.Y, <N, /2}

A unitary transformation of y(4,-) is defined by [34]

wa(yy_ 1 N paa wa(yy_ L N paa
u (Y)—4\/§ZA:FA 2(4Y), d (Y)—4ﬁ§BA 2(4,Y)

P T raa Faa(yy_ 1 =
u (Y)—4\/§ZA:;((A,Y)FA, d (Y)—4ﬁZA:1(A,Y)BA

where 2x2 matrices I', and B, is given by

(21)

(22)

(23)

(24)

(25)

(26)
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r,= O-lAﬂazAlo_;l2 , B, = (_0-1 )AO (—0'2 )Al (_0_3 )AZ (27)

I', and B, satisfies the following properties (The indices «,a’, f,a,a’ and

b always run from 1 to 2)

Upo=n,(4)0,. T Biu,=n, (A)(—G/M)BA, 1=0,1,2 (28)
Tr(T\T, + BB, )=45,, (29)
DT =% BB =45,,5,,
A A
(30)
SrB =Y BT =0
A A
> () = Y re(r)”, w=012 (31)
A,A# =1 A,A)J:O
Equation (31) is also valid if I" is replaced by B.
> 15 (00,B8))" =205, (32)
Ad,=1
> r(o).B))" =206, (33)
A,4,=0
See Appendix A for these properties.
Using (29), the inverse transformation of (25) and (26) are
2(4Y)=N2Y[Tru (¥)+ By d“ ()] (34)
7(4.Y) =2 [a* (v)ry +d“ (Y)B;" | (35)

Let us introduce the two Dirac fields with 4 components (a =1,2)

qa(Y):(qf(y)]:(uaa(y)} 7 ()= (7 (7). (V) =7 (). (1)

¢ (Y)) (d“(Y)
From the properties (30), it is easy to show that
70 2(¥)
= ;ﬁ > (@ (v)ry +d= (v)Bs )\/E; [T u™ (Y)+ Byd* (1) ]

a,a

=8> (@ (v)u“ (Y)+d“ (Y)d“ (V)

Y a,a

=837 (V)g" (1) =827(1)a(1) =8Za (e (4

where in the last equality the inner produce between ¢ and g is given in mo-

mentum space corresponding to the coarse lattice with lattice size 2

my+—
k=2n Nz,%,%, 0<m,<N,/2,0<m.,m <N, /2 (36
t X X

For any fixed ©#=0,1,2,
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320, ()70 (2 e+ ) (3= )

=— PRACHE V) (8 pr (2(A42Y) = 2 (4Y - 1))
+5A7,; (2 (45 + )= 2(47)))

3 (g B )

o

ot Crik
s 5 A aj,;((A,Y)J
1 —aa aa |, Jaa aa
LS naNES (e () +a (1)5)
A, A,
{ A+/1A A a4 IZ( *aa’a‘uua'a’(Y)_'_B:trz'a'a‘uda'a'(y))
5 -0
A+#A IZ( *aaaz a'a (Y)+B*aaa daa( ))}

where in the second equality (21) and (22) are used. According to the properties
of ', and B, in (30) (31) (32) and (33)

g;m<x>z<x>u<x+ﬁ>—x<x—m)

ﬂg(ﬁ“( )0, ) 8,00, (V) +d (V) (=0, ) 8,,0,d°" (¥)
7 (V)(07)" 6.8 (V)£ (V) (-0}, )" 6,807 (1))
=22[7(1)(7, ©1:)2,a(1)+7 (V) (ir: ©7,.,)8a(Y)
i, on ]

J +3(Y)(ir, ®0,,,) 7
5307, O sin (36, )a(4) 74 0. eon(24,) o0

(37)

where we used the notations
0,4(Y)=q(Y+i)-q(Y-j1)
0,q(Y)=q(Y +i)-2q(Y)+q(Y - 4)

and the summation over k is taken for all modes in (36). Similarly, we have

(see Appendix B)
3270 240+ 2(x-0))
_ ;[ k) 1y3®0'1)12 sm(2k) (k)
+q

q(
(k) (7, ®L,)2" 1|:cos(2k0)+qu(k)J
=570 4 (B (8

(38)
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Using
L7 2 0) - (-
:coshﬂ[ggﬂx)(z(w6)—z(x—6))}
+sinh,u[%zx:)?(x)(;((x+(A))+)((x—f)))}

and (37) (38), the kinetic part zx‘y;?(x)Dm,;((y) can be rewritten as in the

momentum space

;ﬂ? (x) Dy, x(v)= 8;67(k)D(k)q(k) (39)

where the summation over k is taken for all momentum mode of coarse lattice

according to (36), and the staggered matrix in the momentum space is diagonal
D(k)=m+ 2132%{(7;4 ®1L, )sin(2k, )+ (7; ® 0., )[ cos(2k, ) -1}
u=l,

1 . . .
+E{(7/0 ®I, )(z cosh zsin (2k, ) + smh,u[cos(Zk0 )+ 1]) (“0)

+<}/3 ® crf)(icosh,u[cos(Zko)—l} —sinh usin(2k, ))}

=m+ ) (7/”®]Iz)a#+ > (}/3®0':)bc

1=0,1,2 =123

where a, and b, dependson k The inverse matrix of D(k) is

D(k)" :;{m_ Y (7,9L)a,- ¥ (y3®aj)b6} (41)

N(k) #=0,1,2 c=1,2,3

where

1 2 1 2
N(K)=m?>+= in2k ) +— 1-cos2k
() =m 4/12%’2(sm ”) 4;,;1,2( o #) (42)

—sinh’ zzcos 2k, —icosh usinh gsin 2k,

We can calculate the trace of inverse matrix Din (20) from (39)

YRR i WALV
-~ XX J’e,ﬁ)l

B J-efqu*(k)w(k)”’(")8zkCY(k)q(k)
B [ aRpE(

e TBDEa(K) = (1 o (|
- _Szk: : ] e(k)gDi)E(k?Q( )
- gzk: tr[(8D(k))_l}

_ Zk:tr[D(k)ilJ _ Z8_m

N (k)

(43)

where the summation over £ is given by (36). Note that the right hand side of (43)
is real since \, Sin 2k, / |N (k)|2 =0 forany k and k, modes in (36). Similar-
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» oo bysin 2k, —a, (cos 2k, +1)
(D s+ D s2) =83 0 (44)

X k

and

a, sin 2k, + b, (cos 2k, —1)

B (Dot =Dt = () TR )

x k

The inverse matrix of Din (20) is
1

-1 aa*a'a y- aa pra'a -
Dx',x :Z Z |:r r D(Yaal Yaal) +r B D(YaaZ Yaal)
aaaa (46)
Baar*aa D(_Ylaa 1 Yaa2) Ba"B*a” D(_YaaZ Yaa2):|

See Appendix C for the derivation of (44)-(46).

Since Dis diagonal in momentum space, the inverse matrix in the gg basis is

D;VI;Y_ 2Z:thYY ( )

N/2(N /2) %
war-y) 1 )
N /z(N BR: ~ A = N {m —ﬂ:OZJ’Z(n ®1,)a, _Fl,u(” Q0 )bc}
Em(L@Hz)I(Y'—Y)— :(,Z‘{z(y’l@]lz)&”(yr_y)__:123(73®0:)50(Y'—Y)

where the notation with tilde denotes the inverse Fourier transformation, e.g.,

gy (jz%

Nl Nx NY
ZnYO Sl SRS (moYy  mY maY
= 22 22 22 [Nr/fo/fo/z 4y (g, mm,,my)
= — e —N
Nt Nx my=0 m =0 my=0 (mo,mlamz)
22

N, N
for |v| < 7’—1 AR AR TX_I . We first use the fast Fourier transformation

to calculate d#(Y)exp[—iZ;%J and thus a,(Y) for 0<Y, S%—l,

t

. Then dﬂ(Y) for |Y0|S%—l,

obtained since it is anti-periodic in ¥, direction and periodic in ¥ and Y,
direction.

Each term in D;};Y has a tensor product 4® B between 4x4 matrix
AZ(AI-/-), D with 2x2 matrix 4, and 2x2 matrix B. The indices of
1, ]=1, ?
D(_Y]'a'a'i;Yaaj) of the inverse matrix D;};y in (46) is related to (A,-j )a,a B,,. The
analytic formula for the inverse matrix of the staggered fermion is the main con-

tribution of this paper. Compared to the computational complexity 0((N N )3)
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2
of the usual inverse matrix, the computational cost is 0(16(N,Nf) ) since

each element of the inverse matrix needs the summation over «,a,a',a'=1,2.
Moreover a parallel implementation can be realized easily for the formula (46).

The trace of the inverse matrix in (43) can be derived from (46)

_ _ _ 8m
;Dx,]x = azﬂ[D(Ylaal;Yaal) + D(Y}aaZ;YaaZ):| = Z];Wk)

5.The 1 + 1d and 3 + 1d Staggered Fermion

The staggered fermion matrix in (20) can be generalized to the 1 + 1d and 3 + 1d
case, where o is 1 for the 1 + 1d case and « run from 1 to 3 for the 3 + 1d
case.

For the 1 + 1d case, the 2x2 matrices y, are defined to be
Yu=0, H=L2, ys=iryy, 70,407, =06,2L, pv=1L25

The unitary transformation in (25) and (26) are modified to be

aa 1 aa —aa 1 — *qa
v (1) =5 ZIT(AY), 7 (V)= X Z(A)T]

A

The kinetic part >,  7(x)D,,x(») canbe written as

2 Z(x)D,, x(v) =2 (k)D(k)y (k) (47)
X,y k
where the summation is taken over all modes
1
my+>
k=2n Tzﬁ 0<m,<N,/2,0<m <N,/2 (48)
t X

The fermion matrix in momentum space is diagonal
D(k)=2m +;{(m1 ®1, )isin(2k, )+ (7, ®;/;+17/;)[cos(2kﬂ)—l]}
+{(7 ®1,)(icosh gsin(2k, ) + sinh [ cos (2k, ) +1])
+(7:®7,7; ) (cosh [ cos(2k, ) ~1]+isinh gsin (24, ))}

=2m+ Y (7,0 ®L)a, + Y (1 ®7.7: )b,
1=0,1 #=0,1

(49)

with its inverse

D(k)" =ﬁ{2m— > (7 ®L)a, — X (7 ®y;:+1y;“)b/,} (50)

#=0,1 1=0,1
where

N(k)=4m*+Y (sin2k, )2 —(icosh gsin 2k, +sinh 4 (cos 2k, + 1))2

u=1
(51)
+ Z(l —cos 2k, )2 +(cosh (cos 2k, — 1) +isinh ysin 2k, )2

=l
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The trace of the inverse matrix is
16m

Dl =Y —— (52)
2P 2]
The inverse matrix of D can be calculated

D;fx — Z raar*aa D 1

(Ya'a';Yaa)

(53)

a,a,a',a

where

Dyy =~y e D (k) (54)

N,/ Z(N / 2) p
For the 3 + 1d case, the 4x4 matrices 7, are defined to be

C,o=nrtvivd, u=123,4, ys=rnr.
7/;17V+7v7y:5,uv2]12’ ﬂ’V:1’2537475

The unitary transformation in (25) and (26) are modified to be
1 1
“W(¥)=—=3T%y(4Y), 7 (Y)=—=3 7(4,Y)“
v (V)= S 2T (AY), g (V) =22 Z(4T)T

The kinetic part can also be written as (47) where the summation is taken for all

modes
m0+5 m, m, m
k=2n N ,7,72,73 . Oﬁmo <N,/2,0£m1,m2,m3 <Nx/2

t

Equations (49) - (51) are still valid except that x runs from 1 to 3. Equations
(52) - (54) are modified to be

64m
Dl =Y —— (55)
g, 3 V)
x x =5 z Faar*aaD_Yaa Yua) (56)
1
Dl o= N kAl (57)
YLy N/Z(N/2)3Z ( )

respectively. We have checked the formula (46), (53), (56) for the inverse ma-
trices by Matlab.

6. The Gap Equation

The main contribution of the effective action (18) to the partition function can
be obtained by the gap equation if N, —> o0,
z

& NN

(58)

Here Dis defined in (20) where m is replaced by m+X. The right hand side of
(58) can be calculated from (42), (43) where m is replaced by m+3. The first

derivative of X° with respect to x can be computed from the gap equation
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(For simplicity, we assume that m =0)

a5 X, (sinh2pcos 2k, +icosh 2usin 2k, ) N (k) (59)

o X, N(k)

If the average ¥ of o has been calculated from the gap equation, the free

energy density in the large N, limitis
2

InZ=-N,N’ 22 —+IndetD

where IndetD=]],detD(k) up to a constant. The other thermodynamic

quantities can be calculated. For example, the fermion density can be analytically

calculated
2
1251112_ 1 0% 12(”296%“”21)1@ Sfj
N,N? ou 2g° Ou NN rallR At O
1 (’522

1 —
=-"— 8/1 NN (coshﬂZ( b, YS)‘+DXIOX x) (60)

t

+sinh ,uZ( (I M D;-lé,xsi )]

2
where s and two sums over x in (60) are given in (59), (44) and (45), re-
7

spectively. The N (k) for each mode & in (44), (45), (59) is given by (42) with

the replacement of m by m+X (Here for simplicity we assume that m=0)
and X is solved from the gap equation (58).

7.Simulation Results

7.1. Large Volume Limit

Let us consider the large volume limit for the non-interacting 2 + 1d Gross-Neveu
model. The partition function Z = .[d;?d;(e”w * =det D, where the stagger fer-
mion matrix D is given by (20). The ratio of the non-dimensional chiral con-

2 /= . . ~ .
densate a (!//l//) and non-dimensional mass m = am is

o) () _(E2020)_ Ton | 8 s

am(NN?)  am(N,N?) NN FN (k)

- - (61)
am am
where in the last equality we used Equation (43) where N(k), depending on m
and  , is given by (61). Note that there are N,N_ /8 modes k in (61). The
ratio of the non-dimensional fermion density a’p and (a[z)3
ap 1 (1//3 olnZ 1 dlnZ
(ai)) A ﬂL2J Op  NPLE ou

_ 1 cosh u 5y b, sin 2k, —a, (cos 2k, +1)
NpLE | 2 % N(k)

| sinh (-8) 3 a, sin 2k, + b, (cos 2k, —1)
2 3 N(k)

(62)
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where in the last equality we used (44) and (45).
We consider the case L=/, a=a, andthus N, =N, =N.Wefix L and

a’ (y 3
mL and then calculate <VZW> and 472 - in the large N limit for fixed
am (a ,[l)
a’ (y 3
lattice size a . In fact M and a_p3 does not depend on the lattice size

an " (a)

. m ) )
a since the non-dimensional mass m =am = 7 and non-dimensional chem-

. gL
ical potential ,u:a,uz% does not depends on lattice size a. Figure 1

@ (wy)
am

shows the dependence of on N with fixed jiL,mL=0,1. The linear

27—
Ll/iy/) is close to
am

1.008 for all four cases, this is because m=1/N and ux=1/N both vanish for

fitting with respect to 1/N shows that the large N limit of

ap
(ait)
AL =1 and mL=0,1. The large N limit is close to 1.9271 for m=0 and

1.9234 for m =0.1/N, respectively.

large N limit. Figure 2 shows the dependence of on N, where

7.2. Phase Diagram

The phase diagram of the 2 + 1d Gross-Neveu model in the large N, limit is
well known [16] [17] [18]. In this limit the phase diagram of (g’z,y,T) is
based on the calculation of X. Basically for 7=0 and u=0, there is a critical

coupling g.* such that the chiral symmetry is broken X >0 if the coupling is

1'02 1 ] ] ] ] T
S |
0.98 _\o ...... N 1
5 0.96 | -
gxg_ U 4
| 0.94 | -
1, _ 1 J
0.92 b — L p— 4
m=,b=
0.9 Fbm=0p=21 X
m=0,u :1\6 A
0'88 1 L 1 1 1 1
0.02 0.04 0.06 0.08 0.1 0.12

-
Figure 1. The dependence of M on N, N=47_8,16,32,64,128,256,512 . (1)

aiin
m=1/N,u=1/N with fitting —0.9563/N+1.009, (2) m=1/N,u=0 with fitting
_0.605/N+1.008 , (3) m=0u=1/N with fitting —0.7904/N+1.008 , (4)
m=0,1=0 with fitting —0.3224/N +1.007 .
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2.1
2.08 |
2.06 |
2.04 }
o 2.02 F

ao

1.98 |
1.96 |
1.94

1.92 > 1 L 1 1 1
0 0.02 0.04 0.06 008 0.1 0.12

1/N

3

ap
(ait)’
m=0,u=1/N with fitting 14.4370/N>—0.4345/N +1.9271 , (2) m=0.1/N,u=0
with fitting 14.4288/N? —0.4343/N +1.9234..

Figure 2. The dependence of on N , N=8,16,32,64,128,256 . (1)

strong enough g~ < g.”. This critical coupling depends on the regularization
of the continuum model. For the lattice regularization in this paper, g.”> ~a™
where a is the lattice size. For fixed coupling g~ < g.”> which is not far away
from the critical coupling (Otherwise, the continuum limit @ — 0 cannot be
taken), denote X, be the value of ¥ at this coupling g~ with vanishing
temperature 7'and chemical potential , . The gap Equation (8), which is solved
exactly in the chiral limit in Ref. [18], shows that there exists a critical temperature

0

T = ? 5 such that the chiral symmetry is broken if 7" <7, at this coupling
n

g’ and H= O. Moreover, there is another critical chemical potential x =%,
such that this symmetry is broken only if gz <, at this coupling g~ and
T =0. The mean field results predict that the first order transition only exists at
T=0 and u =y, for thiscoupling g~.

For the 2 + 1d Gross-Neveu model, we first study the dependence of X on
the coupling g and temperature 7 =1/N, with vanishing chemical potential
1 =0. Figure 3 is the phase diagram of (N,,l/g2) for m=0 and N_=36.
We always choose N_ =36 to ensure the thermodynamic limit is achieved: the
simulation results change very small for larger N_. The marks + separate the
symmetry phase £=0 (above marks) and the chiral symmetry broken phase
¥ >0 (below marks). For fixed temperature 7 there is a critical coupling g.°
such that T decreases to zero if 1/g” is increasing to 1/g” . Figure 3 shows
that 1/ g’ isaincreasing function of N, =1/T and it will close to 1 at very low
temperature. On the other hand, if g is fixed, there is a critical temperature
T.=T,(g) suchthat ¥ isincreasing from zero if T'is decreasing from 7.

Figure 4 shows the dependence of ¥ on N, for the different coupling
1/g* . For small 1/g*,eg., 1/g>=0.65, T changes small with the temperature.
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1.05 T T T T T T

09+ + .

0.85 - -

1 1 1 1 1 1
5 10 15 20 25 30 35 40
N;

Figure 3. Phase diagram of (N,,l/gz) for u=0, m=0, N_=36.Below the marks +
is the broken phase ¥>0.

0.6 T T T T T T
| + + + + + +
05 _
04 « ¥ % % * ¥ *
¥
W03 L . O O 0 o O i
il
0.2 -
. o . . *
01 + b 1
A A )
O é 4 4 A i I\
6 8 10 12 14 16 18 20
Nt

Figure 4. = versus N,, u=0, m=0, N =36.
l/g2 =0.65,0.70,0.75,0.80,0.83,0.85,0.90,0.95,1.00 from top to bottom.

For these range of parameters, it is in the deep chiral symmetry broken phase
and we cannot obtain the chiral symmetry phase =0 even at very high tem-

perature. For a slightly larger 1/g?, for example, 1/g> =0.90 (black dots in

1 1
Figure 4), we can find a transition point 7, which is between g and B in

lattice unit. The symmetry phase and broken phase are realized for 7>7, (g)
and T <T,(g), respectively.

Figure 5 shows the dependence of X on 1/ g’ at different temperature.
drops continuously to 0 if 1/g? is increasing to l/ g’ (T ) from below, which
show that the transition at the critical coupling constant g (7') is second or-
der. At very low temperature 7 =1/N, =1/36, g (T) is close to 1, which is
consistent with those obtained in [19]. This is because in the limit of

N,,N, — o, the gap equationat £ =0 is reduced to
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1 /2 1
— >— df————=1
g2 N2 N(k) ’ J.O (coskﬂ )2
27=0,1,2
The critical temperature 7, = ?—0 at the coupling g~ and =0 canbe
n

verified numerically. Here we choose N =36 and g~ =0.95 which is not
too far away from the critical coupling g.> ~1. We also choose N, =36 such
that it is very close to zero temperature, the value of X at the zero temperature and
vanishing chemical potential is X, = 0.0944 . To calculate the critical temperature at
this coupling, we calculate ¥ at N, =8,---,36 and found that ¥ is zero if N,

is between 14 and 16. Thus the critial temperature is between 1/16 =0.0625 and
T, 0.0944

2In2  2In2

Now let us study the effect of chemical potential on the chiral condensate .

1/14=0.0667 which is very closeto 7, = =0.0680 .

Figure 6 shows the dependence of X on the chemical potential at the different

0.6 T T T T T
0.5 _
04 ¥ .

W 0.3 F

*
i

0.2

N=8  +
0.1 N 20
Nt =36 x
O |
0.6 0.7

t

Figure 5. = versus 1/g” for different N,. u=0, m=0, N _=36.

0.5 T T T T T
i n ]
0.45 | . % y
04 - %% ]
0.35 F g -
R
03 ) J
+
W 0.25 F LR -
02 F % -
015 F N=6 - b :
N=8
0.1 =10« + T
J\l =12 o ]
0.05 Nt 16
0 1 1 1 Lo et
0 0.1 0.2 0.3 0.4 0.5 0.6
u

Figure 6. = versus 4, m=0, g=1.19525 (1/g*=0.70), N, =36.
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temperature 7 =1/N,. X drops sharply near u, ~0.45 in the limit of zero
temperature N, =16, ie, T =1/16, which suggest a first order transition at
the zero temperature. This first order transition at the zero temperature is veri-
fied by the analytical calculation, g =X, where X, is the  with x=0
[18]. For the temperature 7 =1/16 , £,~0.47 is slightly larger than
u, = 0.45 . If the temperature is raised, e.g., N, =6, it is more difficult to find a
critical chemical potential such that the chiral symmetry is restored. This is not
caused by the smallness of N_=36, since the our results is always obtained for
N, =36, which is very close to the thermodynamics limit, e, the result
changes very small if N_ is larger than 36. We also note that the transition at
finite temperature is the second order, as explained in [18]. Figure 7 shows the
dependence of X on u for a larger l/g2 =0.80. Compared with Figure 6,
¥ at #=0 and the critical chemical potential in Figure 7 become smaller, and
thus the figures in Figure 7 is obtained by moving those figures of Figure 6 in
the left-down direction. For the same temperature, for example, N, =16, it is
more difficult to find the critical chemical potential in Figure 7 than those in
Figure 6. Both Figure 6 and Figure 7 show that the critical chemical potential
H: s decreased if the temperature is increased. At zero temperature, the mean
field exact result show the critical chemical potential g, is just the value of X
at the vanishing chemical potential. This is exactly recovered in Figure 7 where
u, =032 for g7 =0.80 with N, =16.

Figure 8 shows the dependence of ¥ and fermion density on the chemical
potential at 1/g*> =0.7. At low temperature N, =16, ¥ drops rapidly near
the critical chemical potential . ~0.45, and the fermion density increase very
fast, which suggest ¥ and fermion density are not continuous at g, at zero
temperature and thus they can be regarded as the order parameters.

For the 3 + 1d Gross-Neveu model, we also calculate the dependence of X
on the coupling and chemical potential at different temperature. Figure 9 shows

the value of £ depending on the coupling for the vanishing chemical potential.

0.35 T T T
¢
03fF %%QQQDD i
* O
X
025 - | x U A
+ N ¥ O
02 - » 4
A N o
0.15 | + A
X
01 F Nt=6 + + —
N{=8
N=10 %
005 N=12 - -
N{=16
0 L Ll
0 0.1 0.2 0.3 0.4 0.5
u

Figure 7. = versus 4, m=0, g=1.1180 (1/g*=0.80), N ,=36.
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Figure 8. ¥ and fermion densityvs ux, m=0, g=1.19525 (1/g2:0.70 ), N _=36.
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07f ® -
+
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Figure 9. = versus 1/g” for different N,. u=0, m=0, N _=36.

Compared to Figure 5 for the 2 + 1d model, the critical coupling becomes
smaller. Moreover, the dependence of £ on the temperature is less sensitive.
Figure 10 shows the dependence of X on the chemical potential at the coupl-
ing 1/g*> =0.58 for the 2 + 1d and 3 + 1d Gross-Neveu model, the critical
chemical potential is larger for the 2 + 1d model than those for the 3 + 1d

model.

8. Conclusions

The staggered fermion for the Gross-Neveu model at finite density and temper-
ature is revisited. In the large N, limit, this modelin 1+ 1d,2 + 1d and 3 + 1d
dimension can be easily solved in momentum space. Moreover, an explicit for-
mula for the inverse matrix for the 1 + 1d, 2 + 1d and 3 + 1d staggered fermion
matrix is found, which can be implemented by parallelization. This formula can

also be generalized to the other space dimensions. For the odd space dimension,
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Figure 10. X versus u, m=0,(l/g2:0,58), N, =36. Left (3 + 1d), Right (2 + 1d).

the orthogonal transformation was found [33]. The key point to find the explicit
formula for the inverse matrix is to use the properties of I', and B, as
shown in Section 4. These properties for the even number of space dimension
are simpler, as shown in the supplement material.

The dependence of chiral condensate and fermion density on the coupling,
temperature and chemical potential are obtained by solving the gap equation.
Our results for the 2 + 1d case reproduce the analytical results. We also compare
the chiral condensate for the 2 + 1d and 3 + 1d case in the same range of para-
meters, showing that the reason for symmetry breaking and restoration can be
explained by the suitable choice of the coupling, temperature and chemical po-

tential.
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Appendix A. Proof of Propertiesof I';, and B,

2
The notations for {Ai}i=o in (27) is a little awkward. I replace 4,, 4, and 4,
in 27)by 4,, A4, and A4,, respectively. Thus

Coafofaf. B,=(-a)" (-ou)" ()" =(-)"HPT,  (AD
The three Pauli matrices

(o )aﬂ = (_l)ﬁ Eap>

()" = (=)

() =16y @12

satisfies the completeness relation

*pBb
CpaOpy + Gzaaﬂﬁ =20,40,, (A2)
n=1,23
We first have
* aa % pb
> i = Y (oo ) (o740l
A,4,=0 Ay, 4y

ay ya wa \B7' i \V'b
=X (o) (o) (o) (o)
A4
ar ( aa \P ra .
=2(et) (o) Xes ) @3y
4

4
_ ay _*py' ya __*y'b
= (5ay§ﬂy, +0/70, )(5ya5y,b +0lo, )

«pb aa__*pb b

_ aa aa * %
=6,,0, +0y 05" + 00" +(0,0,) (0'10'2)
_ aa __*pBb aa __*fb aa __*pb
—5aa5ﬂb+0'2 o, +o 0" +0y 0,

=26,,3,, by (A2) (A3)

which is also valid if (1,2) isreplaced by (1,3) or (2,3). Secondly,

b
aa*fb _ 4 Ay 4\ hy wdy wdy P
ZFA I = Z (O-l 0, 03 0, 0, 04

A A, Ay A

! b
— a4y \ ¥ 4\ wA xdy At )
= D (01 o, ) o; o,"o, o,

A, 4y, 43
= 25aﬂ5n' (é‘mé‘t’b + (_1){”1) 5ta5t’b)
= 45aﬁ5ab

Inserting B, =(~1)""*"* T, in the above equality, we have

> BB =456,

b
aa ppb _ Ayt dy (4 Ay 4 \OC( xd xdy wdy \P
DB =% (-1) ooy o, o0, 0;

y]

A, Ay A

_ Z (_1)A1+Az (_1)A3 (O_lAl O.zAz )m (0.3143 )m (O_l*Al U;‘Az )ﬂt’ (O_;Az )z,b

A1y A
— at __xpt' at __*pt' at __*pt' a+b
= <5m5ﬁf —0,0, —0, 0, +0;0; )(é‘tagt'h _(_1) 5m5z'b)

* * * b
= (6auéﬂb -co” —o™ o +0'3"“O'3ﬂb)(1—(—1)"+ ): 0
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where in the last equality we used
0,05 — oé”a;ﬂb — af”afﬁb + og’”a;ﬁb
a+b a+b
= 5a05ﬂb - gaagﬂb - (_1) gaagﬂb + (_1) §aa5ﬁb

- (1 + (—1)“*b)(5aa5ﬁb ~6,65) =0, ifa%b

To prove that

> 14 (038) " =2(0))" 6,0 (A4)

A,4,=1

we want to prove that

xbaaa - _ *ba « \94'
> o (0B)) =200 (0),)" b,
A,4,=1

“ u

Le.,

> (Co,)" (038,)" = 25,06,

A,4,=1

This is obvious since the left hand side is

ab
4y Au Apa 43 1Attt
> (0'] oo o) (-1)

p+l

A,AHZI
wdy o Ry Ay ey a'd Ayt Ay A+ Ay + Ay
><(o-l oot o (-1) (-1)
b a'a

4 4 Ay Ay 4\ * A wA, %Ay * A
= — H ... H AL 3 ... H HEL L 3
- z ( 1) (O-l 0,51 04 O, ) o O, Oui (o

A,A4,=1

25,5, by (A3)if u=3 (AS)

Similarly, (A4) is also valid if 4, =1 and -2 are replaced by 4, =0 and +2,
respectively. This is because the sign (—I)A" =-1 in (A5) is replaced by
(—I)A“ =+1. Obviously,

Uyp=n, (A)G”FA, u=1273
For example, u=2,

[ =000l =oftal ol =n,(A)o,T,, m,(4)=(-1)"

Finally, we have
1
—Tr(I'T, +BiB,)=5,,
4 ( al 4 A A) A4

since the left hand side is

) )

:%Tr((y;’%z 7 ) (vt

(_1)(A1+A{)(Az + A3 )+( A+ 45) 4 Tr(}/lAlJ'Af }/ZAZ+A§ }/3143+A3’ ) =5,

!
4

where we used
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vl =(=1Y iy, m#v,i,j=0,1,2

Tr(;/ﬂ):o, Tr(;/ﬂ;/v)zo, HEV, Tr(y172y3)=0

0
Here the we define y, = (%’ ](,u =1,2,3).
-
U

Appendix B: The Derivation of (38)

The derivation of (38) is similar to the calculation of

LS (W) el (- 0).
lzf(x)(;((ﬂf))ﬂ((x—()))
:EA%"(A D)8, (2 407) (4.7 -0))

+0

A-0,4'

—

Z(A’,Y+6)+;((A’,Y)))

S . ,—0 ., S, -, +0 -,
:l Z f(A»Y)(%aol(A',Y)+%5Z(A',Y)]

2A,A',Y
- Z ﬁz(—aa( )Faa daa( )Bja)

o, -~ =0, - . ., . s
x{ A-0,4 : A+0,4 \/EZ(FTGGOMM (Y)-i—B;f”aOd“ (Y))
" A- 2 A+0A \/_2( aa5uaa (Y)+B;7'a’5da'a’(y))}

—22(—““()/)( ;‘)“ aod““'(y)ﬂ?““(Y)(—af)”' oo (Y)
7 (¥) (o) o (¥)+d“ (Y) (=0, )" 6d* (¥))
—82|:q Y)(l7/3®0_1)a ( ) q
(

Y v (v (%@112)5"7(”}
+q (k) (7, ®1,)2" [cos (2k,) +1:|q k]

(
)
=837 (k) (
(

17/3®0'1)12 sin(2k, ) q (k)
k

where
5q(¥)=q(Y+0)+29()+q(¥-0)
In the fourth equality, we used the formula like
PN E R CRVEL I

z FjaBjZ;A)a'_ z FaaB a'a

Pt A4+0

— Z Faa (_ )*a'a' . Z Fja (_O-lBA )*a'a'
A, dg=1 A, 4y=0

=455,

aa

DOI: 10.4236/jmp.2021.1213105 1819 Journal of Modern Physics


https://doi.org/10.4236/jmp.2021.1213105

D. M. Li

Appendix C. The Derivation of (44)-(46)
First,
Z(D):a,xsi + D:o,xsf)
Ie’?Dlzx;?(x)[;((x+(A))+;((x—(A))J
- J‘e—;?Dl

[ SO0 165 G (k) A, (K)g(k)
o f e*zkm)sZ(k)q(k) by 38) 39)

Je
= _162 fe“?(")”("’q(”

=163 | (3D(K)) " 4. (k) |
= 2§kltr[D(k)" 4, (k)]

_ Z%H{m_uz (r,®L)a, - ¥ (n ®0:)bc}

k =0,1,2 c=1,2,3

by (41)
x[(z;@ ®O'1 12 sm(2k0)+(7/0 ®]Iz)2'1 [cos(2k0)+lﬂ}

tr{(I, ®1L,)(5,2" sin 2k, —a, 2" (cos 2k, +1))|

FN ( )
5y b, sin 2k, —a, (cos 2k, +1)
T N(k)
Similarly,

:;N?k)tr{[m—” (r,®L)a,- Y (n®0 b}

=0,1,2 c=1,2,3

{(]14 ®T, )(—aOiZ’1 sin 2k, —b,i2™" (cos 2k, —1))}

"Ly k)
a, sin 2k, + b, (cos 2k, —1)

R T

The inverse matrix of Din (20) can be calculated as follows

e 70 2(+)

D! =-

o j o 71
Ly [ O e (B [T () B ()
, -78Dgq Yo (Y’ ’ -g8Dg Vo (¥
=_2a,£§,a' Fjarfﬁa J. qj'e(qBD)qq] ( )+r‘iaB;f‘a J. qje(qu)qqz ( )
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e—LjSanzaa (Y)qla'a' (Y!)

J' e"18Da

e—ESanzaa (Y)q;z'a' (Y!)

aa *a'u'J.
+B}"B, Ie_q,wq

aa *a'a'J.
+B'T,

1 ' '

_ aay*a'a -1 aa pra'a -1
- Z |:FA FA' D(Y’a'a'l;Yaal) +FA BA' D(Y’a'a'Z;Yaal)
a,a,a'a

aay*a'a -1 aa p*a'a -1
+BA 1—‘A' D(Yh'a'l;Yaa2)+BA BA' D(Y’a’a'Z;YaaZ):|
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