
Journal of Software Engineering and Applications, 2021, 14, 591-606
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.1411035 Nov. 19, 2021 591 Journal of Software Engineering and Applications

Comparison of Hazard-Rates Considering Fault
Severity Levels and Imperfect Debugging for
OSS

Taku Yanagisawa1, Yoshinobu Tamura2, Adarsh Anand3, Shigeru Yamada4

1Tokyo City University, Tokyo, Japan
2Yamaguchi University, Yamaguchi, Japan
3University of Delhi, Delhi, India
4Tottori University, Tottori, Japan

Abstract
Software reliability model is the tool to measure the software reliability quan-
titatively. Hazard-Rate model is one of the most popular ones. The purpose of
our research is to propose the hazard-rate model considering fault level for
Open Source Software (OSS). Moreover, we aim to adapt our proposed model
to the hazard-rate considering the imperfect debugging environment. We
have analyzed the trend of fault severity level by using fault data in Bug
Tracking System (BTS) and proposed our model based on the result of analy-
sis. Also, we have shown the numerical example for evaluating the perfor-
mance of our proposed model. Furthermore, we have extended our proposed
model to the hazard-rate considering the imperfect debugging environment
and showed numerical example for evaluating the possibility of application.
As the result, we found out that performance of our proposed model is better
than typical hazard-rate models. Also, we verified the possibility of applica-
tion of proposed model to hazard-rate model considering imperfect debug-
ging.

Keywords
Open Source Software, Bug Tracking System, Software Reliability, Hazard-Rate
Model, Imperfect Debugging

1. Introduction

Open source software (OSS) is freely available for use, reuse, fixing, and
re-distribution by users and developers. OSS is used under various situations

How to cite this paper: Yanagisawa, T.,
Tamura, Y., Anand, A. and Yamada, S.
(2021) Comparison of Hazard-Rates Con-
sidering Fault Severity Levels and Imperfect
Debugging for OSS. Journal of Software
Engineering and Applications, 14, 591-606.
https://doi.org/10.4236/jsea.2021.1411035

Received: October 14, 2021
Accepted: November 16, 2021
Published: November 19, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.1411035
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.1411035
http://creativecommons.org/licenses/by/4.0/

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 592 Journal of Software Engineering and Applications

because OSS is useful for many users to make cost reduction, standardization,
and quick delivery. However, the quality of OSS is not good because of the
unique development style. The quality of OSS is very important, which depends
on the demand of users in the future. The faults latent in OSS are fixed by using
database of bug tracking system (BTS). There is various information in terms of
the faults recorded in BTS and the model to analyze big fault data in BTS based
on deep learning has been proposed as a research [1]. Software reliability is one
of the software characteristics factors in order to evaluate the quality of software.
A software reliability model is the tool to measure the software reliability quan-
titatively and many various software reliability models have been proposed by
many researchers [2]-[8]. Also, the software effort model based on the software
reliability model has been proposed so far [9]. In particular, a hazard-rate model
is one of the most popular ones [10] [11].

A lot of hazard-rate models have been proposed so far. However, the ha-
zard-rate model based on fault levels has not been proposed as of today. The
purpose of our research is to propose the hazard-rate model considering fault
level for OSS. In this paper, we assume that there are different trends on each
fault severity level in terms of mean time between software failures (MTBF).
Based on the assumption, we analyze the fault big data in BTS and find the dif-
ference of trend on each fault severity level in terms of MTBF and we propose a
hazard-rate model considering fault severity level for OSS from the result of
analysis.

Moreover, we aim to adapt our proposed model to the hazard-rate consider-
ing the imperfect debugging environment. Most of the software reliability mod-
els are assumed that all detected faults in the software are fixed and removed
perfectly and new faults are not introduced at the time when the fault is fixed
and removed. However, that assumption is not practical one in actual situation.
In other words, we assume that the testing phase and operating phase in soft-
ware development are in imperfect debugging environment. There are some re-
searches about debugging such as effectiveness of statistical debugging [12]. Al-
so, the software reliability models considering the imperfect debugging envi-
ronment have been proposed in the past. In this paper, we adapt our proposed
model to the hazard-rate model considering the imperfect debugging environ-
ment. Then, we show several numerical examples based on the proposed model.

2. Bug Tracking System

The faults in OSS are fixed by using BTS. There are many information related to
recorded faults in OSS, e.g., the recorded time of fault, the severity of fault and so
on. As the severity of fault in BTS, we show the software fault severity levels [13] in
Table 1. 7 kinds of levels in Table 1 are the fault levels of the severity in BTS.

3. Software Reliability Model

A software reliability model is the tool to measure the software reliability quan-

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 593 Journal of Software Engineering and Applications

titatively and most of the models are proposed by the probability and statistical
theory. The software reliability model is categorized according to analytical
model and empirical model. Moreover, the empirical model is categorized into
dynamic model and static model. Especially, the dynamic model is presenting
the fault discovery event and software failure occurrence event in test phase or
operation phase as a process of software reliability growth, which is described as
a stochastic model i.e., so-called software reliability growth model (SRGM). In
this paper, we use the hazard-rate model which is one of the most popular ones
in SRGM.

4. Hazard-Rate Model

In this section, we discuss the hazard-rate model. Firstly, we can express the
probability related to the number of software faults and the time of occurrence
of software failures in testing phase or operating phase as shown in Figure 1.

Table 1. The list of fault severity levels.

Software Fault
Severity Level

Contents

Blocker The fault is the most serious in all of fault levels.

Critical This fault is more serious fault comparably but is less serious than blocker.

Major This level shows that most of certain functions in software are malfunction.

Normal This fault level is general one.

Minor The fault happens in minor functions of software.

Trivial The fault is minor one that has less effectiveness to the function in software.

Enhancement This level is not fault itself generally but is requested to be revised.

Figure 1. The variables of the software fault detection event and the software fault occurrence one.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 594 Journal of Software Engineering and Applications

The distribution function of ()1,2,kX k = � representing the time-interval
between successive detected faults of ()th1k − and thk is defined as

() { } ()Pr 0 ,k kF x X x x≡ ≤ ≥ (1)

where Pr{A} represents the occurrence probability of event A. Therefore, the
following derived function means the probability density function of kX :

() ()d
.

d
k

k

F x
f x

x
≡ (2)

Also, the software reliability can be defined as the probability that a software
failure does not occur during the time-interval (]0, x . The software reliability is
given by

() { } ()Pr 1 .k k kR x X x F x≡ > = − (3)

From Equations (1)-(3), the hazard-rate is given by the following equation:

() ()
()

()
()

,
1

k k
k

k k

f x f x
z x

F x R x
≡ =

−
 (4)

where the hazard-rate means the software failure rate when the software failure
does not occur during the time-interval (]0, x . A hazard-rate model is an
SRGM representing the software failure-occurrence phenomenon by the ha-
zard-rate.

Moreover, we discuss three hazard-rate model as follows:

4.1. Jelinski-Moranda Model

Jelinski-Moranda (J-M) model is one of the hazard-rate models. J-M model has
the following assumptions:

1) The software failure rate during a failure interval is constant and is propor-
tional to the number of faults remaining in the software.

2) The number of remaining faults in the software decreases by one each time
a software failure occurs.

3) Any fault that remains in the software has the same probability of causing a
software failure at any time.

From the above assumptions, the software hazard-rate in Equations (4) at kth
can be derived as

() () ()1 0, 0; 1,2, , ,kz x N k N k Nφ φ= − − > > =   � (5)

where each parameter is defined as follows:
N: the number of latent software faults before the testing,
φ : the hazard-rate per inherent fault.

4.2. Moranda Model

Moranda model has the following assumptions:
1. The software failure rate per software fault is constant and is decreasing

geometrically as a fault is discovered.
From the above assumptions, the software hazard-rate in Equations (4) at kth

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 595 Journal of Software Engineering and Applications

can be derived as

() ()1 0,0 1; 1,2, ,k
kz x D c D c k−= ⋅ > < < = � (6)

where each parameter is defined as follows:
D: the initial hazard-rate for the software failure,
c: the decrease coefficient for hazard-rate.

4.3. Xie Model

Xie model has the following assumptions:
1. The software failure rate per software fault is constant and is decreasing

exponentially with the number of faults remaining in the software.
From the above assumptions, the software hazard-rate in Equations (4) at kth

can be derived as

() () ()0 01 0, 0, 1; 1, 2, , ,kz x N k N k Nαλ λ α= − + > > ≥ = � (7)

where each parameter is defined as follows:
N: the number of latent software faults before the testing,

0λ : the hazard-rate per inherent fault,
α : the constant parameter.

4.4. MTBF

Three hazard-rate models above have the following assumption:
• Any fault that remains in the software had the same probability of causing s

software failure at any time.
From the above assumption, MTBF by three hazard-rate models can be de-

rived as

[] () () ()0 0

1E d d .k k k
k

X xf x x R x x
z x

∞ ∞
= = ≡∫ ∫ (8)

5. Observation and Analysis of Trend on Each Fault Level

We analyze the fault big data from the perspective of MTBF in Apache HTTP
Server (The Apache Software Foundation) known as the OSS developed under
Apache Software Foundation [14]. Especially, we use the data in terms of the
fault severity. In this paper, we use 7 kinds of fault levels in severity as shown in
the following items:
• Blocker
• Critical
• Major
• Normal
• Minor
• Trivial
• Enhancement

Figure 2 shows the estimation results of MTBF in each fault severity level.
Table 2 shows the estimated variance in each fault severity level. In terms of

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 596 Journal of Software Engineering and Applications

Figure 2. The mean time between software failures in each severity level of faults.

Table 2. The estimated variance in each fault severity level.

Software Fault Severity Level Estimate of Variance

Blocker 17.76229

Critical 4.12128

Major 1.60268

Normal 0.05783

Minor 5.91591

Trivial 25.22615

Enhancement 1.17400

variance, we find that the value of normal fault is the smallest in all of fault se-
verity levels. In other words, the normal faults occur at a constant frequency,
while other fault severity levels occur less as time goes. From the results of anal-
ysis, we assume that the fault data is divided into normal fault and others.

6. Application of Hazard-Rate Model to the Actual Data

In this section, we apply typical hazard-rate models to 2 kinds of data sets which
are normal fault and other fault in order to find out which hazard-rate models fit
to normal fault and other fault in terms of MTBF. We apply the following 3
models to actual fault data.
• Jelinksi Moranda model (J-M)
• Moranda model
• Xie model

We use AIC (Akaike’s Information based on the maximum likelihood estima-
tion of model parameters Criterion) to measure the goodness-of-fit of these
models to actual data. The result of AIC is shown in Table 3. Figures 3-8 show

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 597 Journal of Software Engineering and Applications

the estimated MTBF of each model for both normal fault and other fault data,
respectively. From Table 3, we find that the value of AIC in Moranda model is
the smallest in both normal fault and others fault.

Table 3. The values of AIC of each model in normal and others fault.

Models
AIC

Normal Others

J-M 13,362.3 13,419.5

Moranda 13,336.5 13,351.5

Xie 13,357.7 13,407.3

Figure 3. The estimated MTBF for normal fault by using J-M model.

Figure 4. The estimated MTBF for normal fault by using Moranda model.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 598 Journal of Software Engineering and Applications

Figure 5. The estimated MTBF for normal fault by using Xie model.

Figure 6. The estimated MTBF for others fault by using J-M model.

Figure 7. The estimated MTBF for others fault by using Moranda model.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 599 Journal of Software Engineering and Applications

Figure 8. The estimated MTBF for others fault by using Xie model.

7. Proposed Model

From the results of Section 2, we assume that fault data is divided into the fol-
lowing types:

A1. The normal fault
A2. The others fault
In the assumption above, A1 is the fault detected as a normal one, A2 is the

fault detected as other one. Also, OSS manager cannot differentiate between as-
sumptions A1 and A2 in terms of the software faults. The time interval between
successive faults of (k − 1)th and kth is represented as the random variable

()1,2,kX k = � , Therefore, the integrated hazard-rate function ()kz x for kX
is defined as follows by using Moranda model:

() () () () ()1 21 1,2, ;0 1 ,k k kz x p z x p z x k p= ⋅ + − ⋅ = ≤ ≤� (9)

() ()1 1
1 1 1 11, 2, ; 0,0 1 ,k

kz x D c k D c−= ⋅ = ≥ < <� (10)

() ()2 1
2 2 2 21, 2, ; 0,0 1 ,k

kz x D c k D c−= ⋅ = ≥ < <� (11)

where each parameter is defined as follows:
()1

kz x : the hazard-rate for assumption A1,

1D : the initial hazard-rate for the first software failure of A1,

1c : the decrease coefficient for hazard-rate for assumption A1,
()2

kz x : the hazard-rate for assumption A2,

2D : the initial hazard-rate for the first software failure of A2,

2c : the decrease coefficient for hazard-rate for assumption A2,
p: the weight parameter for ()1

kz x .
Equation (10) represents the hazard-rate for a software failure-occurrence

phenomenon for the normal fault, On the other hand, Equation (11) represents
the hazard-rate for a software failure-occurrence for the other one. Also, we
show the diagram to describe the algorithm of proposed method in Figure 9.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 600 Journal of Software Engineering and Applications

Figure 9. The description of the algorithm of proposed method.

8. Numerical Example

In order to evaluate the performance of the proposed model, we estimate the
MTBF of fault big data in Apache HTTP server. The parameters of proposed in-
tegrated model have been estimated by MLE (Maximum Likelihood Estimation).
The estimated value of parameters is shown as follows:

� � � �
1 2 1 22.58319, 1.26026, 0.99963, 0.99999.w w c c= = = =

where 1w pD= and ()2 1w p D= − are assumed for the simplification tech-
nique. We compare the proposed integrated model with AIC of the typical ha-
zard-rate model. Figures 10-13 show the estimated MTBF for each model.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 601 Journal of Software Engineering and Applications

Figure 10. The estimated MTBF by using J-M model.

Figure 11. The estimated MTBF by using Moranda model.

Figure 12. The estimated MTBF by using Xie model.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 602 Journal of Software Engineering and Applications

Figure 13. The estimated MTBF by using proposed integrated model.

Table 4. The values of AIC for each model.

Model AIC

J-M model 13,392.8

Moranda model 13,350.1

Xie model 13,385.0

Proposed integrated model 13,326.5

From Figures 10-13, the typical hazard-rate models estimate MTBF higher than
actual one and we found out these models estimate MTBF optimistically. On the
other hand, the proposed integrated model estimates MTBF realistically. Table 4
shows the value of AIC for each model. From Table 4, the proposed integrated
model fits better than the other model in terms of AIC. In other words, we can
predict the MTBF of OSS more precisely with the proposed integrated model.

9. Imperfect Debugging Model

Most of the software reliability models are assumed that all faults found in soft-
ware are fixed and removed perfectly and new faults is not introduced at the
time when the fault is fixed and removed. However, that assumption is not prac-
tical one in actual situation. In other words, it insists the testing phase and oper-
ation phase in software development is in imperfect debugging environment.
The software reliability models considering the imperfect debugging have been
proposed [15]. In this paper, we adapt our proposed model to the hazard-rate
model considering the imperfect debugging and verify the possibility of applica-
tion of proposed model to it.

We assume that fault data is divided into the following types:
A3. The latent fault in software before the release
A4. The fault caused by imperfect debugging

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 603 Journal of Software Engineering and Applications

In the assumption above, A3 is the latent fault before the release of software
and A4 is the fault caused at the time when the latent fault is fixed and removed.
Also, OSS manager cannot differentiate between assumptions A3 and A4 in
terms of the software faults. The time interval between successive faults of (k −
1)th and kth is represented as the random variables ()1, 2,kX k = � , Therefore,
the hazard-rate function ()kz x for kX is defined as follows:

() () () () ()3 41 1,2, ;0 1 ,k k kz x p z x p z x k p= ⋅ + − ⋅ = ≤ ≤� (12)

() ()
()

3 1 1 1 1
1 1 2 2

1
1 1 2 2

1

1,2, ; 0,0 1, 0,0 1,0 1 ,

k k
kz x p D c p D c

k D c D c p

− −= ⋅ ⋅ + − ⋅ ⋅

= ≥ < < ≥ < < ≤ ≤�
 (13)

() ()4 0 ,kz x λ λ= > (14)

where each parameter is defined as follows:
()3

kz x : the hazard-rate for assumption A3,

1D : the initial hazard-rate for the first software failure of the normal fault,

1c : the decrease coefficient for hazard-rate for the normal fault,

2D : the initial hazard-rate for the first software failure of the other fault,

2c : the decrease coefficient for hazard-rate for the other fault,
1p : the weight parameter for ()1

kz x ,
()4

kz x : the hazard-rate for assumption A4,
λ : the hazard-rate for the fault caused by imperfect debugging,
p: the weight parameter for ()3

kz x .
Equation (13) represents the integrated hazard-rate for a software fail-

ure-occurrence phenomenon for the latent fault in software before the release,
which is our proposed model. On the other hand, Equation (14) represents the
hazard-rate for a software failure-occurrence for the fault caused by imperfect
debugging. We assume that the fault caused by imperfect debugging is caused
randomly. For that reason, we adapt exponential distribution to A4.

10. Numerical Example

In order to verify the possibility of application of proposed model to ha-
zard-model considering imperfect debugging, we estimate the MTBF of fault big
data in Apache HTTP Server as well. The parameters of proposed model consi-
dering the imperfect debugging have been estimated by MLE. The estimated
value of parameters is shown as follows:

� � �

� � �

1
3 1

1
4 2

0.96006, 0.24426, 0.99944,

2.77419, 0.99953, 32.77024.

k

k

p w c

w c λ

−

−

= = =

= = =
where 1

3 1w p D= and ()1
4 21w p D= − are assumed for the simplification

technique. We compare the proposed model adapted to imperfect debugging
model with AIC of the proposed model. Figure 14 shows the estimated MTBF
for the proposed model considering the imperfect debugging. Table 5 shows the
value of AIC for each model.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 604 Journal of Software Engineering and Applications

Figure 14. The estimated MTBF by using proposed model considering the imperfect de-
bugging.

Table 5. The values of AIC for each model.

Model AIC

Proposed model considering the imperfect debugging 13,324.8

Proposed integrated model 13,326.5

From Table 5, the proposed model for imperfect debugging fits better than

proposed model in terms of AIC. In other words, it is possible to adapt the pro-
posed model to the hazard-model considering imperfect debugging.

11. Concluding Remarks

In this paper, we have assumed that there are different trends on each fault se-
verity level in terms of MTBF and analyzed the fault big data in BTS. We have
found the difference of trend on each fault severity level in terms of MTBF and
we proposed a hazard rate model considering fault severity level for OSS from
the result of analysis. Proposed integrated model fits better than the typical ha-
zard-rate models in terms of AIC. Moreover, we adapted our integrated pro-
posed model to the hazard-rate model considering imperfect debugging. The
proposed model considering imperfect debugging fits better than proposed in-
tegrated model in terms of AIC.

OSS is used by many organizations because of low cost, standardization and
quick release. However, the quality of OSS is not good because of the unique de-
velopment style. The quality of OSS is necessary to depend on the demand of
users in the future. At the same time, it is very important to propose the software
reliability model for OSS. Especially, software reliability models considering im-
perfect debugging are very practical for the actual situation in software devel-
opment.

https://doi.org/10.4236/jsea.2021.1411035

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 605 Journal of Software Engineering and Applications

In the future, it is necessary to verify the applicability of proposed model be-
cause the data set in Apache HTTP server is the only one by which we evaluate
the goodness-of-fit of proposed model. In this paper, we compared our proposed
models to J-M model, Moranda model and Xie model. However, these models
are very old ones. There are a lot of software reliability models that have ever
proposed so far, therefore, we have to compare our proposed models to other
hazard-rate models to evaluate the performance of our proposed models. Also,
we consider the proposal of software reliability model for OSS from the other
perspective.

Acknowledgments

This work was supported in part by the JSPS KAKENHI Grant No. 20K11799 in
Japan.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Tamura, Y. and Yamada, S. (2016) Comparison of Big Data Analyses for Reliable

Open Source Software. Proceedings of the IEEE International Conference on Indus-
trial Engineering and Engineering Management, Bali, 4-7 December 2016, 1345-1349.
https://doi.org/10.1109/IEEM.2016.7798097

[2] Yamada, S. and Tamura, Y. (2016) OSS Reliability Measurement and Assessment,
Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-31818-9

[3] Tamura, Y. and Yamanda, S. (2010) Software Reliability Analysis with Optimal Re-
lease Problems Based on Hazard Rate Model for an Embedded OSS. 2010 IEEE In-
ternational Conference on Systems, Man and Cybernetics, Istanbul, 10-13 October
2010, 720-726. https://doi.org/10.1109/ICSMC.2010.5641839

[4] Tamura, Y., Nobukawa, Y. and Yamada, S. (2015) A Method of Reliability Assess-
ment Based on Neural Network and Fault Data Clustering for Cloud with Big Data.
Proceedings of the 2nd International Conference on Information Science and Secu-
rity, Seoul, 14-16 December 2015, 1-4.
https://doi.org/10.1109/ICISSEC.2015.7370965

[5] Aljahdali, S.H., Sheta, A. and Rine, D. (2001) Prediction of Software Reliability: A
Comparison between Regression and Neural Network Non-Parametric Models.
Proceedings ACS/IEEE International Conference on Computer Systems and Appli-
cations, Beirut, 25-29 June 2001, 470-473.
https://doi.org/10.1109/AICCSA.2001.934046

[6] Yamada, S. (2014) Software Reliability Modeling: Fundamentals and Applications.
Springer-Verlag, Tokyo/Heidelberg.

[7] Tamura, Y., Matsumoto, M. and Yamada, S. (2016) Software Reliability Model Se-
lection Based on Deep Learning. Proceedings of the International Conference on
Industrial Engineering, Management Science and Application 2016, Jeju Island,
23-26 May 2016, 1-5. https://doi.org/10.1109/ICIMSA.2016.7504034

https://doi.org/10.4236/jsea.2021.1411035
https://doi.org/10.1109/IEEM.2016.7798097
https://doi.org/10.1007/978-3-319-31818-9
https://doi.org/10.1109/ICSMC.2010.5641839
https://doi.org/10.1109/ICISSEC.2015.7370965
https://doi.org/10.1109/AICCSA.2001.934046
https://doi.org/10.1109/ICIMSA.2016.7504034

T. Yanagisawa et al.

DOI: 10.4236/jsea.2021.1411035 606 Journal of Software Engineering and Applications

[8] Tamura, Y. and Yamada, S. (2005) Comparison of Software Reliability Assessment
Methods for Open Source Software. Proceedings of the 11th International Conference
on Parallel and Distributed Systems, Vol. II, Fukuoka, 20-22 July 2005, 488-492.

[9] Tamura, Y., Sone, H., Sugisaki, K. and Yamada, S. (2018) Effort Analysis of OSS
Project Based on Deep Learning Considering UI/UX Design. Proceedings of the
IEEE International Conference on Reliability, Infocom Technology and Optimiza-
tion, Noida, 29-31 August 2018, 1-6. https://doi.org/10.1109/ICRITO.2018.8748408

[10] Schick, G.J. and Wolverton, R.W. (1978) An Analysis of Competing Software Relia-
bility Models. IEEE Transactions on Software Engineering, SE-4, 104-120.
https://doi.org/10.1109/TSE.1978.231481

[11] Jelinski, Z. and Moranda, P.B. (1972) Software Reliability Research. In: Freiberger,
W., Ed., Statistical Computer Performance Evaluation, 465-484, Academic Press,
New York, 465-484. https://doi.org/10.1016/B978-0-12-266950-7.50028-1

[12] Sandoqa, I., Alzghoul, F., Alsawalqah, H., Alzghoul, I., Alnemer, L. and Akour, M,
(2016) Statistical Debugging Effectiveness as a Fault Localization Approach: Com-
parative Study. Journal of Software Engineering and Applications, 9, 412-423.
https://doi.org/10.4236/jsea.2016.98027

[13] MDN Web Docs (2021) BugDetails. https://developer.mozilla.org/

[14] The Apache Software Foundation (2021) The Apache HTTP Server Project.
https://bz.apache.org/bugzilla/

[15] Yamada, S. and Sera, K. (1999) Imperfect Debugging Models with Two Kinds of
Software Hazard Rate and Their Bayesian Formulation. The IEICE Transactions,
J82-A, 1577-1584.

https://doi.org/10.4236/jsea.2021.1411035
https://doi.org/10.1109/ICRITO.2018.8748408
https://doi.org/10.1109/TSE.1978.231481
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
https://doi.org/10.4236/jsea.2016.98027
https://developer.mozilla.org/
https://bz.apache.org/bugzilla/

	Comparison of Hazard-Rates Considering Fault Severity Levels and Imperfect Debugging for OSS
	Abstract
	Keywords
	1. Introduction
	2. Bug Tracking System
	3. Software Reliability Model
	4. Hazard-Rate Model
	4.1. Jelinski-Moranda Model
	4.2. Moranda Model
	4.3. Xie Model
	4.4. MTBF

	5. Observation and Analysis of Trend on Each Fault Level
	6. Application of Hazard-Rate Model to the Actual Data
	7. Proposed Model
	8. Numerical Example
	9. Imperfect Debugging Model
	10. Numerical Example
	11. Concluding Remarks
	Acknowledgments
	Conflicts of Interest
	References

