
Journal of Software Engineering and Applications, 2021, 14, 591-606 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2021.1411035  Nov. 19, 2021 591 Journal of Software Engineering and Applications  
 

 
 
 

Comparison of Hazard-Rates Considering Fault 
Severity Levels and Imperfect Debugging for 
OSS 

Taku Yanagisawa1, Yoshinobu Tamura2, Adarsh Anand3, Shigeru Yamada4 

1Tokyo City University, Tokyo, Japan 
2Yamaguchi University, Yamaguchi, Japan 
3University of Delhi, Delhi, India 
4Tottori University, Tottori, Japan 

 
 
 

Abstract 
Software reliability model is the tool to measure the software reliability quan-
titatively. Hazard-Rate model is one of the most popular ones. The purpose of 
our research is to propose the hazard-rate model considering fault level for 
Open Source Software (OSS). Moreover, we aim to adapt our proposed model 
to the hazard-rate considering the imperfect debugging environment. We 
have analyzed the trend of fault severity level by using fault data in Bug 
Tracking System (BTS) and proposed our model based on the result of analy-
sis. Also, we have shown the numerical example for evaluating the perfor-
mance of our proposed model. Furthermore, we have extended our proposed 
model to the hazard-rate considering the imperfect debugging environment 
and showed numerical example for evaluating the possibility of application. 
As the result, we found out that performance of our proposed model is better 
than typical hazard-rate models. Also, we verified the possibility of applica-
tion of proposed model to hazard-rate model considering imperfect debug-
ging. 
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1. Introduction 

Open source software (OSS) is freely available for use, reuse, fixing, and 
re-distribution by users and developers. OSS is used under various situations 
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because OSS is useful for many users to make cost reduction, standardization, 
and quick delivery. However, the quality of OSS is not good because of the 
unique development style. The quality of OSS is very important, which depends 
on the demand of users in the future. The faults latent in OSS are fixed by using 
database of bug tracking system (BTS). There is various information in terms of 
the faults recorded in BTS and the model to analyze big fault data in BTS based 
on deep learning has been proposed as a research [1]. Software reliability is one 
of the software characteristics factors in order to evaluate the quality of software. 
A software reliability model is the tool to measure the software reliability quan-
titatively and many various software reliability models have been proposed by 
many researchers [2]-[8]. Also, the software effort model based on the software 
reliability model has been proposed so far [9]. In particular, a hazard-rate model 
is one of the most popular ones [10] [11]. 

A lot of hazard-rate models have been proposed so far. However, the ha-
zard-rate model based on fault levels has not been proposed as of today. The 
purpose of our research is to propose the hazard-rate model considering fault 
level for OSS. In this paper, we assume that there are different trends on each 
fault severity level in terms of mean time between software failures (MTBF). 
Based on the assumption, we analyze the fault big data in BTS and find the dif-
ference of trend on each fault severity level in terms of MTBF and we propose a 
hazard-rate model considering fault severity level for OSS from the result of 
analysis. 

Moreover, we aim to adapt our proposed model to the hazard-rate consider-
ing the imperfect debugging environment. Most of the software reliability mod-
els are assumed that all detected faults in the software are fixed and removed 
perfectly and new faults are not introduced at the time when the fault is fixed 
and removed. However, that assumption is not practical one in actual situation. 
In other words, we assume that the testing phase and operating phase in soft-
ware development are in imperfect debugging environment. There are some re-
searches about debugging such as effectiveness of statistical debugging [12]. Al-
so, the software reliability models considering the imperfect debugging envi-
ronment have been proposed in the past. In this paper, we adapt our proposed 
model to the hazard-rate model considering the imperfect debugging environ-
ment. Then, we show several numerical examples based on the proposed model. 

2. Bug Tracking System 

The faults in OSS are fixed by using BTS. There are many information related to 
recorded faults in OSS, e.g., the recorded time of fault, the severity of fault and so 
on. As the severity of fault in BTS, we show the software fault severity levels [13] in 
Table 1. 7 kinds of levels in Table 1 are the fault levels of the severity in BTS. 

3. Software Reliability Model 

A software reliability model is the tool to measure the software reliability quan-
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titatively and most of the models are proposed by the probability and statistical 
theory. The software reliability model is categorized according to analytical 
model and empirical model. Moreover, the empirical model is categorized into 
dynamic model and static model. Especially, the dynamic model is presenting 
the fault discovery event and software failure occurrence event in test phase or 
operation phase as a process of software reliability growth, which is described as 
a stochastic model i.e., so-called software reliability growth model (SRGM). In 
this paper, we use the hazard-rate model which is one of the most popular ones 
in SRGM. 

4. Hazard-Rate Model 

In this section, we discuss the hazard-rate model. Firstly, we can express the 
probability related to the number of software faults and the time of occurrence 
of software failures in testing phase or operating phase as shown in Figure 1. 

 
Table 1. The list of fault severity levels. 

Software Fault  
Severity Level 

Contents 

Blocker The fault is the most serious in all of fault levels. 

Critical This fault is more serious fault comparably but is less serious than blocker. 

Major This level shows that most of certain functions in software are malfunction. 

Normal This fault level is general one. 

Minor The fault happens in minor functions of software. 

Trivial The fault is minor one that has less effectiveness to the function in software. 

Enhancement This level is not fault itself generally but is requested to be revised. 

 

 
Figure 1. The variables of the software fault detection event and the software fault occurrence one. 
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The distribution function of ( )1,2,kX k = �  representing the time-interval 
between successive detected faults of ( )th1k −  and thk  is defined as 

( ) { } ( )Pr 0 ,k kF x X x x≡ ≤ ≥                   (1) 

where Pr{A} represents the occurrence probability of event A. Therefore, the 
following derived function means the probability density function of kX : 

( ) ( )d
.

d
k

k

F x
f x

x
≡                         (2) 

Also, the software reliability can be defined as the probability that a software 
failure does not occur during the time-interval ( ]0, x . The software reliability is 
given by 

( ) { } ( )Pr 1 .k k kR x X x F x≡ > = −                  (3) 

From Equations (1)-(3), the hazard-rate is given by the following equation: 

( ) ( )
( )

( )
( )

,
1

k k
k

k k

f x f x
z x

F x R x
≡ =

−
                   (4) 

where the hazard-rate means the software failure rate when the software failure 
does not occur during the time-interval ( ]0, x . A hazard-rate model is an 
SRGM representing the software failure-occurrence phenomenon by the ha-
zard-rate. 

Moreover, we discuss three hazard-rate model as follows: 

4.1. Jelinski-Moranda Model 

Jelinski-Moranda (J-M) model is one of the hazard-rate models. J-M model has 
the following assumptions: 

1) The software failure rate during a failure interval is constant and is propor-
tional to the number of faults remaining in the software. 

2) The number of remaining faults in the software decreases by one each time 
a software failure occurs. 

3) Any fault that remains in the software has the same probability of causing a 
software failure at any time. 

From the above assumptions, the software hazard-rate in Equations (4) at kth 
can be derived as 

( ) ( ) ( )1 0, 0; 1,2, , ,kz x N k N k Nφ φ= − − > > =   �          (5) 

where each parameter is defined as follows: 
N: the number of latent software faults before the testing, 
φ : the hazard-rate per inherent fault. 

4.2. Moranda Model 

Moranda model has the following assumptions: 
1. The software failure rate per software fault is constant and is decreasing 

geometrically as a fault is discovered. 
From the above assumptions, the software hazard-rate in Equations (4) at kth 
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can be derived as 

( ) ( )1 0,0 1; 1,2, ,k
kz x D c D c k−= ⋅ > < < = �             (6) 

where each parameter is defined as follows: 
D: the initial hazard-rate for the software failure, 
c: the decrease coefficient for hazard-rate. 

4.3. Xie Model 

Xie model has the following assumptions: 
1. The software failure rate per software fault is constant and is decreasing 

exponentially with the number of faults remaining in the software. 
From the above assumptions, the software hazard-rate in Equations (4) at kth 

can be derived as 

( ) ( ) ( )0 01 0, 0, 1; 1, 2, , ,kz x N k N k Nαλ λ α= − + > > ≥ = �       (7) 

where each parameter is defined as follows: 
N: the number of latent software faults before the testing, 

0λ : the hazard-rate per inherent fault, 
α : the constant parameter. 

4.4. MTBF 

Three hazard-rate models above have the following assumption: 
• Any fault that remains in the software had the same probability of causing s 

software failure at any time. 
From the above assumption, MTBF by three hazard-rate models can be de-

rived as 

[ ] ( ) ( ) ( )0 0

1E d d .k k k
k

X xf x x R x x
z x

∞ ∞
= = ≡∫ ∫             (8) 

5. Observation and Analysis of Trend on Each Fault Level 

We analyze the fault big data from the perspective of MTBF in Apache HTTP 
Server (The Apache Software Foundation) known as the OSS developed under 
Apache Software Foundation [14]. Especially, we use the data in terms of the 
fault severity. In this paper, we use 7 kinds of fault levels in severity as shown in 
the following items: 
• Blocker 
• Critical 
• Major 
• Normal 
• Minor 
• Trivial 
• Enhancement 

Figure 2 shows the estimation results of MTBF in each fault severity level. 
Table 2 shows the estimated variance in each fault severity level. In terms of  
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Figure 2. The mean time between software failures in each severity level of faults. 

 
Table 2. The estimated variance in each fault severity level. 

Software Fault Severity Level Estimate of Variance 

Blocker 17.76229 

Critical 4.12128 

Major 1.60268 

Normal 0.05783 

Minor 5.91591 

Trivial 25.22615 

Enhancement 1.17400 

 
variance, we find that the value of normal fault is the smallest in all of fault se-
verity levels. In other words, the normal faults occur at a constant frequency, 
while other fault severity levels occur less as time goes. From the results of anal-
ysis, we assume that the fault data is divided into normal fault and others. 

6. Application of Hazard-Rate Model to the Actual Data 

In this section, we apply typical hazard-rate models to 2 kinds of data sets which 
are normal fault and other fault in order to find out which hazard-rate models fit 
to normal fault and other fault in terms of MTBF. We apply the following 3 
models to actual fault data. 
• Jelinksi Moranda model (J-M) 
• Moranda model 
• Xie model 

We use AIC (Akaike’s Information based on the maximum likelihood estima-
tion of model parameters Criterion) to measure the goodness-of-fit of these 
models to actual data. The result of AIC is shown in Table 3. Figures 3-8 show 
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the estimated MTBF of each model for both normal fault and other fault data, 
respectively. From Table 3, we find that the value of AIC in Moranda model is 
the smallest in both normal fault and others fault. 

 
Table 3. The values of AIC of each model in normal and others fault. 

Models 
AIC 

Normal Others 

J-M 13,362.3 13,419.5 

Moranda 13,336.5 13,351.5 

Xie 13,357.7 13,407.3 

 

 
Figure 3. The estimated MTBF for normal fault by using J-M model. 

 

 
Figure 4. The estimated MTBF for normal fault by using Moranda model. 
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Figure 5. The estimated MTBF for normal fault by using Xie model. 
 

 
Figure 6. The estimated MTBF for others fault by using J-M model. 

 

 
Figure 7. The estimated MTBF for others fault by using Moranda model. 
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Figure 8. The estimated MTBF for others fault by using Xie model. 

7. Proposed Model 

From the results of Section 2, we assume that fault data is divided into the fol-
lowing types: 

A1. The normal fault 
A2. The others fault 
In the assumption above, A1 is the fault detected as a normal one, A2 is the 

fault detected as other one. Also, OSS manager cannot differentiate between as-
sumptions A1 and A2 in terms of the software faults. The time interval between 
successive faults of (k − 1)th and kth is represented as the random variable 

( )1,2,kX k = � , Therefore, the integrated hazard-rate function ( )kz x  for kX  
is defined as follows by using Moranda model: 

( ) ( ) ( ) ( ) ( )1 21 1,2, ;0 1 ,k k kz x p z x p z x k p= ⋅ + − ⋅ = ≤ ≤�        (9) 

( ) ( )1 1
1 1 1 11, 2, ; 0,0 1 ,k

kz x D c k D c−= ⋅ = ≥ < <�           (10) 

( ) ( )2 1
2 2 2 21, 2, ; 0,0 1 ,k

kz x D c k D c−= ⋅ = ≥ < <�           (11) 

where each parameter is defined as follows: 
( )1

kz x : the hazard-rate for assumption A1, 

1D : the initial hazard-rate for the first software failure of A1, 

1c : the decrease coefficient for hazard-rate for assumption A1, 
( )2

kz x : the hazard-rate for assumption A2, 

2D : the initial hazard-rate for the first software failure of A2, 

2c : the decrease coefficient for hazard-rate for assumption A2, 
p: the weight parameter for ( )1

kz x . 
Equation (10) represents the hazard-rate for a software failure-occurrence 

phenomenon for the normal fault, On the other hand, Equation (11) represents 
the hazard-rate for a software failure-occurrence for the other one. Also, we 
show the diagram to describe the algorithm of proposed method in Figure 9. 
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Figure 9. The description of the algorithm of proposed method. 

8. Numerical Example 

In order to evaluate the performance of the proposed model, we estimate the 
MTBF of fault big data in Apache HTTP server. The parameters of proposed in-
tegrated model have been estimated by MLE (Maximum Likelihood Estimation). 
The estimated value of parameters is shown as follows: 

� � � �
1 2 1 22.58319, 1.26026, 0.99963, 0.99999.w w c c= = = =  

where 1w pD=  and ( )2 1w p D= −  are assumed for the simplification tech-
nique. We compare the proposed integrated model with AIC of the typical ha-
zard-rate model. Figures 10-13 show the estimated MTBF for each model.  
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Figure 10. The estimated MTBF by using J-M model. 

 

 

Figure 11. The estimated MTBF by using Moranda model. 
 

 
Figure 12. The estimated MTBF by using Xie model. 
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Figure 13. The estimated MTBF by using proposed integrated model. 
 

Table 4. The values of AIC for each model. 

Model AIC 

J-M model 13,392.8 

Moranda model 13,350.1 

Xie model 13,385.0 

Proposed integrated model 13,326.5 

 
From Figures 10-13, the typical hazard-rate models estimate MTBF higher than 
actual one and we found out these models estimate MTBF optimistically. On the 
other hand, the proposed integrated model estimates MTBF realistically. Table 4 
shows the value of AIC for each model. From Table 4, the proposed integrated 
model fits better than the other model in terms of AIC. In other words, we can 
predict the MTBF of OSS more precisely with the proposed integrated model. 

9. Imperfect Debugging Model 

Most of the software reliability models are assumed that all faults found in soft-
ware are fixed and removed perfectly and new faults is not introduced at the 
time when the fault is fixed and removed. However, that assumption is not prac-
tical one in actual situation. In other words, it insists the testing phase and oper-
ation phase in software development is in imperfect debugging environment. 
The software reliability models considering the imperfect debugging have been 
proposed [15]. In this paper, we adapt our proposed model to the hazard-rate 
model considering the imperfect debugging and verify the possibility of applica-
tion of proposed model to it. 

We assume that fault data is divided into the following types: 
A3. The latent fault in software before the release 
A4. The fault caused by imperfect debugging 
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In the assumption above, A3 is the latent fault before the release of software 
and A4 is the fault caused at the time when the latent fault is fixed and removed. 
Also, OSS manager cannot differentiate between assumptions A3 and A4 in 
terms of the software faults. The time interval between successive faults of (k − 
1)th and kth is represented as the random variables ( )1, 2,kX k = � , Therefore, 
the hazard-rate function ( )kz x  for kX  is defined as follows: 

( ) ( ) ( ) ( ) ( )3 41 1,2, ;0 1 ,k k kz x p z x p z x k p= ⋅ + − ⋅ = ≤ ≤�       (12) 

( ) ( )
( )

3 1 1 1 1
1 1 2 2

1
1 1 2 2

1

1,2, ; 0,0 1, 0,0 1,0 1 ,

k k
kz x p D c p D c

k D c D c p

− −= ⋅ ⋅ + − ⋅ ⋅

= ≥ < < ≥ < < ≤ ≤�
      (13) 

( ) ( )4 0 ,kz x λ λ= >                      (14) 

where each parameter is defined as follows: 
( )3

kz x : the hazard-rate for assumption A3, 

1D : the initial hazard-rate for the first software failure of the normal fault, 

1c : the decrease coefficient for hazard-rate for the normal fault, 

2D : the initial hazard-rate for the first software failure of the other fault, 

2c : the decrease coefficient for hazard-rate for the other fault, 
1p : the weight parameter for ( )1

kz x , 
( )4

kz x : the hazard-rate for assumption A4, 
λ : the hazard-rate for the fault caused by imperfect debugging, 
p: the weight parameter for ( )3

kz x . 
Equation (13) represents the integrated hazard-rate for a software fail-

ure-occurrence phenomenon for the latent fault in software before the release, 
which is our proposed model. On the other hand, Equation (14) represents the 
hazard-rate for a software failure-occurrence for the fault caused by imperfect 
debugging. We assume that the fault caused by imperfect debugging is caused 
randomly. For that reason, we adapt exponential distribution to A4. 

10. Numerical Example 

In order to verify the possibility of application of proposed model to ha-
zard-model considering imperfect debugging, we estimate the MTBF of fault big 
data in Apache HTTP Server as well. The parameters of proposed model consi-
dering the imperfect debugging have been estimated by MLE. The estimated 
value of parameters is shown as follows: 

� � �

� � �

1
3 1

1
4 2

0.96006, 0.24426, 0.99944,

2.77419, 0.99953, 32.77024.

k

k

p w c

w c λ

−

−

= = =

= = =  
where 1

3 1w p D=  and ( )1
4 21w p D= −  are assumed for the simplification 

technique. We compare the proposed model adapted to imperfect debugging 
model with AIC of the proposed model. Figure 14 shows the estimated MTBF 
for the proposed model considering the imperfect debugging. Table 5 shows the 
value of AIC for each model. 

https://doi.org/10.4236/jsea.2021.1411035


T. Yanagisawa et al. 
 

 

DOI: 10.4236/jsea.2021.1411035 604 Journal of Software Engineering and Applications 
 

 
Figure 14. The estimated MTBF by using proposed model considering the imperfect de-
bugging. 

 
Table 5. The values of AIC for each model. 

Model AIC 

Proposed model considering the imperfect debugging 13,324.8 

Proposed integrated model 13,326.5 

 
From Table 5, the proposed model for imperfect debugging fits better than 

proposed model in terms of AIC. In other words, it is possible to adapt the pro-
posed model to the hazard-model considering imperfect debugging. 

11. Concluding Remarks 

In this paper, we have assumed that there are different trends on each fault se-
verity level in terms of MTBF and analyzed the fault big data in BTS. We have 
found the difference of trend on each fault severity level in terms of MTBF and 
we proposed a hazard rate model considering fault severity level for OSS from 
the result of analysis. Proposed integrated model fits better than the typical ha-
zard-rate models in terms of AIC. Moreover, we adapted our integrated pro-
posed model to the hazard-rate model considering imperfect debugging. The 
proposed model considering imperfect debugging fits better than proposed in-
tegrated model in terms of AIC. 

OSS is used by many organizations because of low cost, standardization and 
quick release. However, the quality of OSS is not good because of the unique de-
velopment style. The quality of OSS is necessary to depend on the demand of 
users in the future. At the same time, it is very important to propose the software 
reliability model for OSS. Especially, software reliability models considering im-
perfect debugging are very practical for the actual situation in software devel-
opment. 
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In the future, it is necessary to verify the applicability of proposed model be-
cause the data set in Apache HTTP server is the only one by which we evaluate 
the goodness-of-fit of proposed model. In this paper, we compared our proposed 
models to J-M model, Moranda model and Xie model. However, these models 
are very old ones. There are a lot of software reliability models that have ever 
proposed so far, therefore, we have to compare our proposed models to other 
hazard-rate models to evaluate the performance of our proposed models. Also, 
we consider the proposal of software reliability model for OSS from the other 
perspective. 
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