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Abstract 
This paper represents a continuation of [1] and [2]. Here, we consider the 
numerical analysis of a non-trivial frictional contact problem in a form of a 
system of evolution nonlinear partial differential equations. The model de-
scribes the equilibrium of a viscoelastic body in sliding contact with a moving 
foundation. The contact is modeled with a multivalued normal compliance 
condition with memory term restricted by a unilateral constraint and is asso-
ciated with a sliding version of Coulomb’s law of dry friction. After a descrip-
tion of the model and some assumptions, we derive a variational formulation 
of the problem, which consists of a system coupling a variational inequality 
for the displacement field and a nonlinear equation for the stress field. Then, 
we introduce a fully discrete scheme for the numerical approximation of the 
sliding contact problem. Under certain solution regularity assumptions, we 
derive an optimal order error estimate and we provide numerical validation 
of this result by considering some numerical simulations in the study of a 
two-dimensional problem. 
 

Keywords 
Viscoelastic Material, Sliding Frictional Contact, Normal Compliance,  
Unilateral Constraint, Memory Term, Variational Approximation,  
Finite Element, Error Estimate, Numerical Simulations 

 

1. Introduction 

The modeling and the analysis of frictional contact problems represent impor-
tant topics both in Engineering Sciences and Applied Mathematics, see for in-
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stance the numerous works in these fields of research [3] [4] [5] [6] and the ref-
erences therein. The mathematical study of contact and friction models concerns 
the variational and the numerical analysis with also significant contributions re-
lated to numerical simulations. In the construction of the models, various con-
tact conditions have been considered. We can cite, for instance, the so-called 
Signorini condition, introduced in [7], the so-called normal compliance contact 
condition, introduced in [8] and used in a large number of papers, see [9] [10]. 
Recently, a more general contact condition, called the normal compliance condi-
tion restricted by unilateral constraint introduced in [11], models the contact 
with an elastic-rigid foundation. The mathematical analysis of models involving 
the frictionless contact condition with normal compliance and unilateral con-
straint can be found in [12]. When friction is considered, the unique solvability 
of the variational problems can be proven by considering a smallness assump-
tion of the friction coefficient, see for instance [13]. Recently, the study of a 
model of frictional contact problem between a linearly elastic body and a moving 
rigid foundation, considered in [14], has shown both the obtention of multiple 
solutions when the coefficient of friction is larger than a critical value, and the 
existence and uniqueness of the solution at the low coefficient of friction. 

The aim of this paper is to study the numerical analysis of the contact problem 
with a sliding version of Coulomb’s law of dry friction for rate-type viscoplastic 
materials within the framework of the Mathematical Theory of Contact Me-
chanics. We model the material’s behavior with a constitutive law of the form 

( ) ( )( ) ( ) ( )( )
0

d
t

t t t s s s= + −∫u u σ ε ε
 

where u  denotes the displacement field, σ  represents the stress tensor and 
( )uε  is the linearized strain. Here   is the elasticity operator, assumed to be 

nonlinear, and   represents the operator relaxation operator, assumed to be li-
near, with a fully discrete scheme for the numerical approximation of the problem, 
numerical simulations and its validity in the study of a two-dimensional numerical 
example. Therefore, the contact law with normal compliance and unilateral con-
straint was associated with a sliding version of Coulomb’s law of dry friction. 
Furthermore, both the material constitutive law of the body and the frictional 
contact model is characterized by memory terms in order to take into account 
physical relaxation behaviors. Such kind of history-dependent problems has 
been considered in [15]. 

Here, our goal is to provide the numerical analysis of the frictional contact 
model with normal compliance and unilateral constraint and to illustrate the 
error estimate of the discretization by numerical simulations. The mathematical 
model is based on a viscoelastic constitutive law with a long memory, contact 
conditions combining normal compliance, memory term, unilateral constraint 
and a frictional sliding version of Coulomb’s law. This nonstandard mathemati-
cal model can be formulated by a history-dependent quasi-variational inequality 
for the displacement field. 
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The rest of the paper is structured as follows. In Section 2 we present the ma-
thematical model by describing its equations and boundary conditions. Some 
notation, assumptions and preliminary material have been introduced in order 
to derive a variational formulation of the problem. Section 3 is devoted to the 
numerical approximation and the numerical analysis of the variational problem 
considered in the previous section. Under certain solution regularity assump-
tions, we derive an optimal order error estimate that represents the main result 
of this work. Finally, in Section 4 we consider some numerical simulations in the 
study of a two-dimensional problem and we provide a numerical validation of 
the error estimate. 

2. Frictional Contact Problem and Variational Formulation 

First, we present some preliminary material use full for the setting of the prob-
lem. Let Ω  a regular domain of d  ( 2,3d = ) with its boundary Γ  that is 
partitioned into three disjoint measurable parts 1Γ , 2Γ  and 3Γ , such that 

( )1meas 0Γ > . We use the notation ( )ix=x  for a typical point in Ω  and we 
denote by ( )iν=ν  the outward unit normal defined almost everywhere (a.e.) 
on Γ . We denote by ( )iu=u , ( )ijσ=σ , and ( ) ( )( )ijε=u uε  the displace-
ment vector, the stress tensor, and the linearized strain tensor, respectively. Here 
and below the indices , , ,i j k l  run between 1 and d and, unless stated other-
wise, the summation convention over repeated indices is used. We note that 
sometimes we do not indicate the dependence of various vectors and tensors on 
the spatial variable x  and we recall that the components of the linearized  

strain tensor ( )uε  are given by ( ) ( ), ,
1
2ij i j j iu u uε = +  where the index that  

follows a comma indicates a partial derivative with the corresponding compo-
nent of the spatial variable x , e.g. ,i j i ju u x= ∂ ∂ . We denote by t the time va-
riable and a dot superscript represents the time derivative with respect to the 
time variable t, e.g. u u t= ∂ ∂� . Furthermore, we use the notation   for the set 
of positive integers and +  will represent the set of non-negative real numbers, 
e.g. [ )0,+ = +∞ . Then, we denote by d  the space of second-order symme-
tric tensors on d . The inner product and norm on d  and d  are defined 
respectively by 

( ) ( ) ( )1 2, , ,d
i i i iu v u v⋅ = = ⋅ ∀ = = ∈u v v v v u v �  

( ) ( ) ( )1 2, , .d
ij ij ij ijσ τ σ τ⋅ = = ⋅ ∀ = = ∈σ τ τ τ τ σ τ

 

For all vector v , we denote by vν  and τv  the normal and tangential com-
ponents of v  on Γ  given by 

,v vν τ ν= ⋅ = −v v vν ν                      (1) 

We also recall that, if σ  is a regular function, then the normal and tangen-
tial components of the stress field σ  on Γ  are defined by 

( ) , .ν τ νσ σ= ⋅ = −σν ν σ σν ν                   (2) 
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In this work, we consider a viscoelastic body that occupies the bounded do-
main Ω  with Γ , its boundary. The body is clamped on 1Γ  and, therefore, 
the displacement field vanishes there. A volume force of density 0f  acts in Ω , 
surface tractions of density 2f  act on 2Γ . On 3Γ , the body is in frictional 
contact with a moving obstacle, the so-called foundation. We suppose that the 
foundation is plane and moves steadily, i.e. its velocity * * *v=v τ  is assumed to 
be larger than the tangential velocity τu�  on the surface contact 3Γ  (i.e.  

*
τv u�� ), where 

*
*

*
=

v
v

τ  denotes a given unitary vector in the tangential  

plane and the value * 0v >  is also given. The contact between the body and the 
foundation is modeled by multivalued normal compliance and a unilateral con-
straint. The associated friction is based on a version of Coulomb’s law of dry 
friction, in which contact surfaces are assumed to be in relative slip status. The 
problem is studied in the interval of time + . 

Thereby, let us consider the formulation of our quasi-static frictional contact 
problem defined as follows. 

Problem  . Find a displacement field : d
+Ω× →u    and a stress field 

: d
+Ω× →σ    such that, for all t +∈ , 

( ) ( )( ) ( ) ( )( )
0

d in ,
t

t t t s s s= + − Ω∫u uσ ε ε            (3) 

( ) 0Div in ,t + = Ωfσ 0                     (4) 

( ) 1on ,t = Γu 0                        (5) 

( ) ( )2 2on ,t t= Γfσ ν                      (6) 

( ) ( ) *
3on ,t tτ νµ σ− = Γσ τ                   (7) 

and there exists a normal reaction 3:π +Γ × →   that satisfies 

( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( )

30

0

, 0,

0,

0 d , on .

0 if 0,

d if 0.

t

t

u t g t p u t t

u t g t p u t t

t F t s u s s

t u t

t F t s u s s u t

ν ν ν

ν ν ν

ν

ν

ν ν

σ π

σ π

π

π

π

+

+

≤ + + ≤

− + + =

≤ ≤ − Γ


= < 


= − > 


∫

∫





         (8) 

Now, we shortly describe the physical meaning of relations (3)-(8). Equation 
(3) represents the viscoelastic constitutive law with long memory in which   is 
the elasticity operator and   is a relaxation tensor. Details and mechanical 
interpretation concerning such kinds of laws can be found in [16], for instance. 
Equation (4) represents the equation of equilibrium in which Div denotes the 
divergence operator for tensor valued functions ( ( ),Div ij jσ=σ ). Conditions 
(5) and (6) are the displacement boundary condition and the traction boundary 
condition, respectively. Finally, (7) and (8) represent the friction Coulomb’s law 
and the multivalued normal compliance contact condition with unilateral con-
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straint and memory term, respectively. The friction condition (7) represents a 
regularized form of a version of Coulomb’s law in slip status where µ  
represents the coefficient of friction and   is a regularization operator. Here, 

νσ  and τσ  represent the normal contact stress and the tangential friction 
stress on the contact surface 3Γ , respectively. Condition (8) represents a version 
of the contact boundary conditions with normal compliance and unilateral con-
straint, in which the memory effects of the foundation are taken into account. 
Note that condition (8) models the contact with a foundation made of a rigid 
material and covered by a layer of soft material (asperities) of thickness g with a 
thin crust. Let us describe the different terms. g is the maximal penetration al-
lowed in the foundation and represents the size of the soft material. 

( ) ( )( ) ( )t p u t tν νσ π− = +  is the normal compliance condition with memory 
term, where the normal compliance function p is a Lipschitz continuous in-
creasing function which vanishes for a negative argument and π  describes the 
memory properties of the foundation. Here, F and   are positive functions 
related to the history of the soft material. 

We now turn to the variational formulation of Problem   and, to this end, 
we consider standard notation for the Lebesgue and the Sobolev spaces asso-
ciated to Ω  and Γ . Also, we introduce the spaces 

( ){ }1
1: a.e. on ,dV H= ∈ Ω = Γv v 0

 

( ){ }2 T: ,d dQ L ×= ∈ Ω =τ τ τ
 

( ){ }2
1 : Div .dQ Q L= ∈ ∈ Ωσ σ

 

The spaces Q and Q1 are Hilbert spaces with the canonical inner product giv-
en by 

( ) ( ) ( )
( ) ( ) ( ) ( )2

1

, d ,

, , Div , Div ,d

ij ijQ

Q Q L

xσ τ
Ω

Ω

=

= +

∫ x xσ τ

σ τ σ τ σ τ
 

and the associated norms Q⋅  and 
1Q⋅ . Since ( )1meas 0Γ > , V is a real Hil-

bert space with the inner product 

( ) ( ) ( )( ), , ,V Q
V= ∀ ∈u v u v u vε ε                 (9) 

and the associated norm V⋅ . By using the Sobolev trace theorem, a positive 
constant 0c  exists such that 

( )2
3 0 .dL Vc V

Γ
≤ ∀ ∈v v v                   (10) 

In addition, for 1Q∈σ  we denote by 
1
2Hνσ

−
∈  its normal component, in 

the sense of traces. Let ( ) ( )
1

22: H L
−

Γ → Γ  be a linear continuous operator. 
Then, there exists a positive constant 0c >  such that 
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( )2
13 1.QL c Qνσ Γ

≤ ∀ ∈ σ σ
 

Since σ  is regular, the following Green’s formula holds: 

( )d Div d d .x x a V
Ω Ω Γ

⋅ + ⋅ = ⋅ ∀ ∈∫ ∫ ∫v v v vσ ε σ σν          (11) 

Let us denote by ∞Q  the space of fourth-order tensor fields given by 

( ) ( ){ }| ,1 , , , .ijkl ijkl jikl klij L i j k l d∞
∞ = = = = ∈ Ω ≤ ≤    Q

 
Let us recall that ∞Q  is a real Banach space with the norm  

( )0 , , ,
max ijkl Li j k l d ∞∞ Ω≤ ≤

= Q  and, the following inequality holds, 

, .Q Qd Q
∞ ∞≤ ∀ ∈ ∈τ τ τ  Q Q               (12) 

Based on definitions of the norms Q⋅  and 
∞

⋅ Q , proof of the inequality 
(12) is obtained by using simple calculations. 

Furthermore, we need to consider the sets of admissible displacement and 
admissible constraints defined by 

{ }3: on ,U V v gν= ∈ ≤ Γv                    (13) 

{ }0: Div in .QΣ = ∈ + = Ωfτ τ 0                 (14) 

Let us consider the assumptions on the operators, tensors and data. To this 
end, we assume that the elasticity operator   and the relaxation tensor   
satisfy the following conditions. 

( ) ( )

( ) ( )( ) ( )
( )

1 2 1 2 1 2

2
1 2 1 2 1 2 1 2

(a) : .
(b) There exists 0 such that

, , , , , a.e. .

(c) There exists 0 such that

, , , , , a.e. .

(d) The mapping , is measurable on , for any .
(e) The

d d

d

d

d

L
L

m

m

Ω× →
>

− ≤ − ∀ ∈ ∈Ω

>

− ⋅ − ≥ − ∀ ∈ ∈Ω

Ω ∈

x x x

x x x

x x�

ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε











 

 



 






( )mapping , belongs to .Q











 x x�  0

 (15) 

( ); .C + ∞∈ Q                        (16) 

The densities of body forces and surface traction have the following regulari-
ties 

( ) ( )( )2 2
0 2 2, ; .d dL C L+∈ Ω ∈ Γf f                (17) 

The normal compliance function p and the surface yield function F satisfy 

( ) ( )
( ) ( )( )( )

( )
( )

3

1 2 1 2 1 2 3

1 2 1 2 1 2 3

3

3

(a) : .
(b) There exists 0 such that

, , , , , a.e. .

(c) , , 0, , , a.e. .

(d) The mapping , is measurable on , for any .
(e) , 0 for all 0, a.e. .

p

p

p
L

p r p r L r r r r

p r p r r r r r

p r r
p r r

+Γ × →
 >
 − ≤ − ∀ ∈ ∈Γ
 − − ≥ ∀ ∈ ∈Γ
 Γ ∈

= ≤ ∈Γ

x x x

x x x

x x
x x

�

 








   (18) 
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( ) ( )
( )

( )

3

1 2 1 2 1 2 3

3

3

(a) : .
(b) There exists 0 such that

, , , , , a.e. .

(c) The mapping , is measurable on , for any .
(d) ,0 0 a.e. .

F

F

F
L

F r F r L r r r r

F r r
F

+Γ × →
 > − ≤ − ∀ ∈ ∈Γ
 Γ ∈
 = ∈Γ

x x x

x x
x x

�

 




   (19) 

Finally, the surface memory function   and the coefficient of friction µ  
verify 

( )( ) ( )3 3; , , 0 for al , a.e. ,C L t l t∞
+ +∈ Γ ≥ ∈ ∈Γx x        (20) 

( ) ( )3 3, 0, a.e. ,Lµ µ∞∈ Γ ≥ ∈Γx x                (21) 

In what follows we assume that ( ),u σ  are sufficiently regular functions and 
satisfy (3)-(8). Here, let U∈v  and 0t >  be given. First, by using Green’s 
formula (11) and the equilibrium equation (4), we obtain that 

( ) ( ) ( )( )( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

3

3 3

2

0

*

0 2

d d d

d d

d d .

t
t t x F t s u s s v u t a

p u t v u t a t t a

t x t t a

ν ν ν

ν ν ν ν τ τµ

+ + +

Ω Γ

Γ Γ

Ω Γ

⋅ − + − −

+ − + ⋅ −

≥ ⋅ − + ⋅ −

∫ ∫ ∫

∫ ∫
∫ ∫

v u

v u

f v u f v u

σ ε ε

σ τ



  (22) 

To simplify the notation, we defined the operators :E V V→  and  
( )2

3:R V Q L× → Γ  by 

( ) ( ) ( )( ) ( )
3

, , d , ,V Q
E p u v a Vν νΓ

= + ∀ ∈∫u v u v u vε ε        (23) 

( ) ( )( )( ), , ,R P V Q
νΣ= + ∀ ∈ ∈u z u z u zε            (24) 

where :P QΣ → Σ  represents the projection operator. With the inclusion 1QΣ ⊂ , 
the operator R is well defined. Then we consider the space ( )2

3Z Q L Q= × Γ ×  
as well as operators ( ) ( ): ; ;M C V C Q+ +→  ,  

( ) ( )( )2
3: ; ;N C V C L+ +→ Γ   and ( ) ( ): ; ;S C V C Z+ +→  , for all  

( );C V+∈v  , t +∈  defined respectively by 

( )( ) ( ) ( )( )
0

d ,
t

M t t s s s= −∫v vε                 (25) 

( )( ) ( ) ( )( )0
d ,

t
N t F t s v s sν

+= −∫v                 (26) 

( ) ( ) ( ) ( )( ), , .S t M t N t M t=v v v v                  (27) 

Finally, the functions :j Z V V× × →   and : V+ →f   are defined by 

( ) ( )( ) ( ) ( )
( )( ) ( )

( )
2 2

3 3

*, , , , , , ,

, , , , ,

dQ L L
j y v R

y Z V

ν τµ+

Γ Γ
= + +

= ∈ ∀ ∈

w u v x v u z v

w x z u v

ε τ
    (28) 

( )( ) ( )
2

0 2, d d , .
V

t x t a V t +Ω Γ
= ⋅ + ⋅ ∀ ∈ ∈∫ ∫f v f v f v v �        (29) 

Using the previous notation and substituting (3) in (22), we obtain the fol-
lowing variational formulation of Problem  . 

Problem V . Find a displacement field : U+ →u   and a stress field 
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: + → Σσ  , for all t +∈ , such that, 

( ) ( )( ) ( ) ( )( )
0

d ,
t

t t t s s s= + −∫u vσ ε ε               (30) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

, , , , ,

, .
V

V

E t t j S t t j S t t t

t t U

− + −

≥ − ∀ ∈

u v u u u v u u u

f v u v
     (31) 

Under the assumptions (15)-(21) and an additional smallness assumption on 
the friction coefficient µ , a result of existence and uniqueness for the varia-
tional problem V  was provided in [2]. Based on this previous variational for-
mulation, our goal in the next section is to provide the numerical analysis of this 
specific and non-trivial contact problem. 

3. Variational Approximation and Error Analysis 

This section is devoted to the numerical discrete approximation of the Problem 

V . In particular, an optimal error estimate is provided and represents the main 
result of the paper. More precisely, we are interested in solving the Problem V  
over a finite time interval [ ]0,T , with 0T >  arbitrary but fixed. Thus, let N be 
a positive integer; we define the size of the time step k T N=  and we consider 
the uniform temporal discretization characterized by the time instants nt nk=  
for 0 n N≤ ≤ . We use the notations ( )n nt=f f , ( )n nt=u u . For simplicity, 
we assume that Ω  is a polygonal domain. Let consider { }h  a regular family 
of partitions of Ω  into triangles that are compatible with the partition of the 
boundary Γ  into 1Γ , 2Γ , and 3Γ , in the sense that if the intersection of one 
side of an element with one of the three sets has a positive surface measure, then 
the side lies entirely in that set. Then we consider linear element spaces corres-
ponding to h , 

( ) ( ){ }1 1| for , on ,
d dh h h h h

T
V C T T= ∈ Ω ∈ ∈ = Γv v v 0

 
where ( )1 T  stands for the space of polynomials of a degree less than or equal 
to 1 on T. We define h hU V⊂  a non-empty, convex, and closed set, approx-
imating U by 

{ }3: on ,h h h hU V v gν= ∈ ≤ Γv                  (32) 

where 0h >  denotes the spatial discretization parameter. For the discretization 
of the integral term of Problem V , we use a variant of the trapezoid method 

( ) ( )0
0

d ,n
nt

j
j

'f s s k f t
=

≈ ∑∫                     (33) 

where a prime indicates that the first and last terms in the summation are to be 
halved. Then, we introduce the approximations of operators S, M and N, 

( ), , ,hk hk hk hk
n n n nS M N M=v v v v                   (34) 

( ) ( )
0

,
n

hk
n n j j

j

'M k t t
=

= −∑v vε                  (35) 
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( )
0

,
n

hk
n n j j

j

'N F k t t vν
+

=

 
= − 

 
∑v                   (36) 

1 n N≤ ≤ , for { } 0

N
n n=

=v v . For 0n = , we define hk
nS =v 0 . 

From now on, c will represent various positive constants that do not depend 
on h and k and whose value may change from line to line. Then the fully discrete 
scheme of Problem V  is the following. 

Problem hk
V . Find { }

0
:

Nhk hk h
n n

U
=

= ∈u u  such that 0, ,n N= � , 

( ) ( ) ( )
( )

, , , , ,

, .

hk h hk hk hk hk h hk hk hk hk
n n n n n n nV

h hk h h
n n V

E j S j S

U

− + −

≥ − ∀ ∈

u v u u u v u u u

f v u v
      (37) 

Note that the existence and uniqueness of the solution of the Problem hk
V  

can be provided by using the same arguments as for the solvability of the varia-
tional problem V . 

We now focus on the error analysis between the solutions to Problems V  
and hk

V . Taking nt t=  and hk
nv = u  in (31), we have 

( ) ( )( ) ( )( ) ( ), , , , , , .hk hk hk
n n n n n n n n n nn nV V

E j S j S− + − ≥ −u u u u u u u u u f u u   (38) 

Then, we consider the term 

( )
( ) ( ) ( )

,

, , , .

hk hk
n n n n V

hk hk h hk hk h
n n n n n n nV V V

E E

E E E

− −

= − − − − −

u u u u

u u u u v u u u v
 

Furthermore, by using (15(c)), we obtain 

( ), .hk hk hk
n n n n n nV V

m E E− ≤ − −u u u u u u              (39) 

We combine the inequalities (37), (38) and (39) to obtain 

( )
( ) ( ) 1 2

,

, , ,

hk hk hk
n n n n n nV V

hk h h
n n n nV

m E E

E E J K K

− ≤ − −

≤ − − + + +

u u u u u u

u u u v v u


           (40) 

where 

( ) ( ) ( )( )
( )( ) ( )

, , , ,

, , , ,

h h h
n n n nnV

h
n n n nn V

J E j S

j S

= − +

− − −

v u u v u u u v

u u u f v u
           (41) 

( ) ( )
( )( ) ( )( )

1 , , , ,

, , , , ,

hk hk hk hk hk hk hk
n n n n n n

hk
n n n nn n

K j S j S

j S j S

= −

+ −

u u u u u u

u u u u u u
            (42) 

( ) ( )
( )( ) ( )( )

2 , , , ,

, , , , .

hk hk hk h hk hk hk
n n n n n

h
n n nn n

K j S j S

j S j S

= −

+ −

u u v u u u

u u u u u v
            (43) 

Now, we proceed to the estimation of each terms of (40). First, we use the de-
finition (23) and the inequalities (10), (15(b)) and (18(c)) to obtain 

( ) ( )2
0,hk h hk h

n n n p n n nV VV
E E L c L− − ≤ + − −u u u v u u u v        (44) 
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For the term 1K , we use arguments similar, to obtain 

( )
2

1 ,hk hk hk hk
n n n n nn Z V V

K S Sα β≤ − − + −u u u u u u         (45) 

where α  and β  are constants, for more details about these constants. 
By (34)-(36), we have 

( ) ( ) ( )
( )2

3
2 .hk hk hk hk hk hk

n n nn n nZ Q L
S S M M N N

Γ
− ≤ − + −u u u u u u    (46) 

Moreover, we use the triangular inequality as well as the trapezoid method in-
troduced in (33) to obtain 

( ) ( )

( ) ( ) .

hk hk hk hk hk hk
n n n nn nQ Q Q

hk hk hk
n n n QQ

M M M M M M

M M M

− ≤ − + −

≤ − + −

u u u u u u

u u u u
 

Under the following assumptions 

( )( ) [ ]( )2, 20, ; , 0, ; ,W T V C T∞
∞∈ ∈u  Q             (47) 

( ) ( )( ) [ ] ( )( )
3

2, 2 2
3 30, ; , 0, ; ,W T L C T Lν

∞ ∞
Γ
∈ Γ ∈ Γu         (48) 

we have 

( )

[ ]
( ) ( ) ( )( )

( )( )

( )( )2,

2

0, 0 0, ;

2
0, ;

0

max

,

n

hk hk
n n Q

n
hk
j j nVs T j L t V

n
hk
j j W T VVj

M M

c s k ck t s s

ck ck

∞ ∞

∞

∈ =

∞
=

−

′′ ≤ − + − 

≤ − +

∑

∑

u u

u u u

u u u

ε 



Q
 (49) 

And using the hypothesis (19)(b) of the F function, we have 

( ) ( ) ( )

( ) ( ) ( )( )

2 2 2
3 3 3

2 2, 2
3 3

2

0, ;0
.

hk hk hk hk hk hk
n n n n n nL L L

n
hk

F j j FL W T Lj

N N N N N N

cL k u u cL k uν ν ν ∞

Γ Γ Γ

+ + +
∞ Γ Γ

=

− ≤ − + −

≤ − +∑

u u u u u u


    (50) 

Then we combine the inequalities (45), (46), (49), (50) and the trace inequality 
(10) to obtain 

( )( )2,

1
0

22
0, ; .

n
hk hk
j j n nV Vj

hk hk
n n n nW T V V V

K ck

ck

α

α β∞

=

≤ − −

+ − + −

∑ u u u u

u u u u u
        (51) 

By similar reasoning applied for the term 1K , we obtain that 

( )( )2,
2

2 0, ;
0

.

n
hk h h
j j n nW T VV V Vj

hk h
n n nV V

K ck ckα α

β

∞

=

≤ − − + −

+ − −

∑ u u u v u u v

u u u v
    (52) 

Finally, we gather together the inequalities (40), (44), (51) and (52) to deduce 
that 
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( ) ( )

( )( )2,

2 2
0

2

0

2
0, ;

,

.

hk hk h h
n n p n n n nV V V

n
hk hk hk
j j n n n nV V Vj

hk h hk
n n n n nW T VV V V

m L c L J

ck

ck

α β

β α ∞

=

− ≤ + − − +

+ − − + −

+ − − + −

∑

u u u u u v v u

u u u u u u

u u u v u u u

 

 
Under the assumption of smallness for the uniqueness of the Problem V , 

and by using the elementary inequality 2 21
4

ab a bδ
δ

≤ + , 0δ∀ > , ,a b∈� , we 

have 

( )

( )( )2,

1 2

2
0, ;

0

,

.

hk h h
n n n nV V

n
hk
j jW T V Vj

c c J

ck ck∞

=

− ≤ − +

+ + −∑

u u u v v u

u u u
         (53) 

Now let us consider the following Gronwall inequalities. 
Lemma 1. Let 0T >  be given. For a positive integer N we define k T N= . 

Assume that { } 1

N
n n

g
=

 and { } 1

N
n n

e
=

 are two sequences of nonnegative numbers 
satisfying: 

1 , 1, ,n
n n jje cg c ke n N

=
≤ + =∑� � �  for a positive constant c�  inde-

pendent of N or k. Then there exists a positive constant c, independent of N or k, 
such that: 1 1max maxn N n n N ne c g≤ ≤ ≤ ≤≤ . 

Applying Lemma 1, we obtain from (53) that if k is sufficiently small, then 

( ) ( )( )2,

0

1 2 2
0, ;0

max

max inf , .
h h

hk
n n Vn N

h h
n n W T VVn N U

c J ck ∞

≤ ≤

≤ ≤ ∈

−

 ≤ − + +  v

u u

u v v u u
      (54) 

To proceed further, we make the following solution regularity assumptions: 

[ ] ( )( ) [ ] ( )( )3

2 2
| 30, ; , 0, ; ,dC T H u C T Hν Γ∈ Ω ∈ Γu         (55) 

[ ] ( )( )20, ; .dC T L∈ Γσν                     (56) 

Then it can be shown that the relations (3)-(8) are satisfied pointwise a.e. and 
we have 

( )
( )( )( ) ( ) ( )( )( )

( )

3

2
3

0

,

d d

.

n

h
n

th h
n n n n n

h
n L

J

p u v u F t s u s s v u a

c u v

ν ν ν ν ν ν ν

ν ν

σ + + +

Γ

Γ

 = + − + − −  

≤ −

∫ ∫

v u



 
So (54) reduces to 

( ) ( )( )2,2
3

0

1 2 2
0, ;0

max

max inf .
h h

hk
n n Vn N

h h
n n W T VV Ln N U

c u v ckν ν ∞

≤ ≤

Γ≤ ≤ ∈

−

 ≤ − + − +  v

u u

u v u
     (57) 

Let h hVΠ ∈u  be the linear finite element interpolant of the solution u . As 
the solution U∈u , i.e., u gν ≤ , then h

h UΠ ∈u . The standard finite element 
interpolation theory yields (cf. [17]) and we have 
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( ) ( ) ( )2 2 2
3 3

2, .d ddn h n n n h n nV H L Hch chν ν νΩ Γ Γ
−Π ≤ −Π ≤u u u u u u

 
In conclusion, we have shown the following result. 
Theorem 2. Assume k is sufficiently small. Then under the assumptions (47), 

(55) and (56) concerning the regularity of the solution u , we have the following 
optimal error estimate 

( )2

0
max .hk

n n Vn N
c h k

≤ ≤
− ≤ +u u                   (58) 

with a positive constant c independent of k and h. 

4. Numerical Simulations 

This section provides computer simulation results on the contact Problem hk
V , 

including numerical evidence of the theoretical error estimates obtained in Sec-
tion 3 for the discrete approximation of the variational Problem V . The solu-
tion of Problem hk

V  is based on numerical methods described in [18]. For a 
large overview on numerical methods to solve contact problems, we can refer for 
instance to [19] [20] [21]. 

Numerical example. The physical setting used for Problem hk
V  is depicted 

in Figure 1. Here, we consider the frictional contact between a deformable body 
and a moving foundation. This specific foundation is composed of a rigid ma-
terial covered by a thin crust and a deformable layer of asperities of depth g. 
Here g represents the maximum value of the allowed penetration in the founda-
tion. When this value of penetration is reached, the contact follows a unilateral 
condition without any additional penetration. This kind of foundation is cha-
racterized by contact condition (8). Since the foundation is moving the friction 
condition is in a slip status within Coulomb’s form (7). The deformable body is 

 

 
Figure 1. Reference configuration of the two-dimensional example. 
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a rectangle, ( ) ( ) 20, 2 0,1Ω = × ⊂  , and its boundary Γ  is split as follows: 
{ } [ ]( )1 0 0,1Γ = × , ( ) { }( ) { } [ )( )2 0, 2 1 2 0,1Γ = × ×∪ , ( ] { }3 0, 2 0Γ = × . 

The domain Ω  represents the cross-section of a three-dimensional linearly 
viscoelastic body subjected to the action of tractions in such a way that a plane 
stress hypothesis is assumed. On the part 1Γ  the body is clamped and, there-
fore, the displacement field vanishes there. Vertical compressions act on the part 
( ) { }0,2 1×  of the boundary 2Γ  and the part { } [ )2 0,1×  is traction-free. Con-
stant vertical body forces are assumed to act on the viscoelastic body. The body 
is in frictional contact with an obstacle on the part 3Γ  of the boundary. 

The compressible material’s behaviour of the domain Ω  is governed by a 
viscoelastic constitutive law of the form (3). In addition, we assume that the ma-
terial is homogeneous and isotropic; then, the elasticity tensor   and the re-
laxation tensor   have the following forms 

( ) ( )( ) ( ) ,
1 1 2 1ii ij ijij

E Eκ τ δ τ
κ κ κ

= +
+ − +

τ              (59) 

( ) 2, 1 , 2, ,ijij i jατ= ≤ ≤ ∀ ∈τ τ                 (60) 

where the coefficients E and κ  are Young’s modulus and the Poisson’s ratio of 
the material, respectively, and α  is a viscosity parameter. ijδ  denotes the 
Kronecker symbol. 

For the numerical simulation of Problem hk
V , the data concerning the ma-

terial are the following: 21250 N mE = , 0.3κ = , 210 N mα = ,  

( )2 2
0 0, 1 10 N m−= − ×f , ( )2

2 1.2 10 ,0 N m= − ×f  on ( ) { }0,2 1× , 1 sT = ,  
1 128h = , k T N=  with 128N = . For the contact boundary conditions on 

3Γ , we recall that the friction is in a sliding status and the normal contact re-
sponse follows a multivalued normal compliance condition with respect to the 
normal displacement uν  and for which the maximal penetration is restricted 
by a unilateral constraint. Then the data concerning this specific frictional con-
tact model (7) and (8) are the following: ( ) { }max 0,p r c rν= , 2100 N mcν = , 
( )F s s= , ( )s sβ= , 10β =  and 0.04 mg = − . 
Numerical solution of Problem hk

V . In Figure 2, we present the deformed 
configuration as well as the interface forces on 3Γ . 

On the right extremity of the boundary 3Γ , we can see that a large number of 
contact nodes of 3Γ  are in several contact statuses with the foundation. We 
note that some of these nodes have first broken the crust (crust contact), others 
have crushed the asperities (normal compliance) and finally someone have 
reached the maximum value g of penetration (unilateral contact). 

Errors and numerical convergence orders. The aim of this part is to illu-
strate the convergence of the discrete scheme and to provide numerical evidence 
of the optimal error estimate obtained in Section 3. To this end, we computed a 
sequence of numerical solutions by using uniform discretization of Problem 

hk
V  according to the spatial discretization parameter h and the time step k, re-

spectively. For instance, the deformed configuration and the interface forces 
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plotted in Figure 2 are obtained for 1 128h =  and 1 128k =  and corresponds 
to a problem with 17028 degrees of freedom. 

The numerical estimations of hk
V

−u u  computed for several discretization 
parameters of h and k, have been estimated by using the energy norm 

E⋅   

defined by ( )( ) ( )( )1 21: ,
2

hk hk hk
E
=v v vε ε


 . Since the exact solution u  can  

not be calculated analytically, we consider as “reference” solution refu  a nu-
merical solution that corresponds to a fine approximation of Problem hk

V . For 
this procedure, the boundary Γ  of Ω  is divided into 1/h equal parts and the 
time interval [ ]0,T  is divided into 1/k time steps. We start with 1 2h =  and 

1 2k =  which are successively halved. The numerical solution refu  corres-
ponding to 1 256h =  and 1 256k =  was taken as the “reference” solution. 
This fine discretization corresponds to a problem with 66820 degrees of free-
dom; the simulation runs in 129521 (expressed in seconds) CPU time on an IBM 
computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz). 
The numerical results presented in Figure 3 provide good numerical evidence  

 

 
Figure 2. Deformed mesh and interface forces on 3Γ . 

 

 
Figure 3. Numerical errors. 
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of the theoretically predicted order convergence of the numerical solution meas-
ured in the energy norm. 
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