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Abstract 
In this paper, we studied a family of the exponential attractors and the inertial 
manifolds for a class of generalized Kirchhoff-type equations with strong dis-
sipation term. After making appropriate assumptions for Kirchhoff stress 
term and nonlinear term, the existence of exponential attractor is obtained by 
proving the discrete squeezing property of the equation, then according to 
Hadamard’s graph transformation method, the spectral interval condition is 
proved to be true, therefore, the existence of a family of the inertial manifolds 
for the equation is obtained. 
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1. Introduction 

In the study of dynamic behavior for a long time in infinite dimensional dynam-
ical system, the exponential attractors and inertial manifolds play a very impor-
tant role. In 1994, Foias [1] puts forward the concept of exponential attractor, it 
is a positive invariant compact set which has finite fractal dimension and attracts 
solution orbits at an exponential rate. Inertial manifold is finite dimensional in-
variant smooth manifolds that contain the global attractor and attract all solu-
tion orbits at an exponential rate, their corresponding inertial manifold forms 
are powerful tools which could study the property of finite dynamical system 
about the dissipative evolution equation. Under the restriction of inertial mani-
fold, a infinite dimension dynamical system could be transformed to finite di-
mension, therefore, the inertial manifolds become an important bridge which 
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can contact finite dimensional dynamical system and infinite dimensional dy-
namical system, many scholars have done a great deal of research, we could refer 
to ([2]-[8]).  

Guigui Xu, Libo Wang and Guoguang Lin [9] studied global attractor and in-
ertial manifold for the strongly damped wave equations 
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The assumption of ( )g u  satisfies the following conditions: 
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( ) ( ) ( )2 0
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sg s C G s
s R

s→∞

−
≥ ∈ .  

Under these reasonable assumptions, according to Hadamard’s graph trans-
formation method, the existence of the inertial manifolds for the equation is ob-
tained.  

Zhijian Yang and Zhiming Liu [10] studied the existence of exponential at-
tractor for the Kirchhoff equations with strong nonlinear strongly dissipation 
and supercritical nonlinearity 

( ) ( ) ( ) ( )2 2 .tt tu u u u u f u h xσ φ− ∇ ∆ − ∇ ∆ + =
 

The main result was that the nonlinearity ( )f u  is of supercritical growth 
and they established an exponential attractor in natural energy space by using a 
new method based on the weak quasi-stability estimates.  

Ruijin Lou, Penghui Lv, Guoguang Lin [11] studied the exponential attractor 
and inertial manifold of a higher-order kirchhoff equations 

( )( ) ( ) ( ) ( )2 2 ,
p m mm

tt tp
u M u u u g u f xβ+ ∇ −∆ + −∆ + =

 

( ), 0, 0, 1, 2, , 2 1, ,
i

i

uu x t i m x
v
∂

= = = − ∈∂Ω
∂



 

( ) ( ) ( ) ( )0 1,0 , ,0 , , 0.tu x u x u x u x x t= = ∈Ω >  

where Ω  is finite region of nR , ∂Ω  is smooth boundary, ( )0u x  and ( )1u x  
is initial value, ( )m

tu−∆  is strongly damped term, φ  is stress term, ( )g u  is 
nonlinear source term.  

On the basis of reference [11], the stress term 
2mD u  is extended to 

pm
p

D u , 
this paper studied the long-time dynamic behavior of a class of generalized Kir-
chhoff equation. Firstly, the existence of the exponential attractor of this equa-
tion is proved. Furthermore, the existence of a family of inertial manifold is 
proved by using Hadamard’s graph transformation method, more relevant re-
search can be referred to ([12]-[17]).  
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In this paper, we study the existence of exponential attractors and a family of 
the inertial manifolds for a class of generalized Kirchhoff-type equation with 
damping term: 

( )( ) ( ) ( ) ( )2 2 ,
p m mm

tt tp
u M u u u g u f xβ+ ∇ −∆ + −∆ + =        (1.1) 

( ), 0, 0, 1, 2, , 2 1, ,
i

i

uu x t i m x
v
∂

= = = − ∈∂Ω
∂

            (1.2) 

( ) ( ) ( ) ( )0 1,0 , ,0 , , 0.tu x u x u x u x x t= = ∈Ω >           (1.3) 

where 1m > , 2p ≥ , ( )1nR nΩ ⊂ ≥  is a bounded domain with a smooth 
boundary ∂Ω , ( ) [ )( )2 0, ;M s C R+∈ +∞  is a real function, ( ) ( )2 0m

tuβ β−∆ >  
denotes strong damping term, ( )g u  is nonlinear source term, ( )f x  denotes 
the external force term. The assumption of ( )M s  and ( )g u  as follow: 
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where 0 1, ,µ µ µ  are constant, 1λ  is the first eigenvalue of −∆  with homoge-
neous Dirichlet boundary conditions on Ω .  

For convenience, define the following spaces and notations ( )2H L= Ω ,  
( ) ( ) ( )2 2 1

0 0
m mH H HΩ = Ω Ω , ( ) ( ) ( )4 4 1

0 0
m mH H HΩ = Ω Ω ,  

( ) ( ) ( )2 2 1
0 0

m k m kH H H+ +Ω = Ω Ω , ( ) ( )2 2
0

mE H L= Ω × Ω ,  
( ) ( )2

0 0
m k k

kE H H+= Ω × Ω , ( 1, 2, , 2k m=  ), ( ) ( )2f x L∈ Ω . ( ),⋅ ⋅  and ⋅  
represent the inner product and norms of H respectively, i.e.  

( ) ( ) ( ), du v u x v x x
Ω

= ∫ , ( ) 2,u u u= , ( )2L Ω
⋅ = ⋅ , ( )PP L Ω

⋅ = ⋅ ,  

( )L∞∞ Ω
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2. Exponential Attractors 

For brevity, define the inner product and norms as follow:  
( ) 0, , 1, 2i i iU u v E i∀ = ∈ = ,  

( ) ( ) ( )2 2
1 2 1 2 1 2, , , ,m mU U u u v v= ∇ ∇ +                (2.1) 
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1 1
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, we 

can get the Equation (1.1) is equivalent to the following evolution equation 
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( ) ( ) ( )
0

.F U
f x g u

 
=  −   

Then, we will use the following notations. Let 0 , kE E  are two Hilbert spaces, 
we have kE  ↪ 0E  with dense and continuous injection, and kE  ↪ 0E  is 
compact. Let ( )S t  is a map from ( )0 kE E  into ( )0 kE E .  

In the following definitions, 1, 2, , 2k m=  .  
Definition 2.1. [14] The semigroup ( )S t  possesses a ( )0,kE E -compact at-

tractor kA , If it exists a compact set 0kA E⊂ , kA  attracts all bounded subsets 
of kE , and under the function of ( )S t , kA  is an invariant set, i.e.  
( ) , 0k kS t A A t= ∀ ≥ .  
Definition 2.2. [14] If k k kA M B⊆ ⊆  and 1) ( ) , 0k kS t M M t⊆ ∀ ≥ ; 2) 

kM  has finite fractal dimension, ( )F kd M < +∞ ; 3) there exist universal con-
stants 1 20, 0c c> > , such that ( )( ) 2

1dist , e , 0c t
k kS t B M c t−≤ > , where  

( )
0 0

dist , sup inf ,
kk

E k k k kEy Bx A
A B x y B E

∈∈
= − ⊂  is the positive invariant set of ( )S t ,  

the compact set 0kM E⊂  is called a ( )0,kE E -exponential attractor for the 
system ( )( ), kS t B .  

Definition 2.3. [14] if there exists limited function ( )l t , such that 

( ) ( ) ( ) ( )
00

, , .kEE
S t u S t v l t u v u v B− ≤ − ∀ ∈           (2.4) 

Then the semigroup ( )S t  is Lipschitz continuous in kB .  

Definition 2.4. [14] If 10,
8
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 and exists an orthogonal projection  

( )N NP P δ=  of rank ( )N N δ=  such that for every ( ), ku v B∈ ,  

( ) ( )
00

,EE
S t u S t v u vδ∗ ∗− ≤ −                 (2.5) 

or 

( ) ( )( ) ( ) ( )( )
0 0

N NE E
Q S t u S t v P S t u S t v∗ ∗ ∗ ∗− ≤ −         (2.6) 

Then ( )S t  is said to satisfy the discrete squeezing property, where  

N NQ I P= − .  
Theorem 2.1. [15] Assume that 1) ( )S t  possesses a ( )0,kE E -compact at-

tractor kA ; 2) it exists a positive invariant compact set 0kB E⊂  of ( )S t ; 3) 

( )S t  is a Lipschitz continuous map with Lipschitz constant l on kB , and satis-

fies the discrete squeezing property on kB . Then ( )S t  has a ( )0,kE E -expo- 

nential attractor kM , and k kM A⊇  on kB , and ( )
0

k
t t
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=
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1 1

j i
k

j i
M A S t E

∞ ∞

∗ ∗
= =

 
=  

 
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

. Moreover, the fractal dimension of kM  satis-

fies ( ) 3 0 1F kd M c N≤ + , ( )( ) 2
0 1dist , e c t

E kS t B M c −≤ , where 0N  is the smallest 

N which make the discrete squeezing property established.  

Proposition 2.1. [15] There is ( )0 kt D  such that 
( )

( )
00 k

k k
t t D

B S t D
≤ ≤

=


 is  
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the positive invariant set of ( )S t  in 0E , and kB  attracts all bounded subsets 

of kE , where kB  is a closed bounded absorbing set for ( )S t  in kE .  

Theorem 2.2. [16] Assuming the stress term ( )M s  and the nonlinear term 
( )g u  satisfies the condition (A1)-(A2), f H∈ , ( )0 0, ku v E∈ , then problem 

(1.1)-(1.3) admits a unique solution ( ) ( ), ; ku v L R E∞ +∈ . This solution possesses 
the following properties: 

( ) ( ) ( ) ( )
0

2 2 22 222 2 2
0 1, , , .

k

m m k m
E E

u v u v c r u v u v c r+= ∇ + ≤ = ∇ + ∇ ≤
 

We denote the solution in Theorem 2.1 by ( )( ) ( ) ( )( )0 0, ,S t u v u t v t= . Then 
( )S t  composes a continuous semigroup in 0E . According to Theorem 2.1, we 

have the ball 

( ) ( ) ( ){ }
0

22 22
0 0 0, : , ,m

E
D u v E u v u v c r= ∈ = ∇ + ≤         (2.7) 

( ) ( ) ( ){ }2 22 2 2
1, : , .

k

m k m
k k E

D u v E u v u v c r+= ∈ = ∇ + ∇ ≤      (2.8) 

are absorbing sets of ( )S t  in 0E  and kE  respectively. From Proposition 2.1 

( )
( )

00
.

k

k k
t t D

B S t D
≤ ≤

=


                    (2.9) 

is a positive invariant compact set of ( )S t  in 0E , and absorbs all of the 
bounded subsets kD  in kE . According to reference [15] and theorem 2.1, we 
can get the semigroup ( ){ } 0t

S t
≥

 possesses ( )0,kE E -compact global attractor  

( )
0

k k
s t s

A S t D
≥ ≥

=


, where the bar means the closure in 0E , and kA  is bounded 

in kE .  

Lemma 2.1. For any ( ) 0,U u v E= ∈ ,  

( )( )
00

22 2
1 2, .m

EE
G U U a U a v≥ + ∇              (2.10) 

Proof. By (2.1) and (2.2), we have 

( )( ) ( ) ( ) ( )

( ) ( )( )
0

2 2 22 2 2 2

22 2 2 2

, , ,

, , .

m m m
E

pm m m m m m
p

G U U u v u v u v v

u v v M u u v

ε α ε ε α

βε β

= ∇ − ∇ ∇ + − + −

− ∇ ∇ + ∇ + ∇ ∇ ∇
 (2.11) 

By using Holder’s inequality, Young’s inequality and Poincare’s inequality and 
the condition (A2), we have,  

( )
2 2 22 2 2 2 2 2

1 1, .
4

m m m mu v u v u vεε ε λ ε λ− −= − ∇ ≥ − ∇ −      (2.12) 

( )( ) ( )
22

22 2 2
0

22
22

1 , 1
4

.
4

m
pm m m m
p

m
m

u
M u u v v

u
v

βε µ βε

βε

 ∇ ∇ − − ∇ ∇ ≥ − − + ∇  
 

 ∇ = − + ∇  
 

 (2.13) 

Substitute inequality (2.12)-(2.13) into Equation (2.11), we get 
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( )( ) ( )

( )
0

2 2 22 2 2
1

22 2
1

,
4 4

.
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E

m m

G U U u v

v

βε εε α ε ε λ

β βε αλ

−

−

 
≥ − − ∇ + − − 
 

+ − − ∇

    (2.14) 

According to the assumption, we can get 
2

0
4 4
βε εε − − > ,  

2 2
1 0mα ε ε λ−− − > , 2

1 0mβ βε αλ−− − > . Let  
2

2 2
1 1min ,

4 4
ma βε εε α ε ε λ− 

= − − − − 
 

, 2
2 1

ma β βε αλ−= − − , so we can get 

( )( )
00

22 2
1 2, .m

EE
G U U a U a v≥ + ∇              (2.15) 

The Lemma 2.1 is proved. Then we prove the Lipschitz property and the dis-
crete squeezing property of ( )S t .   

Set ( ) ( ) ( ) ( )( )T
0 ,S t U U t u t v t= = , where ( ) ( )tv u t u tε= + ; and  

( ) ( ) ( ) ( )( )T
0 ˆ ˆ,S t V V t u t v t= = , where ( ) ( ) ( )ˆ ˆ ˆtv t u t u tε= + ; let  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
0 0 ,Y t S t U S t V U t V t w t z t= − = − = , where  

( ) ( ) ( )tz t w t w tε= + , ( ) ( ) ( )ˆw t u t u t= − , ( ) ( ) ( )ˆtw t v t v t= − , then ( )Y t  sa-
tisfies 

( ) ( ) ( ) ( )( )Tˆ0, 0,tY G U G V g u g u+ − − − =            (2.16) 

( ) 0 00 .Y U V= −                       (2.17) 

Lemma 2.2. (Lipschitz property). For 0 0, kU V B∀ ∈  and 0t ≥ ,  

( ) ( )
00

2
0 0 0 0e .t

EE
S t U S t V U Vγ− ≤ −              (2.18) 

Proof. Taking the inner product of the Equation (2.16) with ( )Y t  in 0E , we 
can get 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )21 d ˆ, , 0.
2 d

Y t G U G V Y t g u g u z t
t

+ − + − =    (2.19) 

Similar to Lemma 2.1, we have 

( ) ( ) ( )( ) ( ) ( )
0 0 0

22 2
1 2, .m

E E E
G U G V Y t a Y t a z t− ≥ + ∇       (2.20) 

By using the condition (A1) Young’s inequality Poincare’s inequality and dif-
ferential mean value theorem, we get 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
4 1

2 2 224 1 4 1

ˆ ,

.
2 2

m m

m m
m

g u g u z t g w t z t c w t z t

c cw t z t Y t

ξ λ

λ λ

−

− −

′− ≤ ≤ ∇

≤ ∇ + =
  (2.21) 

Where ( ) ˆ1 ,0 1uξ θ θ θ= + − < < .  
Substitute inequality (2.20)-(2.21) into equation (2.19), we get 

( ) ( ) ( ) ( )
0 0

22 2 22
1 2 4 1

d 2 2 .
d

m m
E E

Y t a Y t a z t c Y t
t

λ−+ + ∇ ≤     (2.22) 

We can get 
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( ) ( )2 2
4 1

d .
d

mY t c Y t
t

λ−≤                  (2.23) 

According to Gronwall’s inequality, we have 

( ) ( ) ( )4 1
2 2 2

e 0 e 0 .
mc t tY t Y Yλ γ−

≤ =              (2.24) 

where 4 1
mcγ λ−= . Therefore, we get 

( ) ( )
00

2
0 0 0 0e .t

EE
S T U S T V U Vγ− ≤ −             (2.25) 

The Lemma 2.2 is proved.  
Now, we define the operator −∆ : ( ) 4mD H−∆ → , the domain of definition 

is ( ) ( ) ( )2 1
0D H H−∆ = Ω Ω , obviously, −∆  is an unbounded self-adjoint 

closed positive operator, and ( ) 1−−∆  is compact, we find by elementary spectral 
theory the existence of an orthonormal basis of H consisting of eigenvectors jw  
of −∆ , such that: 

( )
1 2

, 1, 2, ,
0 as .

j j j

j

w w j
j

λ
λ λ λ

−∆ = =
 < ≤ ≤ →∞ →∞





            (2.26) 

For a given integer n, 0 n N< ≤  we denote by nP  the orthogonal projection 
of 4mH  onto the space spanned by 1, , nw w  i.e.  

{ }4
1 2span , , ,m

n np p H w w w= = →  , let n nQ I P= − . Then we have 

( ) ( ) ( )( )2 2 4 1
1 0, ,m m m

n nu u u Q Q H Hλ +−∆ ≥ ∀ ∈ = Ω Ω      (2.27) 

, .nQ u u u H≤ ∈                     (2.28) 

where ( )( )2
2 24

1 m
m

n Du uλ−
+ −∆

≤ .  

Lemma 2.3. For any 0 0, kU V B∈ , *
0n N∀ ∈ , 0n N≤ , Let 

( ) ( ) ( )( ) ( ) ( )0 0 0 0 0

T
, ,n n m n nQ t Q U t V t Q Y t zω= − = =        (2.29) 

then we have 

( ) ( )01
0 00

2 22 12

1

e e 0 ,
2

m
na t t

n EE

c
Y t Y

a
γλ

γ

−
+−

 
≤ +  + 

           (2.30) 

Proof. Taking projection operator 
0nQ  in (2.16), we have 

( ) ( ) ( )( ) ( ) ( )( )( )0 0 0

T
ˆ0, 0.n t n nY t Q G U G V Q g u g u+ − + − =      (2.31) 

Taking the inner product ( )
0

, E⋅ ⋅  in (2.31) with ( )
0nY t , we get 

( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0

2 2 22
1 2

1 d ˆ , 0.
2 d

m
n n n n nY t a Y t a z t Q g u g u z t

t
+ + ∇ + − =  (2.32) 

According to (A1) and Young inequality, we have 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

0 0

0 0 0 0 0

0 0

0 0 0

2
5 1

2 2 25 1 5 12

ˆ ,

.
2 2

n n

m m
n n n n n

m m
n nm

n n n

Q g u g u z t

g w t z t c w t z t

c c
w t z t Y t

ξ λ

λ λ

−
+

− −
+ +

−

′ ′≤ ≤ ∇

≤ ∇ + =

      (2.33) 
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where ( )0 0 0
ˆ1 ,0 1n n nuξ θ θ θ′ = + − < < .  

Together with (2.32)-(2.33) and Lemma 2.2, it follows 

( ) ( ) ( ) ( )

( )

0 0 0 0 00

0 0

2 2 2 2
1 5 1 5 1 0 0

22
5 1 0 0 5 1

d 2
d

e e 0 .

m m
n n n n nE

m t m t
n n

Y a Y t c Y t c S t U S t V
t

c U V c Yγ γ

λ λ

λ λ

− −
+ +

− −
+ +

+ ≤ = −

≤ − =
  (2.34) 

By using Gronwall’s inequality, we get 

( ) ( ) ( ) ( )0 01 1
0

2 2 2 25 1 5 12 2

1 1

0 e e 0 e e 0 .
2 2

m m
n na t a tt t

n

c c
Y t Y Y Y

a a
γ γλ λ

γ γ

− −
+ +− −

 
≤ + = +  + + 

(2.35) 

The Lemma 2.3 is proved.  
Lemma 2.4. (Discrete squeezing property). For any 0 0, kU V B∈ , * 0τ ≥ , if 

( ) ( )( ) ( ) ( ) ( )( )0 0
0 0

* * * *
0 0 0 0 ,n n

E E
P S U S V I P S U S Vτ τ τ τ− ≤ − −   (2.36) 

then 

( ) ( )
00

* *
0 0 0 0

1 .
8 EE

S U S V U Vτ τ− ≤ −             (2.37) 

Proof. If ( ) ( )( ) ( ) ( ) ( )( )0 0
0 0

* * * *
0 0 0 0n n

E E
P S U S V I P S U S Vτ τ τ τ− ≤ − − ,  

then 

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

0

0 0
0 0

* *01
0 00

2* *
0 0

2 2
* * * *

0 0 0 0

2 25 12* *
0 0 0 0

1

2 2 e e .
2

E

n n
E E

m
na

n EE

S U S V

I P S U S V P S U S V

c
I P S U S V U V

a
τ γτ

τ τ

τ τ τ τ

λ
τ τ

γ

−
+−

−

≤ − − + −

 
≤ − − ≤ + −  + 

(2.38) 

Let *τ  be large enough,  

*
12 1e .

256
a τ− ≤                        (2.39) 

Also let 0n  be large enough, we get 

*05 1

1

1e .
2 256

m
nc

a
γτλ

γ

−
+ ≤
+

                    (2.40) 

Substitute inequality (2.39)-(2.40) into Equation (2.38), we get 

( ) ( )
00

2 2* *
0 0 0 0

1 .
8 EE

S U S V U Vτ τ− ≤ −             (2.41) 

The Lemma 2.4 is proved.  
Theorem 2.3. Let (A1), (A2) be in force, assume that f H∈ ,  

( ) ( )0 0 0, ku v E E∈ , ( 1, 2, , 2k m=  ), then the semigroup ( )S t  determined by 
(1.1)-(1.3) possesses an ( )0,kE E -exponential attractor kM  on B,  

( ) ( ) ( )( )
*

*

1 10

,
j i

k k
j it

M S t A S E
τ

τ
∞ ∞

= =≤ ≤

  
=      



 

          (2.42) 

The fractal dimension of kM  satisfies 
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( ) 3 0 1.F kd M c N≤ +                     (2.43) 

Proof. According to Theorem 2.1, Lemma 2.2 and Lemma 2.4, Theorem 2.2 is 
easily proven.  

3. Inertial Manifolds 

Next, we will prove the existence of inertial manifolds when N is large enough by 
using graph norm transformation method.  

Definition 3.1. [17] Assume ( ) 0tS S t
≥

=  is a solution semigroup of Banach 
space ( ) ( ) ( )2

0 0 1, 2, , 2m k k
kE H H k m+= Ω × Ω =  , then a family of inertial mani-

folds kµ  is a subset of kE  and satisfies the following three properties:  
1) kµ  is finite dimensional Lipschitz manifold of kE ;  
2) kµ  is positively invariant for the semigroup ( ){ } 0t

S t
≥

, i.e. 0 ku µ∀ ∈ , 
( ) 0 kS t u µ⊂ , 0t∀ ≥ ;  
3) kµ  attracts exponentially all the orbits of the solution, i.e. 0ϑ∃ > , for 

ku E∀ ∈ , 0k∃ > , such that 

( )( )dist , e , 0.tS t u u k tϑ−≤ ⋅ ≥                  (3.1) 

Lemma 3.1. Let : k kE EΛ →  be an operator and assume that  
( ),b k kF C E E∈  satisfies the Lipschitz condition 

( ) ( ) , , .
kk

F kEE
F U F U l U V U V E− ≤ − ∈            (3.2) 

The operator Λ  is said to satisfy the spectral gap condition relative to F, if 
the point spectrum of the operator Λ  can be divided into two parts 1σ  and 

2σ , of which 1σ  is finite, and we have 

{ } { }1 1 2 2sup Re | , inf Re | ,λ λ σ λ λ σΛ = ∈ Λ = ∈         (3.3) 

and { }span | , 1, 2
ik j iE j iω σ= ∈ = .  

Then 

2 1 4 ,FlΛ −Λ >                        (3.4) 

and the orthogonal decomposition 

1 2
,k k kE E E= ⊕                        (3.5) 

Then 
11 : k kP E E→  and 

22 : k kP E E→  are both continuous orthogonal pro-
jections . The Lemma 3.1 is proved.  

Lemma 3.2. Let the eigenvalues ( )1j jµ± ≥  is non-decreasing, and for  
*m N∈ , there exists N m≥ , such that 1Nµ

−
+  and Nµ

−  are consecutive adjacent 
values.  

Lemma 3.3. The function ( )g u  satisfies ( ) ( )2
0: kg H LΩ → Ω  which is un-

iformly bounded and globally Lipschitz continuous, and l is the Lipschitz coeffi-
cient.  

Proof. For ( )1 2 0, ku u H∀ ∈ Ω , we have 

( ) ( ) ( )( ) ( )1 2 1 2 1 2 ,
kHg u g u g u u g u uη η

∞
′ ′− = − ≤ −       (3.6) 

where ( )1 2,u uη ∈ , From the hypothesis (A1) and the differential mean value 
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theorem, we know 

( ) ( )
01 2 6 1 2 ,kHg u g u C u u− ≤ −                 (3.7) 

Let 6l C= , l  is the Lipschitz coefficient.  
Then we prove the existence of a family of the inertial manifold of this equa-

tion, Equation (1.1) is equivalent to the following first-order evolution equation: 

( ) ,tU U F U+ Λ =                       (3.8) 

where 

( ) ( ) ( )( ) ( )

( ) ( ) ( )

TT
2 2

0
, , , ,

0
,

p m mt m
p

I
U u v u u

M u

F U
f x g u

β

− 
 = = Λ =
 ∇ −∆ −∆
 

 
=  −   

( ) ( ) ( ) ( ){ } ( )24 4 2| , .mm m mD u H u H u H HΛ = ∈ Ω ∈ −∆ ∈ Ω × Ω
 

We consider in kE  the usual graph norm, induced by the scalar product 

( ) ( )2 2, , , .
k

m k m k
EU V M u y v z+ += ⋅∇ ∇ +              (3.9) 

where ( )T,U u v= , ( )T, kV y z E= ∈ , and ,y z  respectively denote the conju-
gation of y and z, and ( )2

0, m kv z H +∈ Ω , ( )2
0, m ku y H +∈ Ω . Moreover, the oper-

ator Λ  is monotone, indeed, for ( )U D∀ ∈ Λ , we have 

( ) ( )( ) ( )( )
( ) ( ) ( )

2 22 2

2 2 2 2

22

,

, ,

, , ,

0.

kE

p m mm k m k m
t tp

m k m k m k m k m m
t

m

U U

M u u M u u u v

M u u M u v v v

v

β

β

β

+ +

+ + + +

Λ

= − ⋅∇ ∇ + ∇ −∆ + −∆

≥ − ⋅∇ ∇ + ∇ ∇ + −∆ −∆

≥ ∇ >

 (3.10) 

so that Λ  is a Monotonically increasing operator and ,
kEU UΛ  is real and 

nonnegative. To determine the eigenvalues of Λ , we observe that the eigenvalue 
equation 

( )T, , kU U U u v EλΛ = = ∈                 (3.11) 

is equivalent to the system 

( )( ) ( )2 2

,

0.
p m mm
p

v u

M u u v

λ

β

− =
 ∇ −∆ + −∆ =

            (3.12) 

Thus, we can get the eigenvalue problem 

( )( ) ( )

( )

2 22

2

0,

0.

p m mm
p

m

u M u u u

u u

λ βλ

∂Ω ∂Ω

 + ∇ −∆ − −∆ =

 = −∆ =

         (3.13) 

Using ( )k u−∆  with the first formula of (3.13) to take the inner product, and 
bring ju  to the position of u, we can get 
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( )2 2 22 2 2 0.
pk m m k m k
p

u M u u uλ βλ+ +∇ + ∇ ∇ − ∇ =       (3.14) 

Regarding Equation (3.14) as a quadratic equation of one variable with respect 
to λ , for j N +∀ ∈  and let 

pm
p

s u= ∇ , ( )M M s= , the corresponding eigen-
values of equation (3.11) are as follows: 

2 2 4
.

2
j j j

j

Mβµ β µ µ
λ±

± −
=                 (3.15) 

where ( )1j jµ ≥  is the eigenvalue of ( )2m−∆  in ( )2
0

mH Ω , and 
2

1

m
n

j jµ λ= . 
Because of β  is large enough, the eigenvalue of Λ  are all positive and real 
numbers, the corresponding eigenvalues have the form 

( ), .j j j jU u uλ± ±= −                      (3.16) 

For formula (3.15), for the convenience of later use, define the following for-
mula 

2 2 1, 1, , 1, 2, , 2 .m k k m k
j j j j

j

u u u k mµ
µ

+ − −∇ = ∇ = ∇ = =     (3.17) 

Next, it will be proved that the eigenvalue of the operator Λ  satisfies the 
spectral interval condition.  

Theorem 3.1 let l is the Lipschitz constant of ( )g u , assume ( )
2

4
j

M s
µ

β
≥ , if 

1N Z +∈  is large enough, when 1N N≥ , the following inequality holds 

( ) ( )( )
( )

2 2
1 2 2

84 1.
4

N N j

j

lM s
M s

µ µ β β µ
β µ

+ + − − ≥ +
−

     (3.18) 

Then, the operator Λ  satisfies the spectral gap condition of Lemma 3.1.  
Proof. Because of all the eigenvalues of the operator Λ  are positive real 

numbers, 2
j

Mβ
µ

≥  and the sequence { }
1j j

λ−

≥
 and { }

1j j
λ+

≥
 are monotonically  

increasing. The theorem is proved in four steps below.  
step 1 Since jλ

±  is a non-decreasing sequence, according to Lemma 3.2, giv-
en N, so that Nλ

−  and 1Nλ
−
+  are consecutive adjacent eigenvalues, the eigenva-

lues of the operator Λ  are decomposed into 1σ  and 2σ , where 1σ  is the fi-
nite parts, which are expressed as follows 

{ }{ }1 , | max , ,h j h j Nσ λ λ λ λ λ− + − + −= ≤               (3.19) 

{ }{ }2 , | min , .h j h N h jσ λ λ λ λ λ λ+ ± − − + ±= ≤ ≤             (3.20) 

step 2 The corresponding kE  is decomposed into 

{ }1 1span , | , ,k h j h jE U U λ λ σ− ± − += ∈               (3.21) 

{ }2 2span , | , .k h j h jE U U λ λ σ+ + − ±= ∈               (3.22) 

We aim at madding two orthogonal subspaces of kE  and verifying the spec-
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tral gap condition (3.4) is true when 1 2 1,N Nλ λ− −
+Λ = Λ = . Therefore, we further 

decompose 
2k S RE E E= + , i.e. 

{ }span | ,S h h N hE U λ λ λ− − − += ≤ ≤                (3.23) 

{ }span | .R R N jE U λ λ+ − ±= ≤                  (3.24) 

And set 
1N k SE E E= ⊕ . Note that 

1kE  and SE  are finite dimensional, that 

1N kEλ− ∈ , 1N REλ−
+ ∈ , and that the reason why 

1kE  is not orthogonal to 
2kE  is 

that, while it is orthogonal to RE , 
1kE  is not orthogonal to SE . We now in-

troduce two functions : NE RΨ →  and : RE Rψ → , defined by 

( ) ( ) ( )
( ) ( )
( )( ) ( )( )

2 2 2 2

2 2 2 2

2 2 2

, , 2 ,

2 , 4 ,

4 , 2 , .

m k m k m k m

m k m m k m k

pm k k m k m k
p

U V u y z u

v y v z

M u u y u y

β β

β

β β

+ + − −

− − − − − −

+ +

Φ = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

− ∇ ∇ ∇ + − ∇ ∇

  (3.25) 

( ) ( ) ( ) ( )
( )( ) ( )( )

2 2 2 2 2 2

2 2 2

, , , ,

4 , 1 , .

m k m k m k m k m k m k

pm k k m k m k
p

U V u y z u v y

M u u y u yβ

+ + − − + − − +

+ +

Ψ = ∇ ∇ + ∇ ∇ − ∇ ∇

− ∇ ∇ ∇ + − ∇ ∇
 (3.26) 

where ( ) ( )T T, , , NU u v V y z E= = ∈ , and ,y z  are respectively the conjugates 
of ,y z . We now show that Φ  and Ψ  are positive definite. For  

( ), NU u v E∀ = ∈ , we have 

( ) ( ) ( ) ( )
( ) ( )( )

( )( )

2 2 2 2 2 2

2 2

2 2 2

, , 2 , 2 ,

4 , 4 ,

2 ,

m k m k m k m m k m

pm k m k m k k
p

m k m k

U V u u v u v u

v v M u u u

u u

β β β

β β

+ + − − − −

− − − −

+ +

Φ = ∇ ∇ + ∇ ∇ + ∇ ∇

+ ∇ ∇ − ∇ ∇ ∇

+ − ∇ ∇
 

( )

( )

( )( )

2 2 2 22 2 2 2

2 22 2 2

2 22 2
1

22 2

4 4

2 4

4

4 .

m k m k m k m k

m k m k

m k k

k
j

u v u M s u

u v

u u

M s u

β β

β β

β µ

β µ

+ − − + +

+ − −

+

≥ ∇ − ∇ − ∇ − ∇

+ − ∇ + ∇

= ∇ − ∇

≥ − ∇

(3.27) 

When β  is large enough, we conclude that ( ), 0U UΦ ≥ , i.e. Φ  is positive 
definite. Similarly, for ( ), RU u v E∀ = ∈ , we have 

( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( )
( )( )

2 2 2 2 2 2

2 2 2

2 2 22 2 2

22 2

, , , ,

4 , 1 ,

4 1

4 .

m k m k m k m k m k m k

pm k k m k m k
p

m k m k m k

k
j

U V u u v u v u

M u u u u u

u M s u u

M s u

β

β

β µ

+ + − − + − − +

+ +

+ + +

Ψ = ∇ ∇ + ∇ ∇ − ∇ ∇

− ∇ ∇ ∇ + − ∇ ∇

≥ ∇ − ∇ + − ∇

≥ − ∇

  (3.28) 

When β  is large enough, we conclude that ( ), 0U UΨ ≥ , i.e. Ψ  is positive 
definite.  

Thus Φ  and Ψ  define a scalar product, respectively on NE  and RE , and 
we can define an equivalent scalar product in kE , by 
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( ) ( ), , , .
k

N N R RE
U V P U P V P U P V= Φ +Ψ           (3.29) 

where NP  and RP  are respectively the projections of k NE E→  and k RE E→ . 
Rewrite (3.29) as follows 

( ) ( ), , , .
kE

U V U V U V= Φ +Ψ               (3.30) 

We proceed then to show that the subspaces 
1kE  and 

2kE  defined in (3.21), 
(3.22) are orthogonal with respect to the scalar product (3.29). In fact, it is suffi-
cient to show that NE  is orthogonal to SE , in turn, this reduces to showing 
that , 0

k
h h E

U U− + =  if h NU E− ∈  and h SU E+ ∈ . Recalling (3.27) and (3.28), 
we immediately compute that 

( )
( ) ( )
( ) ( )
( )( ) ( )( )

2 2 2 2

2 2 2 2

2 2 2

, ,

, 2 ,

2 , 4 ,

4 , 2 ,

k
j j j jE

m k m k m k m
j j j j j

m k m m k m k
j j j j j j j

pm k k m k m k
j j j jp

U U U U

u u u u

u u u u

M u u u u u

β β λ

β λ λ λ

β β

+ − + −

+ + − − −

+ − − + − − − − −

+ +

= Φ

= ∇ ∇ + − ∇ ∇

+ − ∇ ∇ + − ∇ − ∇

− ∇ ∇ ∇ + − ∇ ∇
 

( )
( ) ( )

( ) ( )

2 2 22 2

2 22 2

2

2 4

4 2

12 2 4 4 .

m k k m k
j j j j j j j

k m k
j j

j j j j j
j

u u u

M s u u

M s

β β λ λ λ λ

β β

β µ β λ λ λ λ
µ

+ − + − − + − −

+

− + − +

= ∇ − + ∇ + ∇

− ∇ + − ∇

= − + + −

     (3.31) 

According to (3.15), we have 

.j j jλ λ βµ− ++ =                       (3.32) 

.j j jMλ λ µ− + =                       (3.33) 

Therefore 

( ), , 0.
k

j j j jE
U U U U+ − + −= Φ =                (3.34) 

step 3 Further, we estimate the Lipschitz constant Fl  of  
( ) ( ) ( )( )T

0,F U f x g u= − , according to Lemma 3.3 we can get  
( ) ( )2 2

0: mg H LΩ → Ω  is uniformly bounded and globally Lipschitz continuous. 
For ( )T, kU u v E∀ ∈ , ( ) ( )T, 1, 2i i i iU u v PU i= ∈ = , we have 

( ) ( )

( )( ) ( )
( )( )

2
1 1 2 2

2 22 2 2
1 1 1 2

22 2

, ,

4 4

4 .

kE

k m k
j

k
j

U PU PU PU PU

M s Pu P u

M s u

β µ β λ µ

β µ

= Φ +Ψ

≥ − ∇ + − ∇

≥ − ∇

    (3.35) 

Given ( ) ( ) ( )T T T, , , , kU u v V u v y z E= = = ∈  , we have 

( ) ( ) ( ) ( )
( )2 2

1 .
4 kk EE

j

F U F V g u g u l u u U V
M sβ µ

− = − ≤ − ≤ −
−

  (3.36) 

Thus, we have 
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( )2 2

1 .
4

F

j

l
M sβ µ

≤
−

                   (3.37) 

step 4 Now, we will show the spectral gap condition (3.4) holds.  
Since 1 2 1,N Nλ λ− −

+Λ = Λ = , then 

( ) ( ) ( )( )2 1 1 1
1 1 .

2 2N N N N R N R Nβλ λ µ µ− −
+ +Λ −Λ = − = − + − +   (3.38) 

where ( ) 2 2 24N NR N Mβ µ µ= − .  
There exists 1 0N ≥ , such that for 1N N∀ ≥ ,  

( )
( ) ( )

2

1 2 2 2 2

41
4 4j j

MR N
M s M s

β
β µ β µ

= − −
− −

. We can get 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2
1

2 2
1 1 1

1 4

4 1 ,

j N N

j N N

R N R N M s

M s R N R N

β µ µ µ

β µ µ µ

+

+

− + + − −

= − + −
       (3.39) 

According to assumption (A2), we can easily see that 

( ) ( ) ( ) ( )( )2 2
1lim 1 4 0,j N NN

R N R N M sβ µ µ µ+→+∞
− + + − − =    (3.40) 

Then according to (3.18) and (3.37)-(3.40), we have 

( ) ( )( )( )
( )

2 2
2 1 1 2 2

1 44 1 4 .
2 4

N N j F

j

lM s l
M s

µ µ β β µ
β µ

+Λ −Λ ≥ − − − − ≥ ≥
−

(3.41) 

The Theorem 3.1 is proved.  
Theorem 3.2. Under the conclusion of Theorem 3.1, the problem (1.1)-(1.3) 

exists a family of inertial manifolds kµ  in kE  

( ) ( ){ }1
graph : :k k k k km Eµ ζ γ ζ ζ= = + ∈            (3.42) 

where 
1 2
,k kE E  defined in (3.21)-(3.22), and 

1 2
: k kE Eχ →  is Lipschitz conti-

nuous function.  
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