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ABSTRACT 

An integration technique based on use of Monte Carlo Integration is proposed for Method of Moments solution of Elec-
tric Field Integral Equation. As an example numerical analysis is carried out for the solution of the integral equation 
for unknown current distribution on metallic plate structures. The entire domain polynomial basis functions are em-
ployed in the MOM formulation which leads to only small number of matrix elements thus saving significant computer 
time and storage. It is observed that the proposed method not only provides solution of the unknown current distribution 
on the surface of the metallic plates but is also capable of dealing with the problem of singularity efficiently. 
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1. Introduction 

The Method of Moments (MoM) [1] is one of the widely 
used numerical techniques employed for the solution of 
Integral Equations. The MoM is based upon the trans-
formation of an integral equation, into a matrix equation. 
However, the application of the spatial-domain MoM to 
the solution of integral equation is quite time consuming. 
The matrix-fill time would be significantly improved if 
these integrals can be evaluated efficiently. The MoM 
employs expansion of the unknown function inside the 
integral in terms of known basis functions with unknown 
coefficients to be determined. Point matching technique 
or Galerkin’s technique commonly employed in MoM 
results in a system of linear equations equal in number to 
that of unknown coefficients. This leads to a matrix 
equation for the coefficients. The matrix thus obtained is 
called the ‘moment’ matrix. The unknown coefficients 
can then be obtained by matrix inversion. 

The MoM method involves two approaches, the sub 
domain [2,3] and the entire domain [4,5] approaches, 
essentially based on the two kinds of basis functions em-
ployed for the expansion of the unknown function on the 
metal surface. The entire domain basis functions extend 
over the whole region occupied by the structure, whereas 
the sub domain basis functions are defined to exist over a 
section of the structure and have a zero value over the 
rest of its portion. The choice of the type of basis func-
tion depends upon the size and shape of the metallic 
structure in the problem. The advantage with the sub 

domain basis functions is that due to their flexibility to 
be defined over small polygonal domains of varying 
sizes. The whole structure under investigation can be 
modeled as consisting of large number of such polygonal 
sub domains, thus making possible the analysis of com-
plicated shaped structures. The disadvantage with these 
basis functions is that they are limited to electrically 
small and moderately large structures, as the number of 
sub domains required to model large structures accu-
rately becomes very large. This results in the moment 
matrix of a large size increasing the computation costs in 
terms of memory and CPU time. 

The entire domain basis functions, on the other hand, 
require a very few number of expansion terms. These are 
also capable of analyzing electrically large structures and 
the solution obtained with these functions are more ac-
curate than the sub domain basis functions. This results 
in a faster and more accurate solution, thus reducing the 
computational cost. One of the requirements of the entire 
domain basis functions is a prior knowledge of the dis-
tribution of the unknown quantity for the kind of the 
structure under consideration. The effectiveness of a 
MoM numerical solution depends on a judicious choice 
of basis functions. The optimal choice of the basis func-
tion is one that provides solutions with the fewest num-
ber of expansion terms and in shortest computational 
time. These functions should incorporate as closely as 
possible the physical conditions of the actual distribution 
of the unknown quantity on the region of interest. In this 
paper, entire domain polynomial basis function is utilized 



Monte Carlo Integration Technique for Method of Moments Solution of EFIE in Scattering Problems 255

which results in the reduction of computational cost and 
an increase in the accuracy of the result. 

The other aspect of the MoM formulation is the prob-
lem of the singularity of the function that is to be inte-
grated to obtain the matrix elements, in both the ap-
proaches of the MoM formulation. In the point matching 
MoM approach using sub-domain basis functions, only a 
few matrix elements, whereas using entire domain ap-
proach, all the matrix elements are obtained by integra-
tion of singular functions. Various analytical and nu-
merical techniques have been adopted to deal with such 
integrals. The Monte Carlo Integration (MCI) technique 
[6,7] proposed in this paper is not only capable of solving 
the scattering problem but also deals efficiently with the 
problem of singularity. 

To demonstrate the capability of the above mentioned 
technique, the problem is formulated in terms of an inte-
gral equation to determine the current distribution on 
square metallic plate. The MCI technique has been pro-
posed to tackle scattering problem from an infinitesi-
mally thin square metallic plate structures in the MoM 
formulation of the problem. The entire domain basis 
functions are utilized in the MoM matrix solution and 
hence reduce the computational cost to the great extent.  
Besides, it is also capable of handling the singularity 
aspect of the Green’s function easily and more efficiently. 
The typical simulation demonstrates the application of 
the proposed technique and also validates the result 
against the Benchmark solution [8]. 

2. Mathematical Concept 

Monte Carlo methods are useful for obtaining solutions 
to problems involving integration which are too compli-
cated to be solved analytically or by other numerical 
methods. Standard numerical integration techniques do 
not work very well on high-dimensional domains, espe-
cially when the integrand is not smooth. Although the 
quadrature rules of integration typically work very well 
for one-dimensional integrals, problems occur when ex-
tending them to higher dimensions. 

Monte Carlo methods have advantages over numerical 
methods in a space of many dimensions. Their efficien-
cies relative to other numerical methods increase when 
the dimension of the problem increases e.g. Quadrature 
formula becomes very complex while MCI technique 
remains almost unchanged in more than one dimension. 
In addition to this, the convergence of the MCI is inde-
pendent of dimensonality regardless of the smoothness of 
the integrand. Monte Carlo integration is simple since 
only two basic operations are required, namely sampling 
and point evaluation. It is also suited for large structures 
and highly complex problems for which definite integral 
formulation is not obvious and standard analytical tech-
niques are ineffective. Sampling can be used even on 
domains that are not well-suited to numerical quadrature. 

The idea of Monte Carlo integration is to evaluate the 
integral using random sampling as 

( )I f x dx


                    (1) 

where f is a function of vector x,  is domain of integra-
tion. The Monte Carlo integration is popular for complex 
f and/or . In its basic form, this is done by independ-
ently sampling N points x1, …,xN  according to some 
convenient density function p, and then computing the 
estimate 
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where p(xi) is the probability density function or pdf. 
Here the notation NF  is used rather than I to emphasize 

that the result is approximate, and that its properties de-
pend on how many sample points are chosen. If p(xi) is 
the uniform probability density, then the integral is sim-
ply 
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The MCI methods are better suited than quadrature 
methods for integrands with singularities. It is particu-
larly helpful for integrand that have large values on a 
relatively small part of the domain due to singularities. It 
can be applied to handle such integrands effectively, 
even in situations where there is no analytic transforma-
tion available to remove the singularity. The simple way 
to handle the singularity using MCI is to ignore a region 
around the singularity and let this region become smaller 
as N increases [9–13]. In this approach the total region is 
split into , where the numerical integration is per-

form, and a small region 
min

minrr 
r r  which is apparently left 

out as long as it has a small or negligible contribution for 
large values of N. The event generators use therefore a 
cutoff  to avoid this region of singularity i.e., the 

random points generated in MCI are restricted to fall 
within this excluded region. This does not require any 
extra effort to handle the singularity problem as the re-
quired condition can be embedded directly in the MCI 
technique itself in a single statement of the MATLAB 
code employed for the purpose in simulation.  

mir n

3. Numerical Example 

As an example, the electric field integral equation is 
solved by method of moments for the unknown surface 
current density on a square metallic plate. The plate is an 
infinitesimally thin λ x λ square in free space, with limits 
-1.0m to 1.0m along both the x and y axes. The scatterer 
is excited normally by an incident plane wave with the 
electric field  having a magnitude 1.0 Vm-1 and po-
larized along a scatterer edge, in this case the y- axis. The 

iE
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field as: 

         (5) 

where 
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is 

 inte uation (EFIE) 
for the unknown current density 

e inte

current on the conducting surface can be 
expanded as: 

              (8) 

 

the vector potential. 
Applying the boundary condition 0 tEn  on the 

scatterer, we get the electric field rag l eq
: )'(rJFigure 1. Geometry of the λ x λ square P. E. C. scatterer 

incident upon by a plane wave with Ei polarized along the y- 
axis, λ = 2m ])()[/1( 2
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For method of moments (MoM) solution of th -
gral equation, taking some known basis function )'(rnf , 

the unknown 

geometry is shown in Figure 1. 
From Maxwell’s equations we can obtain vector ex-

pression for the total electric field 
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where  is the incident field and tE sE  is the scattered  
 

     
(a)                                                 (b)       

     

(c)                                                     (d) 

Figure 2. (a) Solution for the Jy-current component (real part) along the X axis of the scatterer obtained for different number 

(imaginary part) along the Y axis of the scatterer obtained for different nu ber of random points generations  

     

of random points generations; (b) Solution for the Jy-current component (real part) along the Y axis of the scatterer obtained 
for different number of random points generations; (c) Solution for the Jy-current component (imaginary part) along the X 
axis of the scatterer obtained for different number of random points generations; (d) Solution for the Jy-current component 

m
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where 
na ; n = 1, 2, . . ., M are unknown amplitudes of 

is fthe bas unctions and are to be determined. This expan-
sion is plied over the same number of field points as 
the number of expansion terms, which transforms the 
integral equation into a set of simultaneous algebraic 
equation in the unknown coefficients, which can be writ-
ten in the matrix form as: 

  

ap

 i
nmn aZ nE                (9) 

or 

     i
nmnn EZa  1               (10) 

The matrix elements of the matri
using numerical integration (such as MCI 
th

tire domain basis functions for the 
un

x equation are formed 
technique) of 

e singular function that results after differentiation of 
the Green’s function. 

The problem under investigation is an entire domain 
MoM problem. The en

known current density are the modified polynomial 
functions, with edge correction and symmetry considera-
tions as stated in the benchmark solution [8] and pre-
sented as follows: 
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where xx yy xy yx bscript (2) 
below the summation sign means that the indices i and j 

 

are to be increased with a step size 2. Thus the total 
number of expansion terms for x-current is 12 and for 
y-current is 16, thus making the total number of unknown 
coefficients = 28. This leads to the formation of the 
Z-matrix of order 28 X 28, far less than the number of 
coefficients required in sub domain analysis, which in 
case of such a large scatterer becomes extremely large 
for accurate analysis. Though, the Galerkin’s method in 
MoM is a suitable choice for the problem under investi-
gation, the present formulation employs the point match-
ing technique in MoM specifically to demonstrate the 
singularity aspect of integrand. The point matching tech-
nique makes it essential that all the matrix elements that 
are evaluated, involve integration of singular integrands 
(singular kernels of the integral equation). Thus it is nec-
essary to adopt means that can take care of the singular-
ity inside the integral and give a good approximation of 
the actual result. The technique adopted here is the 
Monte Carlo Integration (MCI) technique that overcomes 
the singularity, making integration much simpler and 
justified in case of two dimensional and three dimension- 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Solution for the Jx current component (Real 
part) over the scatterer; (b) Solution for the Jx current 
component (Imaginary part) over the Scatterer; (c) Solution
for the Jx current compone Magnitude) over the Scat-
terer 
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as to prevent the points fall inside a certain region 

the M t two things. First, the 
re

in polynomial basis 
h Monte Carlo Integration technique
f the problem under investigation. In
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