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Abstract 
Purpose: This study sought to review the characteristics, strengths, weak-
nesses variants, applications areas and data types applied on the various Di-
mension Reduction techniques. Methodology: The most commonly used data-
bases employed to search for the papers were ScienceDirect, Scopus, Google 
Scholar, IEEE Xplore and Mendeley. An integrative review was used for the 
study where 341 papers were reviewed. Results: The linear techniques consi-
dered were Principal Component Analysis (PCA), Linear Discriminant Analysis 
(LDA), Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), 
Locality Preserving Projections (LPP), Independent Component Analysis (ICA) 
and Project Pursuit (PP). The non-linear techniques which were developed to 
work with applications that have complex non-linear structures considered were 
Kernel Principal Component Analysis (KPCA), Multi-dimensional Scaling 
(MDS), Isomap, Locally Linear Embedding (LLE), Self-Organizing Map 
(SOM), Latent Vector Quantization (LVQ), t-Stochastic neighbor embedding 
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP). DR 
techniques can further be categorized into supervised, unsupervised and more 
recently semi-supervised learning methods. The supervised versions are the 
LDA and LVQ. All the other techniques are unsupervised. Supervised variants 
of PCA, LPP, KPCA and MDS have been developed. Supervised and 
semi-supervised variants of PP and t-SNE have also been developed and a 
semi supervised version of the LDA has been developed. Conclusion: The 
various application areas, strengths, weaknesses and variants of the DR tech-
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niques were explored. The different data types that have been applied on the 
various DR techniques were also explored. 
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Dimension Reduction, Machine Learning, Linear Dimension Reduction 
Techniques, Non-Linear Reduction Techniques 

 

1. Introduction 

The world in recent times has seen huge amount of data being churned out in 
different areas of application, resulting in an exponential growth in the complex-
ity, heterogeneity, dimensionality and the size of data [1]. Areas such as educa-
tion, medicine, web, social media and business are inundated with huge amount 
of data in this era of Information Communication and Technology (ICT) [2]. 
There is a continuous evolvement of data in different forms such as digital im-
ages [3]; videos [4]; text [5] and speech signals [6]. 

The existing classical statistical methodologies that have been relied on were 
developed from an era where the collection of data was not easy as it is now and 
the magnitude of datasets was much smaller. Therefore, there is a challenge of 
analyzing these large and sophisticated data sets which require a more sophisti-
cated statistical and computational way of analyzing such data. As a result, the 
area of machine learning has evolved rapidly to help address this problem. It ap-
plies artificial intelligence and automatic learning of data. There is a focus on 
computer programs to access data and use it to learn for themselves. 

In machine learning modelling, high dimensionality of data may raise issues 
for the accuracy of classification, pattern recognition, and visualization [7]. 
Computations in high dimensional spaces can become difficult due to the com-
plexity of data which could lead to what is referred to as the curse of dimensio-
nality and might lead to overfitting [7]. Dimension reduction is a terminology 
used when data with vast dimensions is reduced into lesser dimensions but en-
sures that it concisely conveys similar information. Dimension reduction tech-
niques are used to typically solve machine learning problems during the stage of 
preprocessing to obtain better features for a classification or regression task. 
Dimension reduction algorithms have gained a lot of interest over the past few 
years. Before applying ML models, Dimension Reduction techniques provide a 
robust and also an efficient way to reduce the number of dimensions. Some 
techniques might be appropriate for some type of data but may not be appropri-
ate for other types of data. As well, some DRTs are limited in application areas 
and constrained in scope. Dimensionality Reduction (DR) can be performed 
through feature selection and feature extraction. For feature selection, only a few 
related covariates are selected from the available covariates. All others are consi-
dered redundant and deemed not to have real explanatory effect. Feature extrac-
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tion assumes that the dependent variable has a relationship with only a few li-
near combinations of many covariates. All covariates could have explanatory ef-
fect but this effect could be represented in a few linear combinations. Dimen-
sionality reduction as a result facilitates classification, visualization, and the 
compression of high-dimensional data. 

This study sought to investigate variants, applications areas, strengths and 
weaknesses of various DR techniques. The study also looked at the different data 
types that have been cited in literature to have been used for the different di-
mension reduction techniques considered in the paper. The data types consi-
dered for this paper are text, image, audio, video, time series and structured data. 
The paper is organized into five (5) main sections. It includes an Introduction, 
Discriminative features of Dimension Reduction Techniques, Dimension Re-
duction Techniques, Overview of Sufficient Dimension Reduction and Conclu-
sion. 

2. Methodology 

Papers related to dimension reduction techniques were considered relevant for 
the review and based on the keywords “Dimension Reduction, Machine Learn-
ing, Linear Dimension Reduction Techniques, Non-linear Reduction Tech-
niques”. The databases employed to search for the papers were ScienceDirect, 
Scopus, Google Scholar, IEEE Xplore and Mendeley. An integrative review was 
used for the study where 314 papers were reviewed. Review results were pre-
sented and summarized to include; the characteristics of various dimension re-
duction techniques, their strengths and weaknesses, application areas and va-
riants of DR techniques addressing some identified limitations of the classical 
dimension reduction techniques. 

3. Results 

The area of dimension reduction has always been viewed broadly as important 
to statistical concept that can effectively reduce the dimensions whiles preserving 
the most important information. Principal component analysis was one of the 
earliest dimension reduction techniques which emerged as a general method for 
the reduction of multivariate observations in the early 20th century by [8] and 
was later independently developed by [9] and Factor analysis which was also 
consequently developed by [10] which are all linear techniques. 

Dimension reduction can be classified into two main categories: linear and 
non-linear methods. For linear methods, a significant low-dimensional space is 
proposed to be discovered in data input with space that is high-dimensional, 
where the embedded data in the input space has a linear structure for linear re-
duction methods [11]. Also, techniques that are Non-linear were also developed 
to work with applications that have complex non-linear structures [12]. Other 
linear dimension reduction techniques considered for this review include Singu-
lar Value Decomposition (SVD) [13], Latent semantic analysis [14], Locality 
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Preserving Projections (LPP) [15], Independent Component Analysis (ICA) 
[16], Linear Discriminant Analysis (LDA) [17] and Projection pursuit [18]. The 
non-linear techniques include Kernel Principal Component Analysis (KPCA) 
[19], Multidimensional Scaling (MDS) [20], Isomap, Locally linear embedding 
[21], Self-Organizing Map (SOM) [22], Learning Vector Quantization (LVQ) 
[23], Uniform manifold approximation and projection (UMAP) [24] and the 
T-Stochastic neighbor embedding [25]. 

3.1. Linear Dimension Reduction Techniques 
3.1.1. Principal Component Analysis (PCA) 
Principal Component Analysis (PCA) is one of the oldest and most widely used 
techniques which are an unsupervised linear dimension reduction technique. 
The idea of PCA is the reduction of the dimensions of a dataset, while it pre-
serves as much variability as possible. Preserving as much variability as possible 
refers to the discovery of new variables that are linear functions of those in the 
original dataset. These linear functions maximize the variance and are also un-
correlated with each other [26]. Literature on PCA dates back from [8] and also 
[9] who coined the term principal components. PCA does not require any dis-
tributional assumptions as a descriptive tool. It is therefore an adaptive explora-
tory method that can be used different types of data [27]. 

The application areas of Principal Component Analysis (PCA) include ma-
chine learning, image and speech processing, computer vision, text mining, vi-
sualization, biometrics, robotic sensor data and facial recognition [28]. 

The identification of Principal Components (PCs) which is a set of uncorre-
lated features is the main aim of PCA. The largest amount of variance in data set is 
held by the first PC and in that order. Although it is a robust dimension reduction 
technique it has some limitations. The PCA transformation, despite its wide-
spread use, relies on second-order statistics. The principal components can be 
highly statistically dependent though uncorrelated and this can lead to PCA 
failing to find the most compact description of the data. PCA geometrically 
models the data as a hyperplane embedded in a space that is ambient and re-
quires a larger dimensional representation than would be found by a non-linear 
technique if the data components have non-linear dependencies. This has 
prompted the development of non-linear alternatives to PCA [29]. PCA me-
thods also fail to account for outliers which are common in realistic training sets 
because they employ least squares estimation techniques [30]. 

There are many extensions of PCA to help address some of its challenges and 
also to improve efficiency. Robust PCA (RPCA) which was proposed by [31] was 
developed to analyze corneal images data. RPCA was found to be robust and 
could work with different kinds of image data. RPCA was found to also work 
well when outliers are present in image data [3]. Serneels and Verdonck [32] 
proposed an Expectation Robust PCA (ERPCA) and experimental results re-
vealed that it was suitable for data of different sizes and also robust in dimension 
reduction when outliers are present. 
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An extension of PCA, the Local PCA (LPCA) was introduced by [29] and ex-
perimental results revealed that LPCA performed better than the classical PCA 
for image and speech data. Another extension of PCA, the Robust PCA 
(ROBCA) which was also proposed by [33] was based on the DR technique, 
Projection Pursuit (PP) in applying a robust scatter matrix. Experimental results 
revealed that ROBPCA was more accurate and was also computationally faster 
than the traditional PCA. The Generalized PCA (GPCA), another extension of 
PCA proposed by [4] was developed with the main aim of dealing with data of 
high dimensions with the number of subspaces unknown. Different data sets in-
cluding the 3D motion segmentation, clustering faces and temporal video seg-
mentation applied GPCA and experimental results revealed that is was efficient 
[4]. Incremental 2D-PCA was proposed by [34] for videos particularly for 
tracking of moving objects. Multi-linear PCA (MPCA) was also proposed by 
[35] and it worked better that PCA and 2D-PCA in facial recognition. The 
Sparse PCA (SPCA) was also developed to manage sparsity of gene expression 
data [36]. [37] proposed the Generalized Power Sparse PCA (GP-SPCA) which 
was developed to overcome the curse of dimensionality issue of Dimension Re-
duction. [38] introduced the Random Permutation PCA (RP-PCA) and 
RP-2D-PCA. They were efficient in recognition of images in a biometric system. 
Bishop in 1999 proposed the Bayesian PCA which used maximum likelihood for 
latent variable model that is generative. Results revealed that through the Baye-
sian inference it is able to effectively reduce dimensions in latent space. 

Although PCA is unsupervised in nature, a supervised PCA was proposed by 
[39] which is uniquely effective for classification and regression problems with 
high dimensional input data. The various data types applied on PCA from lite-
rature search are Text [40] [41], Image [42] [43], Audio [44] [45], Video [46] 
[47], Times series [48] and Structured data [49] [50]. 

3.1.2. Singular Value Decomposition (SVD) 
One of the unsupervised Linear Dimension Reduction Technique (LDRT) is the 
Singular Value Decomposition (SVD) technique. The SVD is seen to be closely 
related to PCA and can be used in the computation of metric equations and 
problems in the form of data reduction [13]. Five mathematicians are credited 
with playing significant roles resulting in the existence of the SVD and develop-
ment of theory. These mathematicians are Eugenio Beltrami, Camille Jordan, 
James Joseph Sylvester, Erhard Schmidt, and Hermann Weyl [51]. [52] however, 
was the one who has been credited with put finishing touches to the algorithm. 
SVD have been used in different areas by researchers. These include the area of 
digital image processing [53], taxonomic classification of biological sequences 
[54], pattern recognition [55], gene expression data [56], signal processing [57], 
Natural Language Processing (NLP), bio-informatics [54], and text summariza-
tion [54]. SVD is developed specifically for matrix decomposition and can be 
applied to any real-world matrix. 

One drawback of SVD is that it is expensive computationally. It can however 
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be improved when random sampling is applied. SVD is also sensitive to 
non-linearities and outliers in data [58]. 

The non-iterative proper orthogonal decomposition for SVD was proposed by 
[59] to remove the influence of outliers in particle image velocimetry measure-
ments. Also, a constrained SVD was proposed to work with sparsity and orthogonal 
issue of Singular value decomposition [60]. The multi-level SVD proposed by [61] 
was based on imputation method for efficient management and pre-processing of 
datasets collected from different sources. Fields such as life sciences, medical and 
education are some of the areas in which the technique is found to be useful. 
[28] also proposed FFT-PCA/SVD as a comparatively consistent and efficient 
than PCA/SVD algorithm in variable facial expressions recognition. Optimal 
dimension reduction is the main objective of SVD. The various data types ap-
plied on SVD from literature search are Text [62] [63], Image [64] [65], Audio 
[66] [67], video [68] [69], Text [62] [63], Times series [70] [109] [71] and Struc-
tured data [72] [73]. 

3.1.3. Latent Semantic Analysis (LSA) 
An unsupervised LDR mapping technique, Latent Semantic Analysis (LSA) was 
designed specifically for text data and is developed on computations from PCA 
or SVD. LSA which was introduced by [14] is a DR technique introduced for 
improving the performance of the retrieval of an information retrieval system. 
This is done by grouping into same clusters related documents such that each 
document indexes the same words or almost the same words and relatively un-
related documents different words [74]. LSA is a technique that is vector based 
that is used to make comparisons and as well represent HD corpus text data into 
one of lower dimensions [5] [75]. LSA is premised on the theory of meaning 
which is engineered by psychology professor Thomas Landauer. He posited that 
meaning is constructed through the continuous experience with language [76]. 

The cognitive functions of LSA include the learning and understanding of the 
meaning of words [77] especially by students, episodic memory [78], discourse 
coherence [79], semantic memory [80], and the comprehension of metaphors [77]. 
LSA is able to produce measures of word-word, passage-passage, word-word rela-
tionships. LSA can also handle Synonymy problems to some extent depending on 
the nature of the dataset [75]. 

LSA has some limitations although it is seen to be an effective DR tool for text 
documents. It captures partially, the multiple meanings of a word (polysemy). 
This is because each word that occurs is treated as having the same meaning due 
to the word being represented as a single point in space. An example is the word 
“chair” occurring in a document that contains “The Chair of the Board” and also 
in a separate document containing “the chair maker” are considered the same. 
This behavior results in the representation of vectors as an average of all the dif-
ferent meanings of the words in the corpus, which may make it difficult for 
comparison purposes [14]. The effect of this limitation is however lessened due 
to the fact that words have a predominant sense throughout a corpus (i.e. not all 
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meanings are equally likely). Another drawback of LSI is the bag of words 
Model (BOW), which refers to texts being represented in an unordered collec-
tion of words. Multi-gram dictionary can be used however to address this li-
mitation. It is used to find direct and indirect association as well as higher-order 
co-occurrences among terms [81]. Another limitation of LSA is that, it is unable 
to recover the intended optimal semantic factors. There has been some exten-
sions to the LSA over the years which includes the technique introduced by [82], 
the Probabilistic LSA (PLSA). PLSA is effective for retrieval of information, ML, 
Natural Language Processing (NLP), and other related areas. Experimental re-
sults have revealed that the probabilistic method was substantially and consis-
tently better than the standard LSA when different categories of linguistic data 
collections and text documents were accessed through indexing of documents 
automatically. [83] also proposed a Regularized Probabilistic LSA (RP-LSA) 
model to help in adjusting the model flexibility of the classical LSA and also to 
avoid over fitting issues. Experimental results have revealed that the RP-LSA re-
duces response and computational time [84]. The hk-LSA [85] was also intro-
duced for the reduction of text documents dimensions. [86] introduced a Genetic 
Algorithm which was based on Latent Semantic Features (GALSFs) to improve 
text classification and experimental results revealed that GALSF outperformed the 
LSI. [87] introduced the Discriminative PLSA (DPLSA) which was proposed for 
facial recognition. DPLSA was successful in facial recognition based on single 
training sample [87]. The data type applied for LSA from literature search is 
Text data [88] [89]. 

3.1.4. Locality Preserving Projections (LPP) 
Locality Preserving Projections (LPP) which was proposed by [15] is an unsu-
pervised linear dimensionality reduction algorithm. They are projective maps 
that solve problems that are variational in nature and preserve optimally the 
neighborhood structure of the data set [15]. Because LPP is a classical linear 
method that also projects data along the usage of maximum variance, it is 
viewed as an alternative to PCA. LPP shares some of the properties of non-linear 
methods such as the Locally Linear Embedding or Laplacian Eigenmaps in terms 
of data representation [15]. 

There are a number of interesting perspectives to LPP. The objective criterion 
forms the classical linear techniques is minimized for the maps designed. 

LPP is seen as an appropriate alternative to PCA in pattern recognition, in-
formation retrieval and exploratory data analysis [15]. LPP has different applica-
tion areas such as face recognition [90], image retrieval [91], image and video 
classification [15], pattern recognition [15], automatic speech recognition [6], 
and computer vision [92]. 

A drawback of LPP is that it has difficulties for reconstruction because the 
projection matrix in LPP is not orthogonal. As a result the orthogonal LPP 
(OLPP) was proposed by [93] such that projection matrix that is orthogonal can 
be obtained through a step by step procedure. The challenge with the OLPP al-
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gorithm is that, it is computationally expensive. The fast and orthogonal version 
of LPP, called FOLPP was proposed by [94] to address the challenge of OLPP. 
The algorithm minimizes simultaneously the locality and as well maximizes the 
globality under the orthogonal constraint. 

There has been extensions to the LPP over time and these include the discri-
minant LPP (DLPP) which was proposed to remove noise which also a limita-
tion of LPP from image data [95] as well as the uncorrelated DLPP (UDLPP) 
which was proposed to enhance recognition performance [96]. The parametric 
regularized LPP (PRLPP) algorithm was also proposed to overcome or mitigate 
the small sample size (SSS) problem. [97] also introduced a Locality-Regularized 
Linear Regression Discriminant Analysis (LL-RDA) based on LL Regression 
Classification (LLRC) [97]. The Discriminant Locality preserving projections 
(DLPP) proposed by [98] is founded on the maximization of L1-norm for better 
pattern recognition performance. The algorithm was efficient when outliers are 
present and it also resolves small sample size issues which are some of the limi-
tations of LPP. Another extension by [99] was the Soft Locality Preserving Map 
(SLPM) technique. It effectively reduces the feature vector dimensions. [100] in-
troduced a Grassmann manifold (GLPP) which was based on the LPP. Results 
from experiments revealed that GLPP was effective for image/video classifica-
tion. LPP has a singularity matrix issue and as a result 2D image vectors cannot 
be implemented. As a result, a 2D-LPP was proposed by [101]. 2D-LPP is able to 
save local information and helps in the detection of an intrinsic manifold struc-
ture of images which enhances recognition of images by using images of 2D ma-
trices instead of 1D vector. 

There are supervised versions of LPP which includes the Supervised Kernel 
LPP (SKLPP) proposed by [102] to enhance the accuracy of face recognition. An 
enhanced supervised locality preserving projections (ESLPP) was introduced by 
[93] for facial recognition. Cai also proposed a semi-supervised LPP (SSLPP) 
and experimental results revealed that the SSLPP technique improved LPP by 
the incorporation of the relevance degree information [103]. The data types ap-
plied on LPP from literature search are Text [104] [105], Image [106] [107], Au-
dio [108] [109], Video, [110], Times series [111] [112] and Structured data [113]. 

3.1.5. Independent Component Analysis (ICA) 
Independent Component Analysis (ICA) which was initially proposed by [6] is 
an unsupervised LDR statistical signal processing technique which is extensively 
used for the exploration of multi-channel data. The technique involves the mod-
elling of data that is a linear mixture of independent source. Independent com-
ponent analysis of a random vector involves the searching of a transformation 
that is linear resulting in the minimization of the statistical dependence between 
its components. ICA as a concept, may be seen as an extension of PCA, which 
only imposes independence up to the second order and as a result, defines direc-
tions that are orthogonal [16]. ICA has applications in blind identification, 
Bayesian detection, data analysis and compression and localization of sources 
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[16]. In comparison to PCA, ICA has the ability to provide more components 
that are meaningful and could be extracted by the independent optimization 
condition instead of the maximization of variance in PCA [114]. ICA is also able 
to extract potentially more information from the data collected [115]. Apart 
from reducing the risk of overfitting, ICA allows for data reconstruction in the 
original space [115]. 

The major issue with ICA algorithms however, has to do with its stochasticity. 
Most ICA algorithms attempt to solve problems involving gradient-descent-based 
optimization such as maximization such as the non-Gaussianity of source S [116], 
mutual information minimization [117], and maximum likelihood estimation 
[118]. Also, in the case of high-dimensional signal space as in non-targeted data, 
the curse of dimensionality makes it more complicated. Consequently, it is not 
likely that local minima that are obtained from an algorithm run will be the 
global minima desired and therefore they are to be interpreted with great cau-
tion [119]. The Fast fixed point ICA, FastICA was suggested by [119] for the se-
paration of linearity mixed source signals and complex values and has been em-
ployed for feature extraction as well as Blend Source Separation (BSS). BSS has 
many applications such as remote sensing, biomedical, finance, communication, 
signal processing and many others [120]. The mixed ICA/PCA was proposed by 
[121] through Reproducibility Stability approach which utilizes estimation 
through an iterative method to rank different sources which is utilized in the 
determination of dimensions of non-Gaussian subspaces from mixture of data. 
Another extension of ICA, Functions of Ranking and Averaging ICA by Repro-
ducibility (RAICAR) was introduced by [122] to tackle the challenges spatial ICA 
face for functional Magnetic Reasoning Imaging (fMRI). When the signal mixture 
contains both Gaussian and non-Gaussian sources, Gaussian sources cannot be 
recovered by ICA and influence the estimate of non-Gaussian sources. The Mixed 
ICA/PCA via Reproducibility Stability (MIPReSt) was proposed by [121] to sepa-
rate features of Gaussian and non-gaussian sources. The IICA-based feature ex-
traction method was also proposed by [123] for automatic EEG artifact elimina-
tion. [124] also introduced the Capola ICA (CICA) which is based on measure of 
dependence of Hoeffding for time series data. [125] proposed the temporal ICA 
(tICA) to separate global noise signals when capturing fMRI data. [126] intro-
duced a mixed method by combining techniques of ICA as well as kernel me-
thods in the prediction of variations in the stock market. A hybrid of hierarchic-
al clustering and ICA called ICAclust were combined so it could ignore issues 
like the normality of data as well as small temporal observations which is a fea-
ture of classical clustering [126]. Experimental results revealed that ICAclust 
performed better than traditional k-mean clustering [126] for temporal gene ex-
pression data. Other extensions of ICA included Probabilistic ICA (PICA) for 
fMRI [127], Sparse Gaussian ICA (SGICA) [128], Faster ICA under orthogonal 
constraint [129] and the Super Gaussian BSS via Fast-ICA with the approxima-
tion of Chebyshev Pade [120]. Types of data applied using ICA from literature 
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search are Text data [130] [131], Image [132] [133], Audio/signals [123] [127] 
[134], Video [135], Times series [136] [137], and Structured data [138] [139]. 

3.1.6. Linear Discriminant Analysis (LDA) 
Linear Discriminant Analysis (LDA) is a well-known and widely used supervised 
LDRT invented by [140], who used it successfully for the classification of flowers 
in his 1936 paper, “The use of multiple measurements in taxonomic problems”. 
LDA uses the linear combination of features as a linear classifier for the extrac-
tion of features and dimension reduction [17] [140]. It maximizes the ratio of 
the between-class variance to the within-class variance, thereby guaranteeing 
maximum class separability through its transformation of features into a lower 
dimensional space [141]. An advantage of LDA is that it is able to use informa-
tion from both the features to create a new axis which in turn minimizes the va-
riance and maximizes the class distance of the variables. 

Although the LDA is one of the most well-used data reduction techniques, it 
has a number of limitations. If the dimensions are much higher than the number 
of samples in the data matrix, LDA is unable to find the lower dimensional space 
resulting in the within-class matrix becoming singular. This is known as the 
small sample problem (SSS). Different approaches have been proposed to solve 
this problem. The first approach proposed was to remove the null space of 
within-class matrix as was reported by [142]. The second approach utilizes the 
conversion from an intermediate subspace for example PCA to a within-class 
matrix to a full-rank matrix [143]. In the second approach, if linearity problem 
exists, that is if different classes are non-linearly separable, the LDA is unable to 
discriminate between these classes. Kernel functions can used as reported in [144] 
as a solution to the problem. The third approach which is a well-known one, is to 
apply the regularization problem in solving singular linear systems [143]. 

Different extension of LDA has been proposed to solve the SSS problem. This in-
cludes the regularized LDA (RLDA) [145], Direct LDA (DLDA) [146], PCA + LDA 
[147], Null LDA [148], Generalized EDA (GEDA) [149], kernel DLDA (KDLDA) 
[150] and PCA + LDA [147]. A semi supervised variant of LDA was proposed by 
[151] with its main objective of combining both labeled and unlabeled data for 
training LDA and to allow for the situation where the labeled data are few. Experi-
mental results revealed that it performed better than the classical LDA. 

Application of LDA includes facial recognition [152], text recognition [146] 
[152] [153], automatic diagnosis of machine operations [154], early detection of 
diseases [155], person reidentification [156], hand movement classification 
[157], motor imagery EEG [158], and ground water redox conditions [159]. The 
data types applied on LDA in literature search are Text [152] [160], Images [161] 
[162], Audio [163] [164], Video [165] [166], Time series [167] [168] and Struc-
tured data [169] [170]. 

3.1.7. Project Pursuit (PP) 
Projection Pursuit (PP) proposed by [171] is an unsupervised non-parametric 
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LDRT. The idea originated from Kruskal in 1969. PP has been used widely for 
data exploration analysis. It is a technique that is able to find low dimensional 
linear projections and discovers patterns that are interesting for analysis [172]. A 
measure of “interestingness” is employed to this end, which is known as projec-
tion pursuit index (PP index). One key advantage of PP is its ability to fit differ-
ent pattern recognition tasks flexibly, depending on the PP index used. Some 
areas of PP application are classification [173], clustering analysis [174], density 
estimation [175] and regression analysis [176]. One other advantage of PP, is its 
ability to mount new examples in the projection space after construction because 
of the out-of-sample mapping capability of PP. 

Although Projection pursuit (PP) is unsupervised learning technique, it has 
successfully been applied in several domains for supervised analyses as well 
[177]. Many projection pursuit indices have been consequently developed to de-
fine interesting projections. Because most low-dimensional projections are ap-
proximately normal, a number of the projection pursuit indices that have been 
proposed are focused on non-normality. For example, the Legendre index [171], 
the Hermite index, the natural Hermite index and the entropy index and the 
moment index [178]. 

A limitation of PP is its high computational difficulty in finding optimal pro-
jection spaces for such cases. Notable PP optimization methods are the gradient 
techniques (Liu, 1988), the Newton-Raphson method [179], genetic algorithm 
[180], simulated annealing [181], and also the particle swarm optimization 
[182]. 

An extension of PP, the Project Pursuit regression was introduced by [183] to 
address the complexity issue and also to reduce computation cost of PP tech-
nique. Another extension of PP introduced by [184] was the Exploratory PP 
(EPP). Its objective is to combine an assemblage of data analytic techniques for 
low dimensional representation. [185] also developed a learning technique for 
outlier detection and this learning technique was based on PP. Random Projec-
tion (RP) was proposed by [130] for image and text data. Comparative tests re-
vealed that in comparison with other techniques, RP was computationally less 
expensive and as well not affected by the curse of dimensionality [186]. [187] al-
so introduced PP algorithm that was tree-based for the classification purposes 
with its key strength being its ability to find correlation between features. Also, 
with the interpretation of results, it provides 1D visualization of group differ-
ences. [18] also introduced an extension of PP, purposefully for the reduction of 
HDD with small sample size and was referred to as the PP framework. [188] in-
troduced the Projection Pursuits Dynamic Cluster (PPDC) to address issues of 
HDD and non-linearity. [189] also proposed the Projection Pursuits Random 
Forest (PPRF) technique to solve problems of classification. Experimental results 
revealed that PPRF was more efficient than Random Forest (RF) when there 
was a separation of classes applying linear combination of features or when 
there is an increase in correlation between features. [190] proposed a super-
vised projection pursuit (SuPP) based on Jensen-Shannon divergence capable 
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of working with missing data as well as large variable-to-sample ratio. When 
SuPP was combined with Naïve Bayes it performed better than compared to 
PCA and LDA on Iris data. [191] proposed a projection pursuit method based 
on semi-supervised spectral connectivity. Experimental results revealed that it 
was competitive in terms of classification accuracy using benchmark data sets. 
Semi-supervised variants of PP have also been developed [151]. Types of data 
from literature search to have been applied on PP are Text [192] and Image 
[193] [194]. 

3.2. Non-Linear Dimensionality Reduction Techniques 
3.2.1. Kernel Principal Component Analysis (KPCA) 
Kernel Principal Component Analysis (KPCA) is a Non-linear Dimension Re-
duction Technique (NLDRT) which was introduced by [19]. It is an extension of 
traditional PCA that works with High Dimension (HD) feature space employing 
the kernel method. The difference between KPCA and PCA is that, there is an 
eigen vector computation of kernel matrix with KPCA whiles PCA calculates the 
covariance matrix [195]. Also, non-linear principal components can be extracted 
with less computation power with KPCA. For data having non-linear manifolds, 
KPCA offers good encoding [196]. With KPCA, there is a non-linear transfor-
mation of the input data from the original input space to kernel for each data. A 
kernel matrix K is then formed from the inner product of the new feature. PCA 
is consequently applied the centralized K in the estimation of the covariance 
matrix of the new feature vectors [197]. Some extensively used kernels include 
Gaussian, Polynomial, and Hyperbolic tangent and Radial. 

A drawback of the KPCA is that the cost of computation could be extremely 
high which could lead to attendant numerical problems of diagonalizing large 
matrices [197]. To overcome these drawbacks, Rosipal and Girolami proposed 
an EM algorithm for KPCA [197], which is an expectation-maximization ap-
proach for performing kernel principal component analysis and experimental 
results showed that it an efficient method computationally, especially for large 
number of data points. One drawback of this approach however is that it needs 
to still store the N × N kernel matrix, which limits its applicability in many large 
dataset problems. 

The Block Adaptive KPCA (BAKPCA) was developed by [198] to add 
non-iteratively and dynamically new blocks and to remove old blocks of data. It 
is efficient in signal processing and also monitoring of processes. Greedy KPCA 
was also proposed by [199] to improve the performance of SVM classifier. Re-
sults showed that the greedy kernel PCA can significantly reduce complexity 
while it retains classification accuracy. Greedy KPCA was however found to be 
unsuitable for denoising. The Subset KPCA (SKPCA) was also introduced by 
[200] to reduce complexities in computations of KPCA for Dimension reduction 
as well as classification. The Robust KPCA has also been proposed by [201] to 
deal with outliers and to improve accuracy for protein classification. [202] in-
troduced the discriminative PCA (dPCA) for discriminative analysis of multiple 
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datasets and has been applied in areas such as health data, sensor data, and facial 
images. Supervised Kernel Construction for Unsupervised PCA on Face Recog-
nition was also proposed. Experimental results revealed that Supervised Kernel 
Construction for Unsupervised PCA (SK-PCA) performed better than KPCA 
with RBF kernel (RBF-PCA) using ORL and FERET databases. The types of data 
cited in literature that KPCA has been applied on and performed well are Image 
[203] [204], Audio [205] [206], Video [177] and time series data [207] [208]. 

3.2.2. Multidimensional Scaling (MDS) 
Multidimensional Scaling (MDS) introduced by Kruskal and Wish in 1978 is an 
unsupervised NLDRT. The main objective of MDS is to preserve a measure of 
similarity or dissimilarity between pairs of data points. Multidimensional scaling 
is one of the techniques of dimensional reduction that has the ability to convert 
multidimensional data into a lower dimensional space whiles it keeps the intrin-
sic information. One main objective of MDS is to display graphically a set of 
given data making results much easier to understand and easy interpretability of 
complex structural data. Although there are a number of dimension reduction 
techniques, MDS has become much popular because of its simplicity as well as 
the various areas of application and has established itself as a standard tool for 
statisticians and researchers in general. In analysis involving MDS, spatial maps 
of objects are found given the similarity and dissimilarity of information that ex-
ists between available objects [209]. 

In MDS analysis, the data are embedded typically into a 2 or 3 dimensional 
map such that given the similarity or dissimilarity, information is matched 
closely to distances between points [210]. Objects of interest such as items, 
attributes, stimuli, respondents, etc. correspond to points such that those that 
are near to each other are similar empirically, and those that are far apart are 
seen to be different. MDS and factor analysis are seen to be similar but the ad-
vantage MDS has over factor analysis is the fact that MDS does not depend on 
the rigid assumptions of linearity and normality [210]. The only significant as-
sumption of MDS is that the number of dimensions should be one less than the 
number of points which implies that three variables should at least be entered in 
the model and also at least two dimensions must be specified [209]. MDS has 
been applied in exploratory data analysis visualization and multivariate analysis. 
A limitation of MDS is that it is sensitive to outliers. An outlier detection me-
chanism was proposed by [211] using Robust MDS (RMDS) and based on geo-
metric reasoning. Another limitation of MDS is that is suffers from increase in 
noise levels. This is as a result of the fact that MDS is dependent on the noise le-
vels and number of dimensions. Extension of MDS has been proposed over time. 
The localized MDS which is a neighbor preserving DR algorithm was proposed 
by [212] to create data that is low dimensional and has a latent manifold struc-
ture. [213] also introduced a Local MDS (LMDS) which uses local information 
to construct a global structure and has been applied for graph drawing as well as 
proximity analysis. [214] in another study, introduced LMDS purposefully for 
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non-rigid 3D retrieval of shapes. Another variant of MDS known as the MDS+ 
was proposed by [215] to act uniquely as a shrinkage function that is asymptoti-
cally optimal. MDS+ is able to overcome the external estimation issue for em-
bedding dimensions and also computes the optimal number of lower dimen-
sions into which the dataset can be embedded. The MDS-T was proposed by 
[216] for the analysis of psychological data. A Partially Supervised Metric Multi-
dimensional Scaling Algorithm for Textual Data Visualization has also been de-
veloped [217]. The various data types applied on MDS in literature search are 
Text [210] [218], Image [219] [220], Audio [221] [222], Video [223], Times se-
ries [224] [225] and structured data [226]. 

3.2.3. ISOMAP 
Another popular unsupervised NLDRT whose objective is to intrinsically find 
structures of data from a non-linear manifold is the ISOMAP. The algorithm 
which was proposed by [227] attempts to extract parameterizations for data sets 
into a low dimensional space to form a high dimensional space such that there is 
a preservation of the pairwise geodesic distances so that nearby points are far in 
high dimensional space map to nearby points that are far in low dimensional 
space. The distinguishing feature of ISOMAP is its ability to get a lower dimen-
sional representation of data, whiles the geodesic distance is preserved [227]; 
[228]. ISOMAP combines the major characteristics of PCA and MDS in terms of 
computational efficiency, asymptotic convergence guarantees and global opti-
mality with the flexibility to an extensive class of non-linear manifolds. The 
ISOMAP approach basically builds on the traditional MDS but the distinguish-
ing property is that is seeks to preserve the intrinsic geometry of the data which 
is captured in the geodesic manifold distance between the pairs of data points 
[227]. ISOMAP has been efficient when used in detecting irregularities from real 
time video analytics [229]. A path based ISOMAP was proposed by [230] for the 
enhancement of memory and as well as time complexities. Geodesic path is used 
in this approach to find the low dimension embedding. Some of the drawbacks 
of ISOMAP are that, it is computationally expensive and performs poorly when 
manifold is not well sampled and contains holes [230]. The Landmark Isomap 
(L-Isomap) was presented by [231] to enhance the Isomap scalability. 

ISOMAP has successfully been applied on the condition of urban road traffic 
[232], speech summarization and crack identification in materials [233], facial 
recognition [234]. Supervised versions of Isomap have been proposed. This in-
cludes Supervised Isomap for classification [235], Supervised Isomap with dis-
similarity measures in embedding learning [236] and Supervised Isomap for 
plant leaf image classification [237]. The data types applied on Isomap from li-
terature search are Text [237] [238], Images [239], Audio [240] [241], Video 
[242] [243]. 

3.2.4. Locally Linear Embedding (LLE) 
Locally Linear Embedding (LLE) which is an unsupervised NLDRT and intro-
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duced by [244] aims to preserve only local properties of data. LLE as a learning 
algorithm involves the computation of low-dimensional neighborhood preserv-
ing embedding of inputs that are of high dimensions in nature. LLE has the abil-
ity to learn the global structure of non-linear manifolds like those from images 
of faces or documents of text by exploiting the local symmetries of linear recon-
structions. LLE has been applied successfully in a wide range of applications 
which includes face recognition and remote sensing [177]. More recently, LLE 
has more recently been used in MRI which includes functional MRI [245], shape 
analysis of the hippocampus in AD, diffusion tensor imaging, breast lesion seg-
mentation, feature fusion and image classification [246]. 

LLE is popular among researchers because of its ability to deal with large data 
sets of high dimensional data and its non-iterative way of finding embedding. 
LLE however has some drawbacks which include sensitivity to noise, the inabili-
ty to deal with novel data and the inevitable ill-conditioned Eigen problems. 
Another drawback is that, LLE as an unsupervised technique which assumes that 
all data reside in a continuous manifold but this is not the case for problems of 
multiple class classification. Some efforts have recently been made to develop ex-
tensions of the classical LLE. [247] proposed the weighted locally linear embedding 
(WLLE) for dimension reduction. This was to discover the intrinsic structures of 
data, such as global distributions neighborhood relationships, and clustering. One 
major advantage of WLLE is to optimize the intrinsic structure process discovery 
by avoiding unreasonable neighbor searching and also at the same time is able to 
adapt to novel data. Simulated experiments revealed that the WLLE performed 
better in dimension reduction and manifold learning than the classical LLE and 
was more robust to changes in parameter. [248] proposed Local Smoothing for 
Manifold Learning purposely for outlier detection and noise reduction. Experi-
mental examples with image datasets revealed that manifold learning methods in 
combination with weighted local linear smoothing give more accurate results. 
[249] proposed a dimensional reduction technique that was non-linear and com-
putes a low-dimensional and preserving of neighborhood embedding of high di-
mensional data. Other extensions of LLE include the Hessian Locally Linear Em-
bedding (HLLE) proposed by [250] which is constructed based on Incremental 
LLE for dynamically adding new data and also preserves significant features of 
the original data while whiles performing DR.. The Modified LLE (MLLE) was 
proposed by [251] using multiple weights. A Multiple Manifold LLE proposed 
by [252] is an approach that allows for learning multiple manifolds for multiple 
classes and is efficient in classification and objects recognition. 

A Supervised version of LLE was proposed by [250] for plant classification based 
on images of leaves. A semi supervised version of LLE was also proposed for classi-
fication of leave images [246]. The types of data applied on LLE from literature 
search are image [245] [253], Audio [254] [255] and Video [256] [257]. 

3.2.5. Self-Organizing Map 
Self-Organizing Map (SOM) is a cognitive learning unsupervised NLDRT which 
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was introduced by [258]. SOM is an architecture that was suggested for Artificial 
Neural Networks. One of the properties of SOM is that it can create effectively 
spatially organized internal representations of many input signals of features and 
their abstractions. As a result, from the self-organizing process of SOM, it is able 
to identify semantic relationships in sentences. SOM has performed particularly 
well in pattern recognition tasks involving signals that are very noisy. These 
maps of SOM have been used successfully in speech recognition [258]. SOM is 
also seen as a very good tool in exploratory phase of data mining [258]. SOM has 
the ability to reduce complex problems down to data mappings that easily be in-
terpreted. SOM are also capable of handling different types of problems while 
providing an interactive and useful summary of the data. As well, SOMs are ca-
pable of clustering large and complex data sets. SOM however has some draw-
backs. It requires data that is sufficient and necessary in order to develop mea-
ningful clusters. Also, the weight of vectors should be based on the successful 
grouping of the data and distinguishing inputs. Scanty data or extraneous data in 
the weights may add randomness to the groupings. Another drawback of SOM is 
that, obtaining a perfect mapping is difficult in cases where groupings are unique 
within the map. Application areas of SOM include intrusion detection [259], 
noise removal from spectral images [260], massive documents automatic organ-
ization [261] and also weather and crop production rate prediction [262]. 

Some extensions of SOM include the Community SOM (CSOM) with the spe-
cialty of enhancing the overall learning process of SOM. The hybrid approach of 
SOM was also proposed by [263] for prediction of huge volume of text docu-
ments based on the combination of probability distribution and SOM with the 
Naive Bayes. Experimental results revealed that it achieved better classification 
accuracy. A text mining novel algorithm approach of SOM was also developed 
by [264] to enhance the performance of SOM. [262] also proposed a correntropy 
based technique which was used in place of Mean Square Error (MSE) and used 
by SOM to enhance the efficiency of SOM in the presence of outliers. [265] also 
introduced a multistage Visual Analytical (VA) method with SOM flow. The al-
gorithms were to iteratively refine clusters to help in time series data analysis. 
SOM is suitable for all kinds of data which includes Text [266] [267], Image 
[268] [269], Audio [270] [271], Video [272] [273], Time series [274] and Struc-
tured data [275] [276]. 

3.2.6. Learning Vector Quantization (LVQ) 
Learning Vector Quantization (LVQ) is a competitive based neural network su-
pervised NLDRT which is similar to SOM. The technique which was introduced 
by Kohonen in 1995 is a technique specifically for statistical pattern recognition 
with the aim of learning prototypes representing class regions. Voronoi parti-
tions are yielded when the class regions are defined by hyperplanes between 
prototypes. Several variants of LVQ have been developed by Teuvo Kohonen 
since the late 1980s [277]. LVQ techniques are similar to SOM in the sense that 
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all output nodes compete and the winning node is selected according to its simi-
larity to the input pattern presented. Unlike SOM, LVQ updates only the win-
ning neuron and as a result, the output feature space is not topologically or-
dered. LVQ is mostly applied to find the feature map after analysis on training 
data is performed using SOM. Unsupervised learning can also be carried out on 
LVQ for purposes of clustering. LVQ can also be trained without labels by un-
supervised learning for clustering purposes [278]. An advantage of LVQ classifi-
ers is that they are intuitive and simple to understand which is an advantage it 
has over SVMs. Although SVM is considered to be robust, LVQ has shown to be 
a valuable alternative. LVQ classifiers are also able to deal with multi-class prob-
lems. LVQ as a result has been applied in different areas which includes its clas-
sification accuracy [279]. LVQ have been applied in speech recognition and 
control pattern recognition. LVQ however has two major limitations which are 
slow convergence and unstable behavior. The problem of convergence has been 
solved using the Genetic algorithm introduced by [280] which increased the 
classification performance rate prior to power quality disturbances. The LVQ 
family consists LVQ1, LVQ2, and there are improved versions namely LVQ2.1, 
LVQ3, OLVQ1, OLVQ3, Multipass LVQ, and HLVQ algorithms. There has been 
other extension of LVQ which includes the LVQ based artificial neural network 
classifiers proposed by [281]. The algorithm was developed for different kinds of 
methods for signal processing to help in the recognition and classification of 
arrhythmia from the ECG signals. LVQ in combination with Gabor filter was 
successfully applied to recognize different facial expressions. Different variants 
of LVQ were also proposed by [282] to help improve accuracy of classification 
for different kinds of data. 

[283] combined PCA and LVQ for classification for strategies of mobile 
learning employed by college students. Also, the dissimilarities based Genera-
lized LVQ (GLVQ) was proposed by [284] to help in the enhancement of classi-
fication accuracy. The Kernel based RSLVQ which was proposed by [285] used 
the general gram matrix to handle complex non vector data. A hybrid approach 
of LVQ proposed by [286] was the random Fourier features extraction for an 
LVQ matrix for the provision of smaller and discriminative feature sets. The 
suitable data types from literature search for LVQ are Text [287] [288], Image 
[289] [290], Audio [291] [292], Video [293] [294], Time series [295] [296] and 
Structured data [289] [297]. 

3.2.7. t-Stochastic Neighbor Embedding (t-SNE) 
t-Stochastic Neighbor Embedding (t-SNE) is an unsupervised NLDRT which 
was introduced by [298]. The technique is a variation of the Stochastic Neighbor 
Embedding introduced by [25] whose main objective is the construction of 
probability distributions from pairwise distances such that larger distances cor-
respond to smaller probabilities and vice versa. T-SNE is the most commonly 
used learning method in single-cell analysis. T-SNE however has some limita-

https://doi.org/10.4236/jdaip.2021.93013


S. Nanga et al. 
 

 

DOI: 10.4236/jdaip.2021.93013 206 Journal of Data Analysis and Information Processing 
 

tions which includes slow computation time, its inability to meaningfully 
represent very large datasets and loss of large scale information [299]. A mul-
ti-view Stochastic Neighbor Embedding (mSNE) was proposed by [299] and ex-
perimental results revealed that it was effective for scene recognition as well as 
data visualization [299]. The suitable data types for t-SNE are text [300] [301], 
Image [302] [303], Audio [241] [304], video [217], Time series [305], and Struc-
tured data [306] [307]. 

3.2.8. Uniform Manifold Approximation and Projection (UMAP) 
Uniform manifold approximation and projection (UMAP) is an unsupervised 
NLDRT proposed by [24]. It was constructed based on a theoretical framework 
in in Riemannian geometry and algebraic topology. [24] credits their work on 
the mathematical work on the mathematical foundations of Laplacian Eigen 
maps of Belkin and Niyogi. UMAP explores the issue of uniform data distribu-
tion on manifolds through the combination of the work of David Spivak [308] 
and the Riemannian geometry. UMAP at a high level uses the approximations of 
the local manifold and then patches their local fuzzy simplicial representation of 
sets to construct a topological representation of high dimensional data. A similar 
process can be used to construct an equivalent topological representation given 
some low dimension representation of data. The data representation is then op-
timized in the low dimensional space to minimize cross entropy between the two 
topological representations. UMAP is seen to compete well with t-SNE which is 
currently a robust technique for visualization quality in DR. UMAP also pre-
serves more of the global structure with a better run time performance than 
t-SNE [24]. Also, the topological foundations of UMAP enable it to significantly 
scale larger data set than are feasible for t-SNE. UMAP also does not have com-
putational restrictions on embedding dimension hence making it viable for di-
mension reduction. UMAP is similar to t-SNE but probably has a higher 
processing speed and better visualization. The main disadvantage of UMAP is 
the fact that it is a relatively new technique and therefore lacks maturity. 

UMAP algorithm was compared to PCA, t-SNE using MSI data sets acquired 
from pancreas and human lymphoma samples. Results from the study revealed 
that that UMAP is competitive with t-SNE in terms of visualization and it is also 
well-suited for the dimensionality reduction of large (>100,000 pixels) MSI data 
sets. The runtime also markedly reduced by fourfold in comparison with the 
state of art t-SNE [309]. UMAP was also evaluated as an alternative to t-SNE for 
single-cell data [310]. The data types applied on UMAP from literature search 
are Image [309] [311] [312], Audio [313], Video [314] [315] and Structured [24]; 
[316] [317]. 

3.3. Overview of Sufficient Dimension Reduction 

Sufficient dimension reduction (SDR) is a feature extraction class of methods for 
classification as well as regression. Its main purpose is to reduce the size of data 
set with a lot of dimensions to just few features of importance with the potential 
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of establishing important relationship between variables through improved visu-
alization. Sufficient dimension in recent times has undergone significant devel-
opment. This could partly be because of increase in demand for methodologies 
that are able to effectively work with high-dimensional data in the era of big data. 

Some of the earliest methods of SDR, include the seminal sliced inverse re-
gression (SIR) by [318], the sliced average variance estimation (SAVE) by Cook 
and Weisberg [319], principal Hessian direction (PHD) [320] [321], minimum 
average variance estimation (MAVE) [322], simple contour regression (SCR) 
[323], the inverse regression (IR) by [324] and also the directional regression 
(DR) by [325]. Other methods include, the simple contour regression (SCR) 
[323], Fourier transform method proposed by [326] and [327], sliced regression 
[328], the Kullback-Leibler based approach which was also proposed by [329] 
and the ensemble method [330]. There is also the partial least square (PLS) [331] 
[332], sufficient component analysis (SCA) [333], kernel dimension reduction 
(KDR) [334]. Other methods include, but are not limited to, the method pro-
posed by [335] for exponential family predictors and the methods suggested by 
[336] with exponential family inverse predictors and the likelihood based di-
mension reduction method which was proposed by [337]. The limitation of most 
of the SDR techniques however, is that they require linearity condition which 
includes SIR and SAVE [338] or the constant variance condition [320] [321] or 
even both to hold for some techniques, which is practically difficult to verify. 
Also, although it is well know that inverse regression methods are easy to com-
pute relatively and also practically useful, many of them fail in estimating the 
central subspace exhaustively by Cook in 1998 [328]. For example, the PHD is 
known to detect only patterns that are non-linear and estimates directions in 
only the central subspace [339]. On the other hand, SIR [318], Slicing regression 
and IR may not perform well if the relationship of the regression is highly sym-
metric [321]. [340] pointed out that SIR is also very sensitive to outliers, and at 
some extreme situations, the estimators provide very wrong efficient dimension 
reduction directions simply orthogonal to the true dimension reduction direc-
tions [340]. [341] also pointed out that, SAVE cannot be √n consistent and that 
it is not consistent when each slice contains a fixed number of data points that 
do not depend on n, where n is the sample size [341]. 

4. Conclusions 

The area of Dimension reduction is becoming very relevant in different applica-
tion areas such as healthcare, economics, environment, social science, agricul-
ture, and many more because of the sheer amount of data being generated in the 
era of big data. Big data is a phenomenon that was not anticipated by the scien-
tists who contributed to groundbreaking mathematical and statistical models 
that are still relevant till date. The earliest Dimension reduction techniques were 
the linear PCA and the linear LDA. Although robust they have their limitations. 
As a result, variants of these techniques such as the LPCA, RPCA, ROBPCA, 
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GPCA etc. in the case of PCA have been proposed to address these limitations. 
Variants of LDA also include RLDA, DLDA, Null LDA, PCA + LDA, kernel 
DLDA etc. Other linear dimension reduction techniques such as the SVD, LSI, 
PP, ICA and LPP have been developed with their own unique strengths. One li-
mitation of linear dimension reduction techniques is their inability to perform 
well when the data has non-linear structures. Non-linear Dimension techniques 
have consequently been proposed to address this limitation. The KPCA for ex-
ample is the non-linear version of PCA. Other non-linear techniques include the 
MDS, ISOMAP, LLE, SOM, LVQ, t-SNE and UMAP. The aim of PCA is the 
preservation of variance; SVD is optimal dimension reduction; LSI/LVQ is clas-
sification accuracy; LPP, KPCA, MDS, LLE and Isomap are the extraction of 
manifolds; SOM looks at prediction accuracy and t-SNE and UMAP is the pre-
servation of neighborhood. Sufficient dimension reduction (SDR) techniques are 
being explored recently, with Li proposing the first technique, the seminal sliced 
inverse regression. 

The area of a proper fusion between the dimension reduction techniques and 
statistics should be explored for further research. Also, most of the dimension 
reduction techniques reviewed are unsupervised learning techniques. Further 
research should be carried out on classical supervised dimension reduction 
techniques as well as semi-supervised techniques. Further research should also 
be carried out to illustrate practical implementation of DR techniques using 
example data. 
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