
World Journal of Condensed Matter Physics, 2021, 11, 65-76 
https://www.scirp.org/journal/wjcmp 

ISSN Online: 2160-6927 
ISSN Print: 2160-6919 

 

DOI: 10.4236/wjcmp.2021.113005  Aug. 27, 2021 65 World Journal of Condensed Matter Physics 
 

 
 
 

Phase Diagram and Edge States of Surface 
States of Topological Superconductors 

Weihao Zhao 

College of Science, University of Shanghai for Science and Technology, Shanghai, China 

 
 
 

Abstract 
Majorana fermions in two-dimensional systems satisfy non-Abelian statistics. 
They are possible to exist in topological superconductors as quasi particles, 
which is of great significance for topological quantum computing. In this pa-
per, we study a new promising system of superconducting topological surface 
state topological insulator thin films. We also study the phase diagrams of the 
model by plotting the Majorana edge states and the density of states in dif-
ferent regions of the phase diagram. Due to the mirror symmetry of the to-
pological surface states, the Hamiltonian can be block diagonalized into two 
spin-triplet p-wave superconductors, which are also confirmed by the phase 
diagrams. The chiral Majorana edge modes may provide a new route for rea-
lizing topological quantum computation. 
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1. Introduction 

In 1937, Ettore Majorana [1] proposed the existence of a type of fermion, known 
as Majorana fermion, which is its own antiparticle [2] [3]. Since the Majorana 
fermions were proposed, people have been looking for them [4] [5] [6]. The most 
representative one is the p-wave superconductor, which is influenced by the 
Moore-Read fractional quantum Hall (Pfaffian) state [7]. Because of the nontrivial 
topology of bulk Chern number, there are chiral Majorana fermion edge modes 
trapped in the vortices in the 2-dimensional p-wave superconductor [8]. Because 
of the non-abelian weaving of Majorana fermions, topological quantum computa-
tion can be realized based on them. For example, topological quantum computing 
can be achieved by using a non-abelian topological order containing the Ising 
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non-abelian arbitrarily [9]. Due to the great application prospect of topological 
quantum computing, people have spent a lot of energy to find the substance that 
can satisfy the p-wave superconductor, among which the most studied substance is 
Sr2RuO4 [10] [11] [12]. However, the discussion of Sr2RuO4 is more of a stay in the 
theoretical discussion, and no definite conclusion has been reached [13] [14]. In 
the case of spin-orbit interaction, the conventional s-wave superconducting state 
may also support topological phase. However, the quantum anomalous Hall insu-
lator can transform into a two-dimensional chiral topological superconducting 
phase driven by the s-wave superconducting proximity effect. In principle, topo-
logical quantum computation based on manual Majorana edge modules can be 
realized [15] [16] [17]. Recent research is mainly focused on Fe (Te, Se) as the 
representative of the iron-based superconductivity [18] [19]. 

Under normal states, iron-based materials with small Fermi levels are consi-
dered topological metals with slightly doped topological surface states, which 
can be observed by the angular resolved spectrum of spin polarization [20] [21]. 
The study of angular resolved spectrum shows that, due to the influence of vo-
lume superconductivity, a superconducting energy gap similar to the energy 
band gap will be generated on the topological surface states of a fully gap super-
conductor with temperature below TC, which is the topological superconducting 
surface states [21]. Topological surface state superconductivity is proposed by 
Fu-Kane [5], which is realized by inducing superconductivity in topological sur-
face states of strong topological insulators by s-wave superconductivity proxim-
ity effect. In the absence of an external magnetic field, the Majorana zero model 
can be observed in the gap of FeTe0.55Se0.45 and in the quantum anomalous vor-
tices nucleated at Fe site [22] [23] [24]. Based on the above research progress, we 
will discuss below the chiral topological superconductor used to generate non-
magnetic two-dimensional time-inversion symmetry breaking in topological 
surface state superconductivity, and construct a superconducting topological 
surface state coupling model on the upper and lower surfaces of the film, as 
shown in Figure 1(a). Or construct a coupled model of two topological surface 
state superconductors with opposite surfaces as shown in Figure 1(b). Both 
models are based on iron-based superconductors. 

 

 
Figure 1. The coupled superconducting topological surface states illustrated with FeTeSe. 
The red area represents the surface states and the blue area represents the body states. (a) 
Indicates that the top and bottom of the FeTeSe film have topological superconducting 
surface states. (b) Represents two topological surface state superconductors having oppo-
site surfaces. 
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2. Model Hamiltonian 

First, we need to construct the Hamiltonian of the model, which is selected 
based on Nambu basis: ( )T† † † †

1 1 2 2 1 1 2 2, , , , , , ,N ψ ψ ψ ψ ψ ψ ψ ψ↑ ↓ ↑ ↓ ↑− ↓− ↑− ↓−Ψ = q q q q q q q q , 1 
and 2 represent the surface states of the upper and lower surfaces respectively, 
and these two indexes represent the pseudo spin states in the spin-orbit coupling 
respectively, and q index represents the momentum, the Fermi velocity is set as 
1. With the basis vector selected, the corresponding Bogoliubov-de Gennes 
(BdG) [8] Hamiltonian is: 

( ) ( )
( )

†

*
x x

x x

h
H

h
 ∆

=   ∆ − 
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 (3) 

We make a substitution such that 1 2

2
α

∆ + ∆
=  and 1 2

2
β

∆ −∆
= , so that 1∆  

and 2∆  can be represented correspondently in terms of α  and β  as  
1 α β∆ = +  and 2 α β∆ = − . After the above substitution, the Hamiltonian of 

our model will be as follows: 

1 1 0 2 0 0 0

0

1 2

2 2

x z y z z z z x z x z

s y x y y z y y y

t x y y t x y x

H q q tσ χ τ σ χ τ µσ χ τ λσ χ τ σ χ τ

α βσ χ τ σ χ τ σ χ τ

σ χ τ σ χ τ

= + − + +

− ∆ + +

− ∆ + ∆

      (4) 

Define a mirror symmetry 0z xiσ χ τ− = − , then change the above Hamilto-
nian 1H  into T

1H− −   under the action of mirror symmetry − , and the 
result after change is as follows: 

T
1 1 0 2 0 0 0

0

1 2

2 2

x z y z z z z x z x z

s y x y y z y y y

t x y y t x y x

H q q tσ χ τ σ χ τ µσ χ τ λσ χ τ σ χ τ

α βσ χ τ σ χ τ σ χ τ

σ χ τ σ χ τ

− − = − − + + −

− ∆ − +

+ ∆ −∆

 

  (5) 

By comparing Equations (4) and (5), we can get α , 1t∆  and 2t∆  are odd 
symmetry of the mirror image about − , while the term β  is even symmetry 
of the mirror image about − . When 1t∆ , t, 1∆  and 2∆  are all non-zero, 
the time inversion symmetry of Hamiltonian described in Equation (1) will 
spontaneously break, and only when the time inversion symmetry is broken, will 
there be a non-zero Chern number. 
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3. Topological Phase Diagram 

Figure 2 describes the phase diagram of the relationship between the real part 

1t∆  and the imaginary part 2t∆  of Hamiltonian T
1H− −   described in Eq-

uation (5). The selection of specific parameters is shown in the figure, and N 
represents the Chern number of each region. 

Figure 2 depicts the phase diagram of Hamiltonian T
1H− −   in the 

1 2t t∆ −∆  plane. Next, 1 2t ti∆ + ∆  is expressed in exponential form, that is, 
ie φθ −−  is used to replace 1 2t ti∆ + ∆ . The phase diagram between its module 

value θ  and phase Angle φ  is shown in Figure 3. The influence of the upper 
and lower surfaces on the phase diagram is not considered here, so the parame-
ters of the upper and lower surfaces are set to be the same here, and their sizes  

 

 
Figure 2. The topological phase diagram of Hamiltonian T

1H− −   in the 1 2t t∆ − ∆  
plane for 0µ = , 0.5t = , 1α =  and 0β = . 

 

 
Figure 3. The topological phase diagram of Hamiltonian H in the θ φ−  plane for 

0µ = , 0λ = , 1 0q = , 2 0q = , 1t = , 0s∆ = , 1 2 θ∆ = ∆ = . 
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are set to be the same as the module of the complex number 1 2t ti∆ + ∆ , that is 

1 2 θ∆ = ∆ = . As can be seen from Figure 3, the figure is symmetric about the 
coordinate axis, so we mainly discuss the Chern number, edge states and their 
density of states in the first quadrant. In Figure 3, there are four regions in the 
first quadrant, and each region is separated by solid lines, where solid lines 
represent phase transition points and topological phase transition will occur af-
ter passing through the solid lines. By calculating (see Appendix), it can be ob-
tained that the Chern number of the region I is −1, the Chern number of the re-
gion III is +1, and the Chern number of the region II and region IV are both 0. 
To further understand the distribution of the densities in each region, a unitary 
transformation can be defined: 

0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 11
1 0 1 0 0 0 0 02
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0

U−

 
 − 
 
 

− =  −
 
 
 −  
 

             (6) 

If the unitary operator U−  is applied to the Hamiltonian H, then the Hamil-
tonian becomes a block diagonal matrix under the action of the unitary operator 
by considering the case of 1 2 θ∆ = ∆ = ∆ = : 
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         (9) 

Next, the corresponding phase diagram of 1h  in the θ φ−  plane is drawn, 
as shown in Figure 4(a). Figure 4(a) is also symmetric about the coordinate 
axis. In the first quadrant of the figure, there are two regions, in which the Chern 
number of the region I is −1 and the Chern number of the region II is 0. We 
have given the phase diagram corresponding to 2h , as shown in Figure 4(b). 
The selection of parameters in this diagram is the same as that in the phase dia-
gram drawn by 1h . There are also two regions in the first quadrant of (b) in 
Figure 4, where the Chern number of the region I is +1, and the positive stale 
number of the region II is 0. By comparing Figure 3 and Figure 4, it can be  
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Figure 4. The topological phase diagram of Hamiltonian (a) 1h  and (b) 2h  in the 
θ φ−  plane for 0µ = , 0λ = , 1 0q = , 2 0q = , 1t = , 0s∆ = . 

 
found that the phase diagram described by the original Hamiltonian is exactly 
equal to the superposition of the two-phase diagrams described by the block 
matrix obtained after the unitary transformation. 

4. Edge States and State Density 
4.1. Discussion on Edge States 

Next, edge states and their state density diagrams are discussed. The BdG Ha-
miltonian can be written as follows in the case of Nambu basis: 

( )†
BdG N NH= Ψ Ψ∑q q .                   (10) 

In the lattice model, Hamiltonian variables are replaced as follows:  
( )2 2

0 1 1 2t t t q q→ + + , ( )1
2 2sinq a q a−→  and ( )( )2 2

2 22 1 cosq a q a−→ −  Where 
a represents the lattice constant, which can be taken as 1, and the direction 2q  
is the open edge condition. First, the edge states of each region in Figure 3 in the 
q1-E plane are drawn. The edge state graph of the corresponding point in the re-
gion I in Figure 3 is shown in Figure 5(a), in this figure the red (blue) line 
stands for the spectrum of the chiral edge mode localized on the right (left) side 
of the sample (see Figure 6(a)). From Figure 5(a), it can be found that there is 
an intersection point within the small range of coordinate (0, 0), as shown in the 
red line and blue line in the figure, the two lines are the gapless edge states. The 
red line and the blue line will only travel along the edge, and the direction of the 
electrons will only travel in a certain direction. The selection of parameters in 
Figure 5(a) corresponds to the I region in Figure 3, and the Chern number of 
this region can be calculated as: N = −1, and its absolute value is 1, correspond-
ing to edge states in Figure 5. 

Next, the edge states of points corresponding to the region II in Figure 3 are 
plotted, as shown in Figure 5(b), in this figure the red and green (blue and 
orange) lines stand for the spectrum of the chiral edge mode localized on the left 
(right) side of the sample (see Figure 6(b)). By comparing Figure 5(a) and  
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Figure 5. Edge state graphs with different parameters for 0 1.0t = , 1 1.0t = , 0µ = , 0s∆ = , 

0λ = , (a) 1.0θ = , 0.8φ = . (b) 1.0θ = , 1.5φ = . (c) 0.8θ = , 2.5φ = . (d) 0.2θ = , 1.5φ = . 
 

Figure 5(b) can be found: in Figure 5(b) edge of the graphics in the coordinates 
of point (0, 0) is, in fact, there are two near the intersection, but the edge of the 
two is overlap together, in order to show the difference between the edge of the 
two groups, we use lines of different colors to distinguish, the line color is re-
spectively: In red and yellow, the upward lines are blue and green, respectively. 
The parameters selected in Figure 5(b) correspond to the region II in Figure 3, 
so the Chern number of this region is calculated as N = 0. Edge states of Figure 
5(b) is two, but the area of the Chern number is 0, that does not conform to the 
body and the edge of the correspondence. In order to explain the phenomenon, 
we make a unitary operator U−  on the Hamiltonian ( )H q , let it become a 
block diagonal matrix, the matrix 1h  and 2h  respectively, and the two pieces 
of these two pieces of matrix of the phase diagram in Figure 4, respectively (a) 
and (b) figure. In Figure 4(a), the Chern number of I region is −1, and the 
Chern number of II region in Figure 4(b) is 1, which exactly corresponds to the 
Chern number of I in the region in Figure 3, ( )1 1 0N = + − = , which is the rea-
son why the Chern number of the region in Figure 3 is 0. In the area of Figure 3 
II Chen number 0 is not 0 + 0 = 0, but rather the result of 1 and −1 in Figure 
5(b) there will be two edge, one of the representative 1h  describes the edge of 
the Chern number of 1, the other is 2h  describes the edge of the corresponding 
Chern number is 1. 

The edge state of the corresponding point in the region III in Figure 3 is 
shown in Figure 5(c), in this figure the red (blue) line stands for the spectrum of 
the chiral edge mode localized on the left (right) side of the sample (see Figure 
6(c)). Contrast Figure 5(b) and Figure 5(c) can be found that the Chern num-
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ber of the edge of graph into a group, which means in Figure 5(b) and Figure 
5(c) between two groups of parameters will be after a topological phase transi-
tion point, it is because the topological transformation happened, so will lead to 
the edge of the area III in Figure 3 state is only a set, the topological transforma-
tion point is Figure 3 part within the solid line. 

Finally, the edge state graph of the corresponding point in the region IV in 
Figure 3 is drawn, as shown in Figure 5(d). As can be seen in Figure 5(d), there 
is no intersection point at (0, 0). Therefore, it can be shown that under the pa-
rameter selection of this region, the Hamiltonian model does not have an edge 
state, but a full gap. In Figure 3 can be obtained by calculation IV area Chern 
number is 0, Chen and Chen several of the region just correspond to Figure 4(a) 
graph area II and (b) graph area II, these two areas and the corresponding Chern 
number is 0, so Figure 3 of IV area corresponds to the Chern number for N = 0 
+ 0 = 0, so the edge of the area is there exists gap, which further illustrates the 
body-edge correspondence. 

4.2. Density Distribution of States in Real Space of Wave Function 

In order to further explain the distribution of wave function in real space in each 
group of edge state graphs, we draw density distribution of states with different 
parameters selected, and select the number of lattice points in the y direction as 
y = 50 in each graph drawing. 

In the edge state graph corresponding to Figure 5(a), when the value of 1q  is 
0.2, the real space state density distribution diagram of wave function corres-
ponding to points on the marginal state is shown in Figure 6(a), and the para-
meters are selected as shown in the figure. In Figure 6(a), the density of wave 
function state represented by different colors corresponds to the different edge 
states in Figure 5(a), and it can be found that the density of wave function state 
of the two edge states is localized at both ends respectively. 

Figure 6(b) presents the real space state density distribution corresponding to 
the two groups of edge states when 1 0.2q =  under the same parameter selection 
as Figure 5(b). Energy state density represented by different colors correspond to  

 

 
Figure 6. Real space state density distribution of wave function under different parameters for 0 1.0t = , 1 1.0t = , 0µ = , 0s∆ = , 

0λ = , 1 0.2q = . (a) 1.0θ = , 0.8φ = . (b) 1.0θ = , 1.5φ = . (c) 0.8θ = , 2.5φ = . 
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points on edge states of different colors. We can see that for the density of states 
of the points on the edge states with the same positive and negative slope, they 
will be localized at both ends, which can indicate that the Chern number of the 
II region in Figure 3 is the structure of ( ) ( )1 1N N= ⊕ = − . For two symme-
trical Density of States diagrams, they correspond to the same pattern. 

Figure 6(c) corresponds to the density distribution of real space states cor-
responding to the points on the edge state when 1 0.2q =  in the group of edge 
state graphs in Figure 5(c). By comparing Figure 6(c) with Figure 6(a), it can 
be found that when the slope is positive, the density distribution of real space 
states corresponding to points on the edge states will be localized at opposite 
edges. This is because Figure 6(a) corresponds to the region with a Chern num-
ber of −1 in Figure 3, while Figure 6(c) corresponds to the region with a Chern 
number of 1 in Figure 3, indicating that the Chern number will affect the num-
ber of edge states. Although the positive and negative Chern number will not af-
fect the number of edge states, it will affect the distribution of the energy state 
density of the wave function. 

5. Conclusion 

In this paper, we study the phase diagram, edge state and density distribution 
diagram of the topological surface state superconducting in detail. It is found 
that the phase diagram of Hamiltonian ( )H q  is the same as the superposition 
of the phase diagram among the block matrices obtained by the Hamiltonian af-
ter the unitary transformation of U− . In nontrivial topological phase, the cor-
responding phase diagrams are drawn by discussing the lattice model, and the edge 
states of different regions in the phase diagrams are also given, the difference be-
tween the corresponding wave function in the real space distribution state density 
diagram, thus further proving that Majorana zero model of the number is the same 
with the body of Chern number, body-edge correspondence. In the edge state, 
the electron propagates in a certain direction and does not backscatter. Because the 
Majorana zero model can well solve the problems caused by quantum decoherence, 
and the Majorana fermions obey non-abelian statistics, the encoding problem of 
quantum information can be solved by using the Majorana fermions, which will 
have great application value in the development of topological quantum computing. 
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Appendix 

In a two-dimensional system, it is assumed that a point lk  in the discrete Bril-
louin region can be expressed as [25]: 

( )1 2,l j jk k k=                          (1) 

( )2
, 0, , 1j

j
k j N

q Nµ

µ
µ µ

µ µ

π
= = −

                  (2) 

( )ln k  is periodic on the lattice. First define the Chern number of the nth 
band as: 

( )12
1

2n l
l

c F k
i

≡
π ∑



                        (3) 

For the wave function of the nth band, a connection variable can be defined: 

( ) ( ) ( ) ( )ˆl l l lU k n k n k kµ µµ≡ +                  (4) 

where ( ) ( ) ( )ˆl l lk n k n kµ µ≡ + . Lattice strength is defined as 

( ) ( ) ( ) ( ) ( )
1 1

12 1 2 1 2
ˆ ˆln 1 2l l l l lF k U k U k U k U k

− −≡ + +           (5) 

Since nc  is gauge invariant, the gauge potential energy is selected as: 

( ) ( ) ( )1ln ,l l lA k U k A k
iµ µ µπ π= − < ≤                 (6) 

which is periodic on the lattice: ( ) ( )ˆl lA k N A kµ µ µµ+ =  . Under the selection of 
the gauge potential, ( )12 lF k  becomes: 

( ) ( ) ( ) ( )12 1 2 2 1 122l l l lF k A k A k in k= ∆ −∆ π+               (7) 

where µ∆  can be expressed as: ( ) ( ) ( )ˆl l lf k f k f kµ µ∆ = + −  and ( )12 ln k  is 
an integer valued field. So we can get the lattice Chern number: 

( )12n llc n k= ∑                         (8) 
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