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Abstract 

We examine a series of developments in mathematics used in quantum phys-
ics. These include Hilbert space. We then examine how several developments 
in mathematics can be used in application to Quantum physics. 
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1. Introduction 

Geometry and other parts of mathematics have significant applications in mod-
ern quantum mechanics. These applications have already brought important ad-
vances in quantum mechanics. We hope, in a follow-on publication, to explore 
in detail the contributions to modern quantum mechanics made by the mathe-
maticians Emmy Noether and John Horton. 

A very well written account of one of the most important tools of string theory 
is (Saxe, 2002, FUNC3). It includes bibliographies of mathematicians who have 
contributed to its development. 

(Riesz & Szőkefalvi-Nagy, 1990, FUNC2) is a classic. It includes an extended 
description of Hilbert and Banach spaces. (Alt2012, FUNC1) has modern ma-
thematical advance. 

The theorem of De Moivre shall begin an expository conversation. 

( )cos sin cos sinni n i n+ = +θ θ θ θ  

This result, and others, developed into a theory of imaginary numbers. These 
came in turn to be called complex numbers. This name change was well justified 
by the fact that the imaginary numbers were indeed as realistic as the real num-
bers. A mathematician then appeared who developed this subject to an even more 
practically applicable system of mathematics for use in formulating physical 
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theory. 

2. Applications 

David Hilbert was a phenomenally productive mathematician. Hilbert Space is 
named after him, and uses complex numbers to define a space of great useful-
ness in quantum mechanics. His accomplishments are described in (Reid, 1996). 

Perhaps his most famous publication was a list of 23 problems to be solved 
by research mathematicians during the 20th Century. To merely describe any 
of these problems would itself be a challenge. Before turning to an effort in this 
direction, we may examine a lighter mathematical matter that contains ma-
thematics for entertainment. His name is associated with Hilbert’s Hotel. It 
will lead us on to how we may find the underlying algebra of mathematical 
proofs. 

In the Hilbert Hotel there are infinitely many rooms. They are numbered by 
the natural number, i.e. the integer numbers greater than, or equal to, Zero. This 
plentiful supply of rooms is an analogy with the mathematical concepts of se-
quences and series of numbers. The latter entites are used in calculus and analy-
sis. Hilbert Space generalizes the usual spaces used there with a finite number of 
dimensions, Hilbert Space considers spaces with an infinite number of dimen-
sions. It also makes extensive use of the Calculus of Variations. 

Algebraic Construction of Geometries for Quantum Theory 

To examine Hilbert Space we need, firstly, to define some functions of functions. 
One of these functions of two functions is called the inner product <◦|◦>. 
Another function of one function is called the norn ||F||. 
Let us firstly, define an inner product over a field of complex numbers, C. A 

complex inner-product space α is a complex vector space α with a function 
<., .>:. χ χ → C.  

(positive measure) 

( ), :f g =α  

0∀Γ Γ Γ ≥  

(nowhere degenerate in its domain) 

0 0∀Γ Γ Γ = ⇔ Γ =  

3. Conclusion 

Quantum Physics is potentially the most illuminating theory of the world around 
us and of the universe in which we occupy a small part. In this paper, we have 
examined the algebraic foundations of this theory as the development of these 
was begun in the early twentieth century. We recommend learning modern scien-
tific theory, chronologically, as the scientists themselves did. The reader may, 
however, skip ahead by reading (Green, 1997). The latter reference includes a 
bibliography of 119 items of modern research. 
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