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Abstract 
The stochastic dual dynamic programming (SDDP) algorithm is becoming 
increasingly used. In this paper we present analysis of different methods of 
lattice construction for SDDP exemplifying a realistic variant of the news-
vendor problem, incorporating storage of production. We model several days 
of work and compare the profits realized using different methods of the lat-
tice construction and the corresponding computer time spent in lattice con-
struction. Our case differs from the known one because we consider not only 
a multidimensional but also a multistage case with stage dependence. We 
construct scenario lattice for different Markov processes which play a crucial 
role in stochastic modeling. The novelty of our work is comparing different 
methods of scenario lattice construction. We considered a realistic variant of 
the newsvendor problem. The results presented in this article show that the 
Voronoi method slightly outperforms others, but the k-means method is 
much faster overall. 
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1. Introduction 

This article discusses one of the most powerful modern algorithms, which can 
solve problems of stochastic optimization—the stochastic dual dynamic pro-
gramming algorithm first described in [1]. There are several ways to implement 
the algorithm; an exhaustive survey can be found in [2]. We will discuss the 
most commonly used version—SDDP algorithm with scenario lattice. The main 
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goal of our study is the testing of methods of a lattice construction. We consi-
dered “The problem of production, sales and product storage”, which is an ex-
tension of the newsvendor problem [3], to compare the scenario lattice con-
struction methods. 

There are many articles about scenario generation methods. The approach of 
[4] is based on variance reduction techniques. There are works with overviews of 
different methods [5] [6] [7]. Multiple scenario lattice construction methods ex-
ist, but we will only consider 3 of them: k-means, competitive learning and Vo-
ronoi cell sampling. In this study, we use the scenario generation methods for 
stochastic variables that follow a Markovian process. We are focusing on com-
paring some different techniques. There were some works with a similar goal, 
for example [8]. However, in this work, we go further and make an empirical 
analysis in the stage-dependent case. We perform modeling for several days, and 
each next day is related to the previous day (unlike [8], where stage-independent 
processes are considered).  

The rest of the paper is organized as follows: In Section 2, we are making an 
introduction to the theory, then in Sections 3 and 4 describing the methods of 
lattice construction we are using, and then we discuss numerical experiments in 
Section 5, and after this summarize all the results in Section 6. 

2. Problem Formulation 

The original problem of stochastic programming in general terms looks like the 
following [8]: 

( )min x X C x∈                          (1.1) 

( ) ( ) ( ), dC x c x z F z= ∫                      (1.2) 

where x is a controlling variable with definition area nX ⊆  ; z is a vector vec-
tor of realizations of random variable Z; ( )C x  is a cost function. 

To resolve this problem, we need to move from integral, whose computation 
is too hard, to sum, so our problem will have the discrete form: 

( )ˆmin x X C x∈                          (1.3) 

( ) ( ) ( )ˆˆ
ˆ ˆ ˆ,z FC x p z c x z

∈
= ∑                    (1.4) 

In literature, this transition is known as sample average approximation (SAA), 
and it is formally described, for example, in [9]. 

There are many ways to implement transition from (1.1)-(1.2) to (1.3)-(1.4), 
for example Monte Carlo [10] [11] or quasi-Monte Carlo methods [12]. We will 
use another method based on the direct reduction of the approximation error of 
( )Ĉ x  to ( )C x , which was described in [12]. We will briefly describe this me-

thod below. 

3. Methods and Algorithms of Probability Distribution  
Discretization 

Our approach is based on established work [4]. We will briefly discuss it here. 
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Our task is to approximate the distribution F with discrete one F̂ . To do so, 
we generate realizations of F. The Monte-Carlo method provides the ap-
proximation cost function convergence to the real cost function with proba-
bility of 1, but we want to reduce the variance of the estimate to speed up the 
convergence of the error bounds. To do so, we want to address the approxi-
mation error directly. Let’s define an error in SAA as absolute difference be-
tween the cost functions: 

( ) ( ) ( )( )( )ˆ ˆ, max arg minx xe C C C x C C x= −               (1.5) 

Since it is nearly impossible to compute ( )ˆ,e C C  with (1.5), it is usual to 
work with the upper bound of the error. To estimate the upper bound, firstly, 
we need to introduce some additional notation. Denote as ( )( )rL c x  Lipschitz 
constant of ( ),c x z  function of r order: 

( )( ) ( ) ( ){
( ) }

1 2

1 1
1 2 1 2 1 2

, inf : , ,

max 1, , ,

r

r r
r

L c x z L c x z c x z

L z z z z z z Z L− −

= −

≤ − ∀ ∈ ≤
     (1.6) 

where rL  is the upper bound. Further, rd  is Wasserstein distance between 
F and F̂  distributions: 

( ) ( ) ( )( )
1

ˆ,
ˆ ˆ ˆ, min d ,r r

r g M F F
d F F z z g z z

∈
= −∫ ,            (1.7) 

where the minimum is taken over the entire space of distribution functions 

( )ˆ,M F F , marginal distributions F and F̂  are Lipschitz, which means they 
satisfy (1.6). From [12] we know that: 

( ) ( )ˆ ˆ, 2 ,r re C C L d F F≤ ,                      (1.8) 

so as far as rL  is a constant for given r and ( ),c x z , it is clear that with the 
reduction of ( )ˆ,rd F F , the approximation error will also reduce. 

It is impractical to find ( )ˆ,rd F F  using (1.7) because of the integral, so we 
will use distance between two discrete distributions: 

( ) [ ] ( )
,

1

, , ,1 1 1 10,1
ˆ, min |ˆ ,

i j

N M M N rr
r i j i j i j i i j ji j j iy

d F F y z p qz y y
= = = =∈

 = − = = 
 

∑ ∑ ∑ ∑ , (1.9) 

where ,i jp q  are the probabilities of the corresponding discrete distribution 
values, and ,i j i jy p q= . Thus, according to (1.8), we need to find the discrete 
distribution F̂ , which is the best approximation for F, reducing SAA error. 

Since we consider continuous distributions, we need to generate a sample of 
size N, so (1.9) will have the following form: 

{ }1 ,

1

, , ,, , 0,ˆ 1ˆ , 0 1 1 1 1
ˆmin min | 1,

M i j j

rN M M Nr
i j i j i j i jz z jy q i j j i

y z yz y q N
∈ ≥ = = = =

 
   − = =       
 

∑∑ ∑ ∑
�

,  (1.10) 

where , 1, ,jq j M= �  are probabilities of discrete distribution values; , 1i jy = , 
if element iz  of the original sample attributes to element ˆ jz  of the new dis-
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tribution, otherwise , 0i jy = ; M is the number of values of the new distribution, 
M N< . 

Now, we will briefly describe algorithms, which we used to solve (1.10) and 
get a new approximate probability distribution. More comprehensively, they are 
discussed in [8]. 

k-means algorithm: 
1) Randomly choose M elements * *

1̂ , ˆ, Mz z�  from the source sample 

1, , Nz z� . 
2) Attribute element , 1, ,i i N= �  of sample 1, , Nz z�  to element j of sam-

ple * *
1̂ , ˆ, Mz z� , if j is the solution of *ˆmin j i jz z− . 

3) Recalculate cluster centers * *
1̂ , ˆ, Mz z� : *

1

1ˆ js
j kk

j

zz
S =

= ∑ , where is  is the  

number of elements of the sample 1, , Nz z� , attributed to cluster j on stage 2. 
4) If the stopping condition is met, then stop, else return to step 2. 
Note that we are using k-means modification from [13]. 
Competitive learning: 
The sample 1, , Nz z�  is obtained from the distribution F and initial ap-

proximations ( )0

1
ˆ

M

j j
z

=
 are chosen. Then the following algorithm is fulfilled 

for 1, , ; 1, ,j M i N= =� � : 

( ) ( )21 1 1

1

ˆ ˆ ˆ, if arg min
ˆ

ˆ , else

n n n
j n n j k n kn

j
n
j

z z z j z z
z

z

α− − −

−

 + − = −= 


      (1.11) 

nα  is the step size, 1, , ; 1, ,j M n N= =� � , values ˆN
jz  give the wanted 

discrete distribution. 
Voronoi cells sampling: 
The sample 1, , Nz z�  is obtained from the distribution F and initial ap-

proximations ( )0

1
ˆ

M

j j
z

=
 are chosen. Then the following algorithm is fulfilled 

for 1, , ; 1, ,j M i N= =� � : 

( ) ( )21 1 1

1

ˆ ˆ ˆ, if arg min
ˆ

ˆ , else

n n n
j n n j k n kn

j
n
j

z z z j z z
z

z

α− − −

−

 + − = −= 


     (1.12) 

Further, put 0 0ˆ ˆj jz z′ =  and: 

( )21

1

ˆ, if arg min
ˆ

ˆ , else

n
n k n kn

j
n

j

z j z z
z

z

−

−

 = −′ = 
 ′

          (1.13) 

4. Scenario Lattice Construction Algorithm 

Now consider the scenario lattice construction algorithm that was used. 
1) First of all, the grid parameters are selected: the number of stages, the 

number of nodes at each stage, the number of scenarios generated from each 
node. 

2) Then, from each vertex of stage, t, we generate M scenarios according to the 
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relevant random processes. 
3) From the M × N scenarios, where N is the number of nodes in the t stage, 

N is selected using one of the methods described in Section 3. 
4) The probabilities of transition from the vertex i of stage t to the vertex j of 

stage t + 1 are calculated as the ratio of the number of scenarios generated from 
the vertex i and related to the vertex j of stage t + 1 to the total number of scena-
rios generated from the vertex i. 

5) If t + 1 is not equal to T, where T is the number of stages, we pass to point 
2; otherwise, the grid is constructed. 

The lattice obtained with this algorithm can be illustrated as follows (Figure 1): 
In Figure 1, each vertex represents a vector of a given dimension, corres-

ponding to random variables. The probability of transition from the node i of 
stage t to the node j of stage t + 1 is indicated by ,

t
i jp . Some probabilities can be 

zero, and since we are using clustering algorithms to group scenarios, our lattice 
can be illustrated by Figure 2. The vertex of step 1 corresponds to the initial 
values, which are selected before the beginning of the grid construction algo-
rithm. We are using standard method [1] to choose scenarios during the forward 
step of the SDDP algorithm. 
 

 
Figure 1. Scenario lattice. 

 

 
Figure 2. Scenario lattice construction. 
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5. The Case Problem 

To compare k-means, competitive learning, and Voronoi cell sampling algo-
rithms, we will use them to solve “The problem of commodities production, 
storage and selling” that can be formulated as follows. 

Let T be the time interval at which we consider the problem, k is the num-
ber of type of goods, ip  is the cost of single item production of type i, iv  is 
the maximum number of items that can be produced in one day, i

tx  is the 
number of goods of type i that were produced on day t, is  is the selling price 
for goods of type i, i

tδ  is the demand for type of goods i on day t, i
tr  – 

number of undelivered goods of type i on day t, ic  is the cost of storage of 
goods of type i. 

The goal is to find a strategy (amount of produced goods) that leads to 
maximum income. 

Income in day t: ( )1
i i i i i i

t t ti
k p x s w c r
=
− + −∑  

Amount of sold goods in day t: ( )1min , , 1, ,i i i i
t t t tw x r i kδ −= + = �  

Amount of goods in storage at the end of day t: 1 , 1, ,i i i i
t t t tr r x w i k−= + − = �  

CVaR is used as a risk measure; the optimization criterion is the weighted sum 
of CVaR and profit expectation: ( ) [ ]1 CVaRPλ λ− + . 

Formally dynamic programming equations look like the following: 
for , , 2t T= �  

( ) ( ) ( ){ }
1

1

1 1 11

0, 0

, min , ,
i i
t
i i
t t

i i i
t t t

i i i i
t t t t

i
t t

i i i i i i
t t t t t t t t t t t tix v

w
w x r

r r x w
x

k

u

r p x s w c r u Q r u
δ

δ λ δ

−

−

− + +=

+
= +

≤

−

≤

≥ ≥

≤

= − + − + +∑  

where  
( ) ( ) ( ) ( ){ }1

1 1 1 1 1 1, 1, 1 , , |t t t t t t t t t t t t t t tQ r u r r uδ λ δ λα δ δ−
− − − − − −+

 − = − + −   ,  
( ( )1 .,.,. 0TQ + ≡  by definition), ( )1, , k

t t tr r r= �  и ( )1, , k
t t tδ δ δ= � . 

for 1t =  

( ) ( ){ }
1
1 1

1 1 0
1 0 1 1

1 1

1 1 1 2 2 1 1 11

0, 0

min , ,
i i
i i

i i i
i i i i

i

k i i i i i i
tix v

w
w x r

r r x w
x u

p x s w c r u Q r u
δ

λ δ
=

+
= + −
≥ ≥

≤
≤

≤

− + − + +∑  

6. Numerical Experiments 

For numerical experiments, we considered four different stochastic processes for 
the demand for goods. 

1) Autoregressive model (AR): 

1t i t i
p

tiX c a X ε−=
= + +∑ , 

where c is a constant, iα  are the model parameters, ( )2~ 0,t Nε σ  
2) Autoregressive moving-average model (ARMA): 

1 1
p

t i t t j
q

i t ji jX c Xα ε β ε− −= =
= + + +∑ ∑ , 
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where c is a constant, ,i jα β  are the model parameters, ( )2~ 0,t Nε σ  
3) Geometric Brownian motion (GBM): 

d dt t t tS S S Wµ σ= + , 

where ,µ σ  are process parameters, tW  is the Wiener process. 
4) Stage independent normal distribution (SIND): 

( )2,tX N µ σ=  

We are using the processes with chosen parameters, so in our case, the processes 
look as follows: 

1) GBM: d 5 d 0.1 dt t t tX X t X W= + ; 
2) AR(1): ( )2

10.9 , ~ 0, , 1t t t tX c X Nε ε σ σ−= + + = ; 
3) ARMA(1,1): ( )2

1 10.9 0.15 , ~ 0, , 1t t t t tX c X Nε ε ε σ σ− −= + + + = ; 
4) SIND: ( )2~ , , 10, 5tX N µ σ µ σ= = . 
The experiments were organized as follows. First of all, for every combination 

of process (AR, ARMA, GBM, SIND) and scenario grid construction algorithm, 
we simulated the stochastic process several times. We then checked if the re-
sults came from the normal distribution using the Shapiro-Wilk test and quan-
tile-quantile (Q-Q) plot, then compared results using the one-sided t-test. (Q-Q) 
plots show the relationship between observed data and theoretical quantiles. It is 
necessary to check our results for normality because we are using the t-test to 
compare average profits obtained using different lattice construction methods. 
All the parameters of our case problem are in Table 1. We have chosen these 
parameters so as to simulate the real-world situation. 

For the SDDP algorithm, we used the following optimization criterion: 

[ ]0.5 0.5CVaRP +  

Our lattice construction parameters: 
The number of nodes at each stage is 10; number of scenarios generated from 

each node during lattice construction is 100. 
To perform the experiments, we were using a computer with an Intel Core 

i5-6300HQ processor running at 2.30 GHz. 
We used Python 3.7.3 to generate scenario lattice and Julia 1.3.1 to run the 

SDDP algorithm; we implemented the SDDP by ourselves. To understand SDDP 
realization, please refer to [14]. 

The full list and versions of used packages are in Table 2 for Python and in 
Table 3 for Julia. 
 
Table 1. Parameters of experiments. 

Number of commodities 1 2 3 4 5 6 7 8 9 

Production costs ip  150 80 30 17 40 10 30 10 20 

Selling price is  200 100 40 22 70 13 60 12 27 

Storage cost ic  30 3 4 2 10 2 7 1.5 4 

Maximum production volume iv  10 20 40 70 100 120 160 200 300 
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Table 2. Python packages. 

Numpy 1.16.2 

Pandas 0.24.2 

Scipy 1.2.1 

Sklearn 0.22.1 

 
Table 3. Julia packages. 

JuMP 0.21.1 

Clp 0.7.1 

Distributions 0.22.5 

CSV 0.5.26 

6.1. Numerical Experiments 

First of all, it is necessary to compare lattice construction time for every process 
and lattice construction algorithm because work time plays a crucial role in com-
puting. 

As we can see (Figure 3), k-means works much faster than the Voronoi and 
Competitive learning methods, whose results are almost the same. 

6.2. AR Demand Results 

As we can see from the tables and plots, our results came from a normal distri-
bution (Figures 4-6 and Table 4), and mean profit from scenarios generated by 
the Voronoi method is higher than the profit of scenarios generated by k-means 
and Competitive learning (Table 4 and Table 5). (Element i,j of Table 5 means 
p-value of t-test, which compares method in row i and the method in column j). 

6.3. ARMA Demand Results 

In this case, our results are also normal (see Figures 7-9 and Table 6), but there 
is no difference between k-means and Voronoi, while Competitive learning re-
sults are terrible (Table 6 and Table 7). 

6.4. GBM Demand Results 

For GBM process, our results are slightly different from the normal distribution 
but not so much (Figures 10-12 and Table 8), and all three methods show al-
most the same result (Table 8 and Table 9). 

6.5. Stage-Independent Normal Distribution Demand Results 

For the Competitive learning method, our results slightly differ from the normal 
distribution but not so much (Figures 13-15 and Table 10). The k-means and 
Voronoi methods show almost identical results, while Competitive learning loses 
pretty badly (Table 10 and Table 11). 
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Figure 3. Lattice construction time. 

 

 
Figure 4. K-means Q-Q plot. 

 

 
Figure 5. Competitive learning Q-Q plot. 
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Figure 6. Voronoi Q-Q plot. 

 

 
Figure 7. K-means Q-Q plot. 

 

 
Figure 8. Competitive learning Q-Q plot. 

 

 
Figure 9. Voronoi Q-Q plot. 
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Figure 10. K-means Q-Q plot. 

 

 
Figure 11. Competitive learning Q-Q plot. 

 

 
Figure 12. Voronoi Q-Q plot. 

 

 
Figure 13. K-means Q-Q plot. 
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Figure 14. Competitive learning Q-Q plot. 

 

 
Figure 15. Voronoi Q-Q plot. 

 
Table 4. AR statistics. 

 K-means Competitive learning Voronoi 

Mean 26,390.746 26,390.623 35,290.404 

SD 10,196.322 10,196.386 11,703.831 

Shapiro-Wilk p-value 0.688 0.688 0.182 

 
Table 5. AR t-test p-values. 

 K-means Competitive learning Voronoi 

K-means - 0.499 0.001 

Competitive learning 0.499 - 0.001 

Voronoi 0.001 0.001 - 

 
Table 6. ARMA statistics. 

 K-means Competitive learning Voronoi 

Mean 50,931.03 −44,927.187 50,900.551 

SD 33,633.708 59,910.994 33,635.331 

Shapiro-Wilk p-value 0.548 0.091 0.542 
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Table 7. ARMA t-test p-values. 

 K-means Competitive learning Voronoi 

K-means - 8.17e−10 0.498 

Competitive learning 8.17e−10 - 8.24e−10 

Voronoi 0.498 8.24e−10 - 

 
Table 8. GBM statistics. 

 K-means Competitive learning Voronoi 

Mean 166,051.19 166,163.13 165,994.99 

SD 52,557.44 52,572.10 52,972.71 

Shapiro-Wilk p-value 0.029 0.036 0.037 

 
Table 9. GBM t-test p-values. 

 K-means Competitive learning Voronoi 

K-means - 0.496 0.498 

Competitive learning 0.496 - 0.495 

Voronoi 0.498 0.495 - 

 
Table 10. Stage-independent statistics. 

 K-means Competitive learning Voronoi 

Mean 26,243.39 8323.40 27,525.61 

SD 10,142.48 14,519.86 20,496.62 

Shapiro-Wilk p-value 0.713 0.019 0.099 

 
Table 11. Stage-independent t-test p-values. 

 K-means Competitive learning Voronoi 

K-means - 7.08e−07 0.382 

Competitive learning 7.08e−07 - 6.85e−05 

Voronoi 0.382 6.85e−05 - 

7. Conclusions 

As we can see in the numerical results section, in our experimental problem, the 
Voronoi method slightly outperforms others, but the k-means method is much 
faster.  

1) With the AR process, the Voronoi method performs better than k-means 
and Competitive learning, which both show almost the same result. 

2) With the ARMA process, the Voronoi method is comparable to k-means, 
and Competitive learning underperforms pretty hard. 

3) With GBM process, results of the methods are close to each other. 
4) Scenario lattice calculation time was the same for the Competitive learning 

and Voronoi method but much lower for the k-means. 
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