
Open Journal of Optimization, 2021, 10, 47-60
https://www.scirp.org/journal/ojop

ISSN Online: 2325-7091
ISSN Print: 2325-7105

DOI: 10.4236/ojop.2021.102004 Jun. 28, 2021 47 Open Journal of Optimization

Experimental Study of Methods of
Scenario Lattice Construction for
Stochastic Dual Dynamic Programming

Dmitry Golembiovsky1, Anton Pavlov1, Smetanin Daniil2

1Moscow State University, Moscow, Russia
2New Economic School, Moscow, Russia

Abstract
The stochastic dual dynamic programming (SDDP) algorithm is becoming
increasingly used. In this paper we present analysis of different methods of
lattice construction for SDDP exemplifying a realistic variant of the news-
vendor problem, incorporating storage of production. We model several days
of work and compare the profits realized using different methods of the lat-
tice construction and the corresponding computer time spent in lattice con-
struction. Our case differs from the known one because we consider not only
a multidimensional but also a multistage case with stage dependence. We
construct scenario lattice for different Markov processes which play a crucial
role in stochastic modeling. The novelty of our work is comparing different
methods of scenario lattice construction. We considered a realistic variant of
the newsvendor problem. The results presented in this article show that the
Voronoi method slightly outperforms others, but the k-means method is
much faster overall.

Keywords
Stochastic Dual Dynamic Programming, Newsvendor Problem,
Markov Process

1. Introduction

This article discusses one of the most powerful modern algorithms, which can
solve problems of stochastic optimization—the stochastic dual dynamic pro-
gramming algorithm first described in [1]. There are several ways to implement
the algorithm; an exhaustive survey can be found in [2]. We will discuss the
most commonly used version—SDDP algorithm with scenario lattice. The main

How to cite this paper: Golembiovsky, D.,
Pavlov, A. and Daniil, S. (2021) Experi-
mental Study of Methods of Scenario Lat-
tice Construction for Stochastic Dual Dy-
namic Programming. Open Journal of Op-
timization, 10, 47-60.
https://doi.org/10.4236/ojop.2021.102004

Received: March 28, 2021
Accepted: June 25, 2021
Published: June 28, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojop
https://doi.org/10.4236/ojop.2021.102004
https://www.scirp.org/
https://doi.org/10.4236/ojop.2021.102004
http://creativecommons.org/licenses/by/4.0/

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 48 Open Journal of Optimization

goal of our study is the testing of methods of a lattice construction. We consi-
dered “The problem of production, sales and product storage”, which is an ex-
tension of the newsvendor problem [3], to compare the scenario lattice con-
struction methods.

There are many articles about scenario generation methods. The approach of
[4] is based on variance reduction techniques. There are works with overviews of
different methods [5] [6] [7]. Multiple scenario lattice construction methods ex-
ist, but we will only consider 3 of them: k-means, competitive learning and Vo-
ronoi cell sampling. In this study, we use the scenario generation methods for
stochastic variables that follow a Markovian process. We are focusing on com-
paring some different techniques. There were some works with a similar goal,
for example [8]. However, in this work, we go further and make an empirical
analysis in the stage-dependent case. We perform modeling for several days, and
each next day is related to the previous day (unlike [8], where stage-independent
processes are considered).

The rest of the paper is organized as follows: In Section 2, we are making an
introduction to the theory, then in Sections 3 and 4 describing the methods of
lattice construction we are using, and then we discuss numerical experiments in
Section 5, and after this summarize all the results in Section 6.

2. Problem Formulation

The original problem of stochastic programming in general terms looks like the
following [8]:

()min x X C x∈ (1.1)

() () (), dC x c x z F z= ∫ (1.2)

where x is a controlling variable with definition area nX ⊆  ; z is a vector vec-
tor of realizations of random variable Z; ()C x is a cost function.

To resolve this problem, we need to move from integral, whose computation
is too hard, to sum, so our problem will have the discrete form:

()ˆmin x X C x∈ (1.3)

() () ()ˆˆ
ˆ ˆ ˆ,z FC x p z c x z

∈
= ∑ (1.4)

In literature, this transition is known as sample average approximation (SAA),
and it is formally described, for example, in [9].

There are many ways to implement transition from (1.1)-(1.2) to (1.3)-(1.4),
for example Monte Carlo [10] [11] or quasi-Monte Carlo methods [12]. We will
use another method based on the direct reduction of the approximation error of
()Ĉ x to ()C x , which was described in [12]. We will briefly describe this me-

thod below.

3. Methods and Algorithms of Probability Distribution
Discretization

Our approach is based on established work [4]. We will briefly discuss it here.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 49 Open Journal of Optimization

Our task is to approximate the distribution F with discrete one F̂ . To do so,
we generate realizations of F. The Monte-Carlo method provides the ap-
proximation cost function convergence to the real cost function with proba-
bility of 1, but we want to reduce the variance of the estimate to speed up the
convergence of the error bounds. To do so, we want to address the approxi-
mation error directly. Let’s define an error in SAA as absolute difference be-
tween the cost functions:

() () ()()()ˆ ˆ, max arg minx xe C C C x C C x= − (1.5)

Since it is nearly impossible to compute ()ˆ,e C C with (1.5), it is usual to
work with the upper bound of the error. To estimate the upper bound, firstly,
we need to introduce some additional notation. Denote as ()()rL c x Lipschitz
constant of (),c x z function of r order:

()() () (){
() }

1 2

1 1
1 2 1 2 1 2

, inf : , ,

max 1, , ,

r

r r
r

L c x z L c x z c x z

L z z z z z z Z L− −

= −

≤ − ∀ ∈ ≤
 (1.6)

where rL is the upper bound. Further, rd is Wasserstein distance between
F and F̂ distributions:

() () ()()
1

ˆ,
ˆ ˆ ˆ, min d ,r r

r g M F F
d F F z z g z z

∈
= −∫ , (1.7)

where the minimum is taken over the entire space of distribution functions

()ˆ,M F F , marginal distributions F and F̂ are Lipschitz, which means they
satisfy (1.6). From [12] we know that:

() ()ˆ ˆ, 2 ,r re C C L d F F≤ , (1.8)

so as far as rL is a constant for given r and (),c x z , it is clear that with the
reduction of ()ˆ,rd F F , the approximation error will also reduce.

It is impractical to find ()ˆ,rd F F using (1.7) because of the integral, so we
will use distance between two discrete distributions:

() [] ()
,

1

, , ,1 1 1 10,1
ˆ, min |ˆ ,

i j

N M M N rr
r i j i j i j i i j ji j j iy

d F F y z p qz y y
= = = =∈

 = − = = 
 

∑ ∑ ∑ ∑ , (1.9)

where ,i jp q are the probabilities of the corresponding discrete distribution
values, and ,i j i jy p q= . Thus, according to (1.8), we need to find the discrete
distribution F̂ , which is the best approximation for F, reducing SAA error.

Since we consider continuous distributions, we need to generate a sample of
size N, so (1.9) will have the following form:

{ }1 ,

1

, , ,, , 0,ˆ 1ˆ , 0 1 1 1 1
ˆmin min | 1,

M i j j

rN M M Nr
i j i j i j i jz z jy q i j j i

y z yz y q N
∈ ≥ = = = =

 
   − = =       
 

∑∑ ∑ ∑
�

, (1.10)

where , 1, ,jq j M= � are probabilities of discrete distribution values; , 1i jy = ,
if element iz of the original sample attributes to element ˆ jz of the new dis-

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 50 Open Journal of Optimization

tribution, otherwise , 0i jy = ; M is the number of values of the new distribution,
M N< .

Now, we will briefly describe algorithms, which we used to solve (1.10) and
get a new approximate probability distribution. More comprehensively, they are
discussed in [8].

k-means algorithm:
1) Randomly choose M elements * *

1̂ , ˆ, Mz z� from the source sample

1, , Nz z� .
2) Attribute element , 1, ,i i N= � of sample 1, , Nz z� to element j of sam-

ple * *
1̂ , ˆ, Mz z� , if j is the solution of *ˆmin j i jz z− .

3) Recalculate cluster centers * *
1̂ , ˆ, Mz z� : *

1

1ˆ js
j kk

j

zz
S =

= ∑ , where is is the

number of elements of the sample 1, , Nz z� , attributed to cluster j on stage 2.
4) If the stopping condition is met, then stop, else return to step 2.
Note that we are using k-means modification from [13].
Competitive learning:
The sample 1, , Nz z� is obtained from the distribution F and initial ap-

proximations ()0

1
ˆ

M

j j
z

=
 are chosen. Then the following algorithm is fulfilled

for 1, , ; 1, ,j M i N= =� � :

() ()21 1 1

1

ˆ ˆ ˆ, if arg min
ˆ

ˆ , else

n n n
j n n j k n kn

j
n
j

z z z j z z
z

z

α− − −

−

 + − = −= 


 (1.11)

nα is the step size, 1, , ; 1, ,j M n N= =� � , values ˆN
jz give the wanted

discrete distribution.
Voronoi cells sampling:
The sample 1, , Nz z� is obtained from the distribution F and initial ap-

proximations ()0

1
ˆ

M

j j
z

=
 are chosen. Then the following algorithm is fulfilled

for 1, , ; 1, ,j M i N= =� � :

() ()21 1 1

1

ˆ ˆ ˆ, if arg min
ˆ

ˆ , else

n n n
j n n j k n kn

j
n
j

z z z j z z
z

z

α− − −

−

 + − = −= 


 (1.12)

Further, put 0 0ˆ ˆj jz z′ = and:

()21

1

ˆ, if arg min
ˆ

ˆ , else

n
n k n kn

j
n

j

z j z z
z

z

−

−

 = −′ = 
 ′

 (1.13)

4. Scenario Lattice Construction Algorithm

Now consider the scenario lattice construction algorithm that was used.
1) First of all, the grid parameters are selected: the number of stages, the

number of nodes at each stage, the number of scenarios generated from each
node.

2) Then, from each vertex of stage, t, we generate M scenarios according to the

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 51 Open Journal of Optimization

relevant random processes.
3) From the M × N scenarios, where N is the number of nodes in the t stage,

N is selected using one of the methods described in Section 3.
4) The probabilities of transition from the vertex i of stage t to the vertex j of

stage t + 1 are calculated as the ratio of the number of scenarios generated from
the vertex i and related to the vertex j of stage t + 1 to the total number of scena-
rios generated from the vertex i.

5) If t + 1 is not equal to T, where T is the number of stages, we pass to point
2; otherwise, the grid is constructed.

The lattice obtained with this algorithm can be illustrated as follows (Figure 1):
In Figure 1, each vertex represents a vector of a given dimension, corres-

ponding to random variables. The probability of transition from the node i of
stage t to the node j of stage t + 1 is indicated by ,

t
i jp . Some probabilities can be

zero, and since we are using clustering algorithms to group scenarios, our lattice
can be illustrated by Figure 2. The vertex of step 1 corresponds to the initial
values, which are selected before the beginning of the grid construction algo-
rithm. We are using standard method [1] to choose scenarios during the forward
step of the SDDP algorithm.

Figure 1. Scenario lattice.

Figure 2. Scenario lattice construction.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 52 Open Journal of Optimization

5. The Case Problem

To compare k-means, competitive learning, and Voronoi cell sampling algo-
rithms, we will use them to solve “The problem of commodities production,
storage and selling” that can be formulated as follows.

Let T be the time interval at which we consider the problem, k is the num-
ber of type of goods, ip is the cost of single item production of type i, iv is
the maximum number of items that can be produced in one day, i

tx is the
number of goods of type i that were produced on day t, is is the selling price
for goods of type i, i

tδ is the demand for type of goods i on day t, i
tr –

number of undelivered goods of type i on day t, ic is the cost of storage of
goods of type i.

The goal is to find a strategy (amount of produced goods) that leads to
maximum income.

Income in day t: ()1
i i i i i i

t t ti
k p x s w c r
=
− + −∑

Amount of sold goods in day t: ()1min , , 1, ,i i i i
t t t tw x r i kδ −= + = �

Amount of goods in storage at the end of day t: 1 , 1, ,i i i i
t t t tr r x w i k−= + − = �

CVaR is used as a risk measure; the optimization criterion is the weighted sum
of CVaR and profit expectation: () []1 CVaRPλ λ− + .

Formally dynamic programming equations look like the following:
for , , 2t T= �

() () (){ }
1

1

1 1 11

0, 0

, min , ,
i i
t
i i
t t

i i i
t t t

i i i i
t t t t

i
t t

i i i i i i
t t t t t t t t t t t tix v

w
w x r

r r x w
x

k

u

r p x s w c r u Q r u
δ

δ λ δ

−

−

− + +=

+
= +

≤

−

≤

≥ ≥

≤

= − + − + +∑

where
() () () (){ }1

1 1 1 1 1 1, 1, 1 , , |t t t t t t t t t t t t t t tQ r u r r uδ λ δ λα δ δ−
− − − − − −+

 − = − + −   ,
(()1 .,.,. 0TQ + ≡ by definition), ()1, , k

t t tr r r= � и ()1, , k
t t tδ δ δ= � .

for 1t =

() (){ }
1
1 1

1 1 0
1 0 1 1

1 1

1 1 1 2 2 1 1 11

0, 0

min , ,
i i
i i

i i i
i i i i

i

k i i i i i i
tix v

w
w x r

r r x w
x u

p x s w c r u Q r u
δ

λ δ
=

+
= + −
≥ ≥

≤
≤

≤

− + − + +∑

6. Numerical Experiments

For numerical experiments, we considered four different stochastic processes for
the demand for goods.

1) Autoregressive model (AR):

1t i t i
p

tiX c a X ε−=
= + +∑ ,

where c is a constant, iα are the model parameters, ()2~ 0,t Nε σ
2) Autoregressive moving-average model (ARMA):

1 1
p

t i t t j
q

i t ji jX c Xα ε β ε− −= =
= + + +∑ ∑ ,

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 53 Open Journal of Optimization

where c is a constant, ,i jα β are the model parameters, ()2~ 0,t Nε σ
3) Geometric Brownian motion (GBM):

d dt t t tS S S Wµ σ= + ,

where ,µ σ are process parameters, tW is the Wiener process.
4) Stage independent normal distribution (SIND):

()2,tX N µ σ=

We are using the processes with chosen parameters, so in our case, the processes
look as follows:

1) GBM: d 5 d 0.1 dt t t tX X t X W= + ;
2) AR(1): ()2

10.9 , ~ 0, , 1t t t tX c X Nε ε σ σ−= + + = ;
3) ARMA(1,1): ()2

1 10.9 0.15 , ~ 0, , 1t t t t tX c X Nε ε ε σ σ− −= + + + = ;
4) SIND: ()2~ , , 10, 5tX N µ σ µ σ= = .
The experiments were organized as follows. First of all, for every combination

of process (AR, ARMA, GBM, SIND) and scenario grid construction algorithm,
we simulated the stochastic process several times. We then checked if the re-
sults came from the normal distribution using the Shapiro-Wilk test and quan-
tile-quantile (Q-Q) plot, then compared results using the one-sided t-test. (Q-Q)
plots show the relationship between observed data and theoretical quantiles. It is
necessary to check our results for normality because we are using the t-test to
compare average profits obtained using different lattice construction methods.
All the parameters of our case problem are in Table 1. We have chosen these
parameters so as to simulate the real-world situation.

For the SDDP algorithm, we used the following optimization criterion:

[]0.5 0.5CVaRP +

Our lattice construction parameters:
The number of nodes at each stage is 10; number of scenarios generated from

each node during lattice construction is 100.
To perform the experiments, we were using a computer with an Intel Core

i5-6300HQ processor running at 2.30 GHz.
We used Python 3.7.3 to generate scenario lattice and Julia 1.3.1 to run the

SDDP algorithm; we implemented the SDDP by ourselves. To understand SDDP
realization, please refer to [14].

The full list and versions of used packages are in Table 2 for Python and in
Table 3 for Julia.

Table 1. Parameters of experiments.

Number of commodities 1 2 3 4 5 6 7 8 9

Production costs ip 150 80 30 17 40 10 30 10 20

Selling price is 200 100 40 22 70 13 60 12 27

Storage cost ic 30 3 4 2 10 2 7 1.5 4

Maximum production volume iv 10 20 40 70 100 120 160 200 300

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 54 Open Journal of Optimization

Table 2. Python packages.

Numpy 1.16.2

Pandas 0.24.2

Scipy 1.2.1

Sklearn 0.22.1

Table 3. Julia packages.

JuMP 0.21.1

Clp 0.7.1

Distributions 0.22.5

CSV 0.5.26

6.1. Numerical Experiments

First of all, it is necessary to compare lattice construction time for every process
and lattice construction algorithm because work time plays a crucial role in com-
puting.

As we can see (Figure 3), k-means works much faster than the Voronoi and
Competitive learning methods, whose results are almost the same.

6.2. AR Demand Results

As we can see from the tables and plots, our results came from a normal distri-
bution (Figures 4-6 and Table 4), and mean profit from scenarios generated by
the Voronoi method is higher than the profit of scenarios generated by k-means
and Competitive learning (Table 4 and Table 5). (Element i,j of Table 5 means
p-value of t-test, which compares method in row i and the method in column j).

6.3. ARMA Demand Results

In this case, our results are also normal (see Figures 7-9 and Table 6), but there
is no difference between k-means and Voronoi, while Competitive learning re-
sults are terrible (Table 6 and Table 7).

6.4. GBM Demand Results

For GBM process, our results are slightly different from the normal distribution
but not so much (Figures 10-12 and Table 8), and all three methods show al-
most the same result (Table 8 and Table 9).

6.5. Stage-Independent Normal Distribution Demand Results

For the Competitive learning method, our results slightly differ from the normal
distribution but not so much (Figures 13-15 and Table 10). The k-means and
Voronoi methods show almost identical results, while Competitive learning loses
pretty badly (Table 10 and Table 11).

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 55 Open Journal of Optimization

Figure 3. Lattice construction time.

Figure 4. K-means Q-Q plot.

Figure 5. Competitive learning Q-Q plot.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 56 Open Journal of Optimization

Figure 6. Voronoi Q-Q plot.

Figure 7. K-means Q-Q plot.

Figure 8. Competitive learning Q-Q plot.

Figure 9. Voronoi Q-Q plot.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 57 Open Journal of Optimization

Figure 10. K-means Q-Q plot.

Figure 11. Competitive learning Q-Q plot.

Figure 12. Voronoi Q-Q plot.

Figure 13. K-means Q-Q plot.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 58 Open Journal of Optimization

Figure 14. Competitive learning Q-Q plot.

Figure 15. Voronoi Q-Q plot.

Table 4. AR statistics.

 K-means Competitive learning Voronoi

Mean 26,390.746 26,390.623 35,290.404

SD 10,196.322 10,196.386 11,703.831

Shapiro-Wilk p-value 0.688 0.688 0.182

Table 5. AR t-test p-values.

 K-means Competitive learning Voronoi

K-means - 0.499 0.001

Competitive learning 0.499 - 0.001

Voronoi 0.001 0.001 -

Table 6. ARMA statistics.

 K-means Competitive learning Voronoi

Mean 50,931.03 −44,927.187 50,900.551

SD 33,633.708 59,910.994 33,635.331

Shapiro-Wilk p-value 0.548 0.091 0.542

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 59 Open Journal of Optimization

Table 7. ARMA t-test p-values.

 K-means Competitive learning Voronoi

K-means - 8.17e−10 0.498

Competitive learning 8.17e−10 - 8.24e−10

Voronoi 0.498 8.24e−10 -

Table 8. GBM statistics.

 K-means Competitive learning Voronoi

Mean 166,051.19 166,163.13 165,994.99

SD 52,557.44 52,572.10 52,972.71

Shapiro-Wilk p-value 0.029 0.036 0.037

Table 9. GBM t-test p-values.

 K-means Competitive learning Voronoi

K-means - 0.496 0.498

Competitive learning 0.496 - 0.495

Voronoi 0.498 0.495 -

Table 10. Stage-independent statistics.

 K-means Competitive learning Voronoi

Mean 26,243.39 8323.40 27,525.61

SD 10,142.48 14,519.86 20,496.62

Shapiro-Wilk p-value 0.713 0.019 0.099

Table 11. Stage-independent t-test p-values.

 K-means Competitive learning Voronoi

K-means - 7.08e−07 0.382

Competitive learning 7.08e−07 - 6.85e−05

Voronoi 0.382 6.85e−05 -

7. Conclusions

As we can see in the numerical results section, in our experimental problem, the
Voronoi method slightly outperforms others, but the k-means method is much
faster.

1) With the AR process, the Voronoi method performs better than k-means
and Competitive learning, which both show almost the same result.

2) With the ARMA process, the Voronoi method is comparable to k-means,
and Competitive learning underperforms pretty hard.

3) With GBM process, results of the methods are close to each other.
4) Scenario lattice calculation time was the same for the Competitive learning

and Voronoi method but much lower for the k-means.

https://doi.org/10.4236/ojop.2021.102004

D. Golembiovsky et al.

DOI: 10.4236/ojop.2021.102004 60 Open Journal of Optimization

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Pereira, M.V.F. and Pinto, L.M.V.G. (1991) Multi-Stage Stochastic Optimization

Applied to Energy Planning. Mathematical Programming, 52, 359–375.
https://doi.org/10.1007/BF01582895

[2] Dentcheva, D. and Ruszczynski, A. (2009) Lectures on Stochastic Programming.
Modeling and Theory. Society for Industrial Mathematics, 9, 271-279.

[3] Birge, J.R. and Louveaux, F. (2011) Introduction to Stochastic Programming. Sprin-
ger, NewYork. https://doi.org/10.1007/978-1-4614-0237-4

[4] Higle, J. L. (1998) Variance Reduction and Objective Function Evaluation in Sto-
chastic Linear Programs. INFORMS Journal on Computing, 10, 121-260.
https://doi.org/10.1287/ijoc.10.2.236

[5] Kaut, M. and Wallace, S. (2007) Evaluation of Scenario-Generation Methods for
Stochastic Programming. Pacific Journal of Optimization, 3, 257-271.

[6] Roemich, W. and Heitsch, H. (2009) Scenario Tree Modelling for Multi-Stage Sto-
chastic Programs. Mathematical Programming, 118, 371-406.
https://doi.org/10.1007/s10107-007-0197-2

[7] Vazsonyi, M. (2006) Overview of Scenario Tree Generation Methods, Applied in
Financial and Economic Decision Making. Periodica Polytechnica Social and Man-
agement Sciences, 14, 29-37. https://doi.org/10.3311/pp.so.2006-1.04

[8] Löhndorf, N. (2016) An Empirical Analysis of Scenario Generation Methods for
Stochastic Optimization. European Journal of Operational Research, 255, 121-132.
https://doi.org/10.1016/j.ejor.2016.05.021

[9] Shapiro, A. (2013) Sample Average Approximation. In: Gass, S.I. and Fu, M.C., Eds.,
Encyclopedia of Operations Research and Management Science, Springer, Boston,
MA, 1350-1355. https://doi.org/10.1007/978-1-4419-1153-7_1154

[10] Shapiro, A. (2003) Monte Carlo Sampling Methods. Handbooks in Operations Re-
search and Management Science, 10, 353-425.
https://doi.org/10.1016/S0927-0507(03)10006-0

[11] Glasserman, P. (2004) Monte Carlo Methods in Financial Engineering. Springer,
NewYork. https://doi.org/10.1007/978-0-387-21617-1

[12] Pflug, G.C. (2001) Scenario Tree Generation for Multiperiod Financial Optimiza-
tion by Optimal Discretization. Mathematical Programming, 89, 251-271.
https://doi.org/10.1007/PL00011398

[13] Arthur, D. and Vassilvitskii, S. (2007) K-means++: The Advantages of Careful
Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2007, New Orleans, Louisiana, USA, 7-9 January 2007,
1027-1035.

[14] Dowson, O. and Kapelevich, L. (2020) SDDP.jl: A Julia Package for Stochastic Dual
Dynamic Programming. INFORMS Journal on Computing, 33, 1-418.
https://doi.org/10.1287/ijoc.2020.0987

https://doi.org/10.4236/ojop.2021.102004
https://doi.org/10.1007/BF01582895
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1287/ijoc.10.2.236
https://doi.org/10.1007/s10107-007-0197-2
https://doi.org/10.3311/pp.so.2006-1.04
https://doi.org/10.1016/j.ejor.2016.05.021
https://doi.org/10.1007/978-1-4419-1153-7_1154
https://doi.org/10.1016/S0927-0507(03)10006-0
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.1007/PL00011398
https://doi.org/10.1287/ijoc.2020.0987

	Experimental Study of Methods of Scenario Lattice Construction forStochastic Dual Dynamic Programming
	Abstract
	Keywords
	1. Introduction
	2. Problem Formulation
	3. Methods and Algorithms of Probability Distribution Discretization
	4. Scenario Lattice Construction Algorithm
	5. The Case Problem
	6. Numerical Experiments
	6.1. Numerical Experiments
	6.2. AR Demand Results
	6.3. ARMA Demand Results
	6.4. GBM Demand Results
	6.5. Stage-Independent Normal Distribution Demand Results

	7. Conclusions
	Conflicts of Interest
	References

