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and motor tasks. Neuroscientists roughly categorize ABSTRACT
temporal information processing in the neural system 
into four different time scales: microseconds, millisec-Temporal informat ion processing in the 
onds, seconds and circadian rhythm, which serve for range of tens to hundreds of milliseconds is 
different physiological functions and rely on differ-critical in many forms of sensory and motor 
ent neural mechanisms. The process within the scale tasks. However, little has been known about 
of millisecond is perhaps the most sophisticated and the neural mechanisms of temporal informa-
the least well understood one among these categories. tion processing. Experimental observations 
Behavioral tasks with temporal information process-indicate that sensory neurons of the nervous 
ing falling within this scale include speech discrimi-system do not show selective response to 
nation in the auditory system, motion information temporal properties of external stimuli. On 
processing in the visual systems, and movement the other hand, temporal selective neurons in 
coordination in the motor system  [1-3].the  cor tex have  been repor ted  in many 
Information processing in neural systems normally species. Thus, processes which realize the 
consists of a number of successive stages. Neural t e m p o r a l - t o - s p a t i a l  t r a n s f o r m a t i o n o f  
activities in a certain stage are mostly determined by neuronal activities might be required for 
neural activities of the preceding stages and our temporal  information processing.  In the 
perception of the world in the brain is based on the present study, we propose a computational 
spat io- temporal  pat terns  of neuronal  act ivi t ies  model to explore possible roles of electrical 
produced at sensory stages [4-5].  Physiological synapses in processing the durat ion of 
observations indicate that neurons in the sensory external  st imul i . F irst ly , we construct a  
levels do not respond selectively to the temporal small-scale network with neurons intercon-
properties of external stimuli. Temporal information nected by electrical synapses in addition to 
is thus suggested to be contained in the temporal chemical synapses. Basic properties of this 
patterns of neuronal activities in the sensory layer. small-scale neural network in processing 
On the other hand, neurons which show selective duration information are analyzed. Secondly, 
response to specific temporal properties, especially a large-scale neural network which is more 
the duration content, have been reported in the cortex biologically realistic is further explored. Our 
of many species [6-10]. Temporal information is results suggest that neural networks with 
therefore suggested to be t ransformed into the electrical synapses functioning together 
spatially distributed neuronal activities in the cortex 

with chemical synapses can effectively work 
and neural mechanisms which contribute to the 

for the temporal-to-spatial transformation of 
t empora l to-spa t ia l  t ransformat ion  of neurona l  

neuronal activities, and the spatially distrib-
activities are required.

uted sequential neural activities can poten-
Electr ical  synapse is another  type of widely 

tially represent temporal information.
distributed neuronal connection in the neural systems 
in addition to chemical synapse [11-12]. Functional 
role of electrical synapse has been identified in fine 
motor coordination which requires temporal infor-
mation processing in milliseconds scale [13]. In the 

1. INTRODUCTION present work, we try to explore possible neural 
Biological neural systems are endowed with the mechanisms of electrical synapse in processing the 
ability to process temporal information given the duration content of external stimuli via computa-
inherent temporal nature of sensory environments tional approach. Briefly, we construct neural net-
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works containing both e lect r ical  and chemical scale model are l is ted as fol lows:
synapses, which are activated by stimuli with various IS : Intensity of the input current;ip
durations. Computational results show that electrical CS : Strength of chemical synapse from input se
synapse can substantially contribute to the temporal- neuron to excitatory neurons;
to-spatial transformation of neuronal activities, and CS :  Strength of chemical  synapse between eethe neuronal activities in such networks can poten-

excitatory neurons;tially represent information about stimulus durations.
ES :  Strength of electr ical  synapse between ee

excitatory neurons;2. MODELS AND METHODS
CS : Strength of chemical synapse from excitatory ei2.1. Model structure

neurons to inhibitory neurons;Two types of computational models are constructed. 
CS : Strength of chemical synapse from inhibitory One is a small-scale neural network which contains ie

only several tens of neurons. Another is a large-scale neurons to excitatory neurons.
one which is more biologically realistic. We use the The large-sc ale neural network model contain s 
simple model to clarify the basic properties of neural 400 excitatory neurons and 100 inhibitory neurons. 
ne tworks  wi th e lec t r ica l  synapses funct ioning  The ra t io be tween the  exci tatory and inhibi tory 
together with chemical synapse in temporal informa- neurons follows the experimental observations from 
tion processing. The overall behavior is further tested neocortical area  [14]. The neural network is further 
in the large-scale model which is more biologically div ide d i nto 100 sub gro ups wit h e ach sub gro up 
realistic. consisting of 4 excitatory neurons and 1 inhibitory 

The schematic structures of the small- and large- neuron. Excitatory and inhibitory neurons in each 
scale neural networks are illustrated in , A individual subgroup are connected recurrently. Input 
and B respectively. Stimuli with various durations neuron is connected to excitatory and inhibitory 
are applied, as represented by various durations of neurons on a random basis. All excitatory neurons are 
the input currents. The input current is injected to an further connected with each other probabilistically in 
input neuron (S) and then transformed into spike a recur rent wa y, and the syna ptic st reng ths are 
t ra in s o f t hi s neu ron. va r i ab l e s  wh ich fo l l ow  no rma l d i s t r i bu t i ons .  

The input neuron is connected to some of the ten Parameters used for synaptic connections in the 
excitatory neurons (E) in the small-scale model. extended model are listed as follows:
Electrical synapses are presented among assigned CP : Probability of chemical synapse from input se
neurons,  as indicated in the f igure. Exci ta tory to excitatory neurons;
neurons are connected to each other recurrently by CM  and CD : Mean and standard deviation of se se
chemical synapses and each excitatory neuron is 

strength of chemical synapse from input to excitatory 
further coupled with an inhibitory neuron (I) to 

neurons;
ensure its stability. Parameters used in the small-

CP : Probability of chemical synapse from input si

Figure 1

Figure 1. A. Schematic structure of the small-scale neural network model. The input neuron (S) is connected to 4 of the 10 
the excitatory neurons (E). All excitatory neurons are connected to each other in a recurrent way and each excitatory neuron 
is coupled with an inhibitory neuron (I). Excitatory and inhibitory synapses are represented by open and solid circles, 
respectively. Neurons in grey shadow are electrically coupled together recurrently.B. Schematic structure of the large-scale 
neural network model. Input neuron is connected to excitatory (E) and inhibitory (I) neurons in the network on a random basis. 
All excitatory neurons are further connected with each other probabilistically in a recurrent way. Electrical synapses are 
formed between some of the excitatory neurons randomly.
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to inhibitory neurons; potentials of excitatory and inhibitory synapses, 
CM  and CD : Mean and standard deviation of respectively;si si

 I  represents  the current  passing through strength of chemical synapse from input to inhibitory esyn

neurons; electrical synapses.
CP : Probabil ity of chemical synapse between In addition, when the membrane potential reaches ee

a threshold (V ), the neuron fires an action potential, excitatory neurons; th

CM  and CD : Mean and standard deviation of and the membrane potential is immediately reset to ee ee
the equilibrium potential (V ) after a firing lasting strength of chemical synapse between excitatory eq

neurons; time (T ).fire
CM  and CD : Mean and standard deviation of Parameter values chosen for the I-F neuron model ei ei

strength of chemical synapse from excitatory to are listed in . These values are mostly adopted 
inhibitory neurons; from Troyer and Miller (1997) [15], except that the 

CM  and CD : Mean and standard deviation of firing lasting time of inhibitory neurons is chosen as ie ie
4 to ensure the neurons' inhibitory effect on the strength of chemical synapse from inhibitory to 
activities of excitatory neurons.excitatory neurons;

EP :  P robab i l i t y o f  e l ec t r i ca l connec t ion  e e 1
2.2.2 Description of synaptic currentbetween excitatory neurons within one subgroup;
The chemical synapses are modeled as follows [16-EP :  P robab i l i t y o f  e l ec t r i ca l connec t ion  e e 2 17]:

between excitatory neurons in different subgroups;
EM  and ED : Mean and standard deviation of ee ee

strength of electrical synapse between excitatory 
neurons.

where g (t) and g (t) in eqns (2) and (3) are ex in
.presented by g (t) g(t) here, with g  representing 2.2. Mathematical description of neurons and csyn csyn

synaptic strength which is modified by a factor of g(t):synapses
2.2.1 Description of integrate-and-fire neuron
Neurons are descr ibed in an integrate-and-f i re 
manner (I-F neuron) [5]. Membrane potential of the 
input neuron (V ) ,  excitatory neuron (V ) ,  and wheres Ex

inhibitory neuron (V ) can be determined as follows:In

in which =15 ms , E = - 40 mV, and (u)   syn thr

follows a step function:

  
The electrical synapses are described as follows:

Where g  represents the synaptic strength. We csynwhere
adopt this abstract function which simply depicts that  C represents the membrane capacitance; 
the current passing through the electrical synapses is  V  denotes the equilibrium membrane potential; eq generally dependent on the membrane potential 

 g  is the leak conductance; leak dif ference  be tween the  pre-synapt ic  and pos t -
 g  and g  represent the conductance of excitatory synaptic neurons [18].ex in

and inhibitory synapses, respectively; 
 E  and E  represent the reversal membrane 3. RESULTSex in

Table 1

(2)

(3)

(1)

(4)

(5)

(6)

(7)
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Table 1. Parameter values for the I-F neuron model. The firing lasting time (T ) for sensory and excitatory neurons is set as fire

1.75 ms  whereas that for inhibitory neuron is set as 4 ms. 

C

(pF)

0.5

 Veq

(mV)

-74

 Vth

(mV)

-54

 gleak

( S)

0.025

 Eex

(mV)

0

 Ein

mV)

-74

 Tfire

(ms)

1.75/4



neuronal groups are electrically coupled together 3.1 Stimulus duration is represented by spike 
which contain 2, 3 and 4 neurons, respectively. trains of input neuron
Raster plots of the firing performances of the model The injected current is first transformed into a spike 
neurons  in  absence and  presence  of e lec t r ica l  train of the input neuron. Spiking properties of the 
synapses are compared with stimulus duration being input neuron (S) are shown in . Injected 
50 ms ( ) and 100 ms ( ), currents with different magnitudes and durations are 
respectively.applied to the input neuron to test its performance. A 

Resul t s  g iven  in  sugges t  tha t  sustained current elicits periodic spikes from the 
electrical synapses in a neural network can effec-input neuron and the duration of the spike train is 
tively transform the temporal domain spike train of determined by the stimulus duration. Input neuron 
the input neuron into the spatial-temporal firing can therefore mimic the function of sensory neuron in 
pattern of a group of neurons. Each activated neuron neural system.
in the group fires within a specific time window, 
which is determined by the configuration of the 3.2 Performance of the small-scale neural 
synaptic connection of the neural network. Fur therm ore, network model
stimulus with longer duration can evoke spikes from 3.2.1 Temporal information can be represented by 
more neurons and therefore the stimulus durations the spatially distributed activities of a group of 
can be represented by the spatial and temporal  neurons
structure of the sequential neuronal activities.Representative firing patterns of the simple model 

are given in . Parameters used for  
3.2.2 The output pattern is closely related to the are listed in  and the synaptic connection 
electrical coupling configurationfollows that illustrated in . Input neuron is 
Electrical synapses between excitatory neurons and connected to four of the ten excitatory neurons. Three 

Figure 2
Figure 3A&B Figure 3C&D

Figure  3B&D

Figure 3 Figure 3
Table 2

Figure 1A
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Figure 2. Spike activities of the input neuron (S) in response to constant injected currents with various intensities and 
magnitudes.
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Figure 3. Raster plots for neuronal activities of the small-scale model elicited by 50 and 100 ms stimulus durations. Stimuli 
are indicated by grey shadows. A, 50 ms duration, without electrical synapses; B, 50 ms duration, with electrical synapses; C, 
100 ms duration, without electrical synapses; D, 100 ms, with electrical synapses.

Table 2. Parameter values used in the small-scale neural network model.

 IS (pA)ip

2.0

 CS ( S)se

0.075

 CS ( S)ee

0.0001

ES ( S)ee

0.02

 CS ( S)ei

1.0

 CS ( S)ie

2.0

sy na pt ic c on ne ct io ns f ro m in pu t ne ur on t o th e neural network kept unaltered. The spiking activities 
network are important factors that influence the of these three neurons under the test conditions are 
model's performance. There are three groups of plotted in .  The firing activities are quite 
neurons electrically coupled together in the small- diff eren t with d iffe rent s ynap tic co nfig urat ions . 
scale model presented in . Neurons within Generally, spikes can be elicited from the neurons 
each group are all electrically coupled in a recurrent that are chemically connected to the input neuron, 
manner. Furthermore, only one neuron in each group and longer delay is produced when the chemically 
is connected to the input neuron. The model outputs activated neuron is electrically coupled with more 
in response to stimuli with different durations are neurons that do not receive chemical input from the 
presented in . However, any change in the input neuron (e.g.  vs ).
configurations of the electrical coupling and input 
neuron connection may also cause relevant changes 3.3 Performance of the large-scale neural 
in the results. Take the 3-neuron group in  network model
(E4, E5 and E6) for an example, relevant possibilities Performance of the small-scale model suggests a 
of the electrical coupling within this group as well as mechanism for temporal information processing in a 
the chemical synapses between these neurons and the neural network containing electrical synapses. In real 
input neuron are tested, with the rest structure of the neural network, the synaptic strengths as well as the 

Figure 4

Figure 1A

Figure 3 A&F B&D

Figure 1A
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Figure 4. Raster plots for spike activities of threeneuron group with different synaptic configurations. Neurons receive 
synaptic input from input neuron are represented by solid circle. Electrical synapses are represented by solid lines. The 
stimulus duration is 100 ms with the current intensity to input neuron being 2.0 pA.



electrical coupling configuration are not fixed but The inset graphs represent the recruitment process of 
variable. A large-scale model which is more biologi- the neuronal spiking activities. The temporal distribu-
cally realistic is constructed with parameter varia- tion of the neuronal activities under these two condi-
tions, and its performance is tested. tions is compared by analyzing the recruitment 

Representative firing patterns of the large-scale process in ten independen t trials. The results are 
model in absence and presence of electrical synapses sho wn in  and . It is cle ar tha t the 
are shown in  and , respectivel y. The presence of electrical synapses results in a broader 
stimulus duration time is 100 ms. Neural network temporal distribution of the sequential spike activi-
parameters used for  are listed in . ties of the neurons ( ), while the neuronal firing 

Figure 5C D
Figure 5A B

Figure 5 Table 3 B & D

Figure 5. A and B are representative raster plots of the neuronal activities of the large-scale model in absence and presence 
of electrical synapses, respectively. The stimulus duration is 100 ms. Inset graphs represent the processes of spike activity 
recruitment. C and D show the recruitment processes in absence and presence of electrical synapses, respectively. Data are 
averaged based on 10 independent trails (Mean S.D.).
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Table 3. Parameter values used in the large-scale neural network model.

CPse

CPsi

CPee

/

/

EPee1

EPee2

0.25

0.98

0.005

/

/

0.25

0.0002

CM /CD  ( S)se se

CM /CD  ( S)si si

CM /CD  ( S)ee ee

CM /CD  ( S)ei ei

CM /CD  ( S)ie ie

EM /ED  ( S)ee ee

EM /ED  ( S)ee ee

0.055/0.003

0.03/ 0.01

0.001/0.001

0.2/0.01

0.7/0.01

0.01/0.001

0.01/0.001



Figure 6. Raster plots of the large-scale neural network in response to stimuli with different durations. The configuration of 
the model is identical for Figure A to F.
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act ivi tie s are l imi ted w ith in a na rro w tem por al temporal firing pattern of neuronal ensembles while 
window in absence of electrical coupling ( ). ea ch ne ur on wi th in th e en se mb le fi re s wi th in 

The firing patterns of the large-scale model in different time windows, and the spatio-temporal 
response to stimuli with various durations are further pat ter n of the neu ron al act ivi tie s is cap abl e of 
tested. Stimuli with durations varying from 50 ms to represen t ing  s t imulus dura t ion  in the  form of  
100 ms are applied to the network, with steps being 10 sequential firing activities of the spatially distributed 
ms. Raster plots of typical spike activities of the neurons.
network are given in ,  to . It is revealed The contribution of electrical synapses in the 
that the model neurons fire in a sequential pattern, fo rm at io n o f s pa ti o- te mp or al fi ri ng pa tt er n i s 
with more neurons being sequentially recruited in particularly examined in the present study. However, 
response  to  longer  dura t ion.  Such recrui tment  i t i s necessary to mention that o ther fac tors can a lso 
process in response to durations ranging from 50 ms contribute to this process. For example, membrane 
to 100 ms is averaged based on ten independent trials capacitance of specific neurons can be variable 
and the result is shown in . because of variation in surface area as well as the 

Stimuli with durations varying from 50 ms to 100 membrane capacitance value per unit area [25-28]. 
ms are app lied an d relev ant res ults ar e given in These changes can function in parallel to electrical 

 and . However, models with this synapses in influencing the sequential firing patterns 
structure can effectively represent durations in other of neuronal ensembles.
ranges while relevant parameters are changed. These Special role of electrical synapse is proposed in 
parameters include the capacitance value of the I-F our mod els and there a re also experimen tal clu es 
neu ron al mod el, th e time c ons tan t for ch emi cal which indicated possible roles of electrical synapse 
synaptic strength, the synaptic strengths from input in te mporal informa tion process ing. Data demon-
neuron to the network et al. Stimuli with durations strated that gap junction coupling within inferior 
ranging from 100 ms to 200 ms are applied to the olive mediated by connexin 36 could add 10-20  of 
ne tw or k, i n wh ic h th e me an v al ue o f sy na pt ic precision to the fine temporal coordination of muscle 
strength from input neuron to the neural network firing during movement [13].
(Cm ) are changed (from 0.055    S to 0.038    S ). Neurons in the present work are modeled follow-se

ing the classic I-F neuron fashion without  any The performance of the model (averaged across ten 
specific properties for temporal information process-independent trials) is plotted in .
ing. These neurons can be tuned to response to any 
non-temporal properties of natural stimulus and 4. DISCUSSION
thereby function for the corresponding behavioral Temporal information processing in neural system is 
tasks. For example, these neurons could be tone critical for animal behavior. Neuroscientists have 
selective neuron which function for auditory behav-tried a lot in understanding the neural basis of 
ior, or mechanosensory neurons which function for relevant processes via both experimental [6-10] and 
mechanosensa t i on .  Whi l e bo th  e l ec t r i c a l and  computational approaches [19-24].
chemical  synapses  are universal  in  the central  In the present study, the computational results 
nervous system, the model results suggest that both demonstrate that electrical synapses could effec-
the spatial and temporal neuronal activities produced t ively  contr ibute to  the format ion of a  spat io-

A & C

Figure 6 A F

 Figure 7A

Figure 6 Figure 7A

Figure 7B

Figure 7. Recruitment of neuronal activities (activated numbers) for the large-scale model in response to stimuli with 
durations ranging from 50 to 100 ms (A, step 10 ms) and 100 to 200  ms (B, step 20 ms). The mean values of synaptic strength 
from input to excitatory neurons are 0.055 and 0.038 for results in Figure A and B, respectively. Data are analyzed from 10 
independent trials in the form of (Mean S.D.).
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