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Abstract 
This paper aims at treating a study of Banach fixed point theorem for map-
ping results that introduced in the setting of normed space. The classical Ba-
nach fixed point theorem is a generalization of this work. A fixed point 
theory is a beautiful mixture of Mathematical analysis to explain some condi-
tions in which maps give excellent solutions. Here later many mathematicians 
used this fixed point theory to establish their results, see for instance, Pi-
card-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. 
Also, we developed ideas that many of known fixed point theorems can easily 
be derived from the Banach theorem. It extends some recent works on the 
extension of Banach contraction principle to metric space with norm spaces. 
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1. Introduction 

It is conventional to this work motivated by some recent work on Banach fixed 
point theorem for mappings defined on metric spaces with a partial order or a 
graph. One of the most important theorems is the Banach fixed point theorem 
and it is related to a complete normed space. The study on Banach Fixed Point 
Theorem and its Applications is a motivation of the development of Banach 
fixed point theorem. Polish Mathematician Stefan Banach had discussed Banach 
fixed point theorem as a part of his PhD thesis in 1922. Here, Banach contrac-
tion principle and Banach fixed point theorem is important for nonlinear analy-
sis. It’s a modification of the ε-variational principle of Ekeland ([1] [2]) which is 
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a crucial tool in nonlinear analysis like optimization, variational inequalities, 
differential equations, and control theory. After that, Banach fixed point theo-
rem has been generalized and extended in several directions (i.e. [3] [4] [5] and 
the related references there in). Here at present, we discussed Banach fixed point 
theorem in normed spaces where Banach fixed point theorem was in matric 
space [6]. Finally we have shown some important applications of Banach fixed 
point theorem. 

2. Preliminaries  

We will discuss Banach fixed point theorem in metric spaces with complete normed 
spaces and related topics. 

Metric Space [7]: Let X be a non-empty set. A mapping :d X X× →   is 
called a metric if , ,x y z X∀ ∈  the following properties are satisfied: 

1) ( ), 0d x y ≥ .  
2) ( ), 0d x y =  if and only if x y= . 
3) ( ) ( ), ,d x y d y x=  [Symmetry]. 
4) ( ) ( ) ( ), , ,d x y d x z d z y≤ +  [Triangle inequality]. 
The set X together with metric d, then it is called a metric space. It is denoted 

by ( ),d X d . 
Example: A trivial but important example a metric is given by the function  

( )
0 if

, ; ,
1 if

x y
d x y x y X

y y
=

= ∈ ≠
 

Convergence and limit of a sequence: A sequence nx  in a metrics space 
( ),X d  is said to be convergent if there exist an x X∈  such that 

( )lim , 0nn
d x x

→∞
= . 

Here x is called the limit of nx  and we write this as lim nn
x x

→∞
= . 

Complete metric space: A metric ( ),X d  is said to be complete if every 
Cauchy sequence in it converges to an element of it. 

Cauchy sequence: Let ( ),X d  be a metric space and ( )nx  be a sequence in 
it. Then the sequence ( )nx  is said be a Cauchy sequence if for every 0> , there 
exists positive integer N such that ( ),p qd x x <   for all ,p q N>  

Complete Cauchy sequence:  
Let ( ),X d  be a g.m.s. A sequence ,nx n N∈  in X is said to be a Cauchy se-

quence if for all 0>  there exists a natural number n N∈  such that for all 
,m n N∈ , n n≥   one has ( ),n n md x x + <  . ( ),X d  is called complete if every 

Cauchy sequence is convergent in X. 
Fixed point: A fixed point of a mapping :f X X→  is a point x X∈  such 

that ( )f x x= . 
Example: 
1) The mapping 2x x→  of   into itself has the two fixed points 0 and 1. 
2) A rotation of the plane has a single fixed point. 
3) A translation has no fixed point. 

https://doi.org/10.4236/ajcm.2021.112011


Md. A. Mannan et al. 
 

 

DOI: 10.4236/ajcm.2021.112011 159 American Journal of Computational Mathematics 
 

Contraction mapping in metric space: Let ( ),X d  be a metric space. A 
mapping :T X X→  is called a contraction on X if there is a positive real num-
ber 1k <  such that for all ,x y X∈ . 

( ) ( ), ,d Tx Ty kd x y≤  

Normed Spaces [8]: A normed on X is a real function : X R• →  defined 
on X such that for any ,x y X∈  and for all Kλ ∈ . 

1) 0x ≥ .  
2) 0x =  if and only if 0x = . 
3) x xλ λ= .  
4) x y x y+ ≤ +  (Triangle inequality). 
A norm on X defines a metric d on X which is given by ( ),d x y x y= − ; 

,x y X∈  and is called the metric induced by the norm. The normed space is 
denoted by ( ),X •  or simply by X. 

Convergence: A sequence ( )nx  in a normed space X is said to be convergent 
if X contains an x such that lim 0nn

x x
→∞

− = . Then we write nx x→ . And call x 
is called the limit of nx . 

Cauchy sequence: A sequence ( )nx  in a normed space X is called a Cauchy 
sequence if for every 0ε >  there exists a positive integer N such that 

,nx x n m Nε− < ∀ >  

Banach Space [9]:  
Definition-1: A complete normed space is called a Banach space. (Complete 

means complete in the metric defined by the norm.) 
Definition-2: A normed space, in which every Cauchy sequence is convergent, is 

called a Banach space. That is, for every sequence ( )nx  in X with 0m nx x− →  
as ( ),m n →∞ , x X∃ ∈  s.t. 0nx x− → , as n →∞ .  

Example-1: Every Banach space is a normed, but the converse, in general, is 
not true. 

Example-2: nR  and nC  are Banach spaces with the norm definite by 

( )1 22
11

n
lx x
=

= ∑
 

Contraction mapping in norm space [10]: Let X be a norm space and 
:T X X→ . Then T is called a contraction mapping if there is a positive real 

number 1k <  such that for all ,x y X∈ . ( ) ( )T x T y k x y− ≤ − . 

3. Application with Result 

Here, we present a Study of Banach Fixed Point Theorem and its Application’s 
for mapping results which is introduced in setting of normed spaces such as. 

3.1. Banach Contraction Theorem (or Principle) [11] 

Here we will give the proof of Banach contraction theorem (or principle) both 
for metric space and normed space separately.  

Theorem-1: Let T be a contraction mapping on a complete metrice space X. 
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Then T has a unique fixed point. 
Proof: Let us consider an arbitrary point 0x X∈  and define the iterative se-

quence ( )nx  by  

0 1 0 2 1 3 2 1
2

2 0 0
2 3

3 0 0

0

, , , ,

Then,

, n n

n
n

x x Tx x Tx x Tx x Tx

x TTx T x

x TT x T x

x T x

−= = = =

= =





= = 


=









             (1) 

Then the sequence of the image of 0x  under repeated application of T. We now 
show that ( )nx  is a cauchy sequence. 

If n m> , then  

( ) ( )1 1, ,m m m md x x d Tx Tx+ −=  

( ) ( )1 1, ,m m m md x x Kd x x+ −⇒ ≤  

( ) ( )1 1 2, ,m m m md x x Kd Tx Tx+ − −⇒ ≤  

( ) ( )2
1 1 2, ,m m m md x x K d x x+ − −⇒ ≤  

Proceeding in this way up to m times we get,  

( ) ( )1 1 0, ,m
m md x x K d x x+ ≤  

Hence by the triangle inequality we obtain for n m>   

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )

1 1 2 1

1 1
0 1 0 1 0 1

1
0 1

0 1

, , , ,

, , ,

1 ,

1 ,
1

m n m m m m n n

m m n

m n m

n m
m

d x x d x x d x x d x x

K d x x K d x x K d x x

K k k d x x

kk d x x
K

+ + + −

+ −

− −

−

≤ + + +

≤ + + +

= + + +

−
=

−







 

Since 0 1K< < , So that the number 1 1n mk −− <  

( ) ( )0 1, ,
1

m

m n
kd x x d x x

K
∴ ≤

−
                   (2) 

Again ( )0 1,d x x  is fixed and 0 1K< < , so we can make the right hand side as 
small as we please by taking m sufficiently large. This shows that ( )nx  is a 
cauchy sequence.  

Since X is complete, there exists a point x X∈  Such that nx x→ . Now we 
show that this limit x is a fixed point of the mapping T. From triangle inequality 
and by definition we have  

( ) ( ) ( ), , ,n nd x Tx d x x d x Tx≤ +  

( ) ( ) ( )1, , ,n nd x Tx d x x Kd x x−⇒ ≤ +  

We know that ( ), 0d x y =  if and only if x y= . Since nx x→ , So  
( ), 0nd x x →  and ( )1, 0nd x x− → . It follows that ( ), 0d x Tx =  and hence  

Tx x= . This shows that x is a fixed point of T. We now show x is the only fixed 
point of T. Suppose that 1x  is also fixed point of T. Then 1 1Tx x= . 
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( ) ( ) ( )1 1 1, , ,d x x d Tx Tx kd x x= ≤  

Since 1k < , this implies that ( )1, 0d x x = . Hence 1x x= . Thus, the proof is 
complete.  

3.2. Hahna-Banach Theorem (Normed Space) [12] [13]  

Let f be a bounded linear functional on a subspace Z of a normal space X. Then 
there exists a bounded linear functional F on X which is an extension of f to X 
and has the same norm. 

x zF f≤                            (3) 

where ( ) ( )
1

sup , supx Xx z
x X x

F F x f f x∈
∈ =

= =  

Proof: If { }0z = , then 0f = , and the extension 0F = . Suppose { }0Z ≠ : 
For all x Z∈  we have  

( ) zf x f x=  

From the generalized Hahn-Banach theorem we have  

( ) ( )f x p x≤ . 

Thus, ( )p x  can be taken as 
zf x , that is  

( ) zp x f x=                        (4) 

We see that p is defined on all of X. We have  

( ) zp x y f x y+ = +  

( ) ( )zp x y f x y⇒ + =  [By triangle inequality] 

( ) z zp x y f x f y⇒ + = +  

( ) ( ) ( )p x y p x p y⇒ + = +  

and  

( ) ( )z zp x f x f x p xα α α α= = =  

Hence by generalized Hahn-Banach theorem we can conclude that there a linear 
exists a linear functional F on X which is an extension of f and satisfies  

( ) ( ) zF x p x f x x X≤ = ∈  

Taking the supremum over all x X∈  of norm 1, we get  

( )
1

sup z
x X
x

F x f
∈
=

≤  

x zF f⇒ ≤                          (5) 

Since under an extension the norm can not decrease, so we have  

x zF f≤                            (6) 

From (5) and (6), then we get, x zF f= . Thus the theorem is proved. 
Theorem-2: Let X be a normed space. Then the following mapping is all con-
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tinuous.

 

1) ( ),x y X X x y X∈ × → + ∈

 

2) ( ), x K X x Kλ λ∈ × → ∈

 

3) ( ) ( ), ,x y X X d x y y x R∈ × → = − ∈

 

Proof: 1) Let ( ),a b X X∈ ×  be an arbitrary point, so that a + b is its image. 
Now we will prove that the mapping is continuous at (a, b). I.e. for given 0ε > , 

0δ∃ >  such that ( ) ( )x y a b ε+ − + <  Whenever x a δ− <  and  

y b δ− < . Let us take 
1
2

δ ε= . Then we have 

( ) ( ) ( ) ( )x y a b x a y b+ − + = − + −  

( ) ( )x y a b x a y b⇒ + − + ≤ − + −  

( ) ( )x y a b δ δ⇒ + − + < +  

( ) ( )
2 2

x y a b ε ε
⇒ + − + < +  

( ) ( )x y a b ε⇒ + − + <  

2) Let Kα ∈  and a X∈  be arbitrary. Now we will prove that the mapping 
is continuous at (α, a). I.e. for given 0ε > , 0δ∃ >  such that 

x aλ α ε− <   

whenever λ α δ− <  and x a δ− <  we have the identity, 

( )( )x a x a a x a aλ α λ α λ α α α− = − − + + − −  

( )( ) ( ) ( )x a x a a x aλ α λ α λ α α⇒ − = − − + − + −  

( )( ) ( ) ( )x a x a a x aλ α λ α λ α α⇒ − = − − + − + −
 

Taking norm and using triangle inequality we get 

( )( ) ( ) ( )x a x a a x aλ α λ α λ α α⇒ − ≤ − − + − + −  

x a x a a x aλ α λ α λ α α⇒ − ≤ − − + − + −  
Now choosing 0δ >  sufficiently small, we get 

x a aλ α δδ δ α δ ε⇒ − ≤ + + <  

x aλ α ε⇒ − <   

3) In this case, the function is the metric of a metric space. I follows from the 
property of metric spaces that the metric is continuous. 

3.3. Banach Contraction Principle [14]  

Every contraction mapping T defined on a Banach space X into itself has a 
unique fixed point x X∈ . 

Proof:  
1) Existence of a fixed point:  
Let us consider an arbitrary point 0x X∈  and define the interative sequence 
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( )nx  by 0 1 0 2 1 3 2 1, , , , , n nx x Tx x Tx x Tx x Tx −= = = = . Then  
2

2 0 0
2 3

3 0 0

0
n

n

x TTx T x

x TT x T x

x T x

= =

= =

=



 

It m n> , say , 1, 2,m n p p= + =  . Then  

( )1 1 1 1
0 0 0 0 0 0

n p n n p n n p n
n p nx x T x T x T T x T x K T x T x+ + − − + − −
+ − = − = − ≤ − ,  

as T is a Contraction mapping Continuing this process this process 1n −  times, 
we have  

0 0
n p

n p nx x K T x x+ − ≤ −                      (7) 

For 0,1, 2,3,n =   and all p. Now,  
1 1 2 2

0 0 0 0 0 0 0 0 0
p p p p p pT x x T x T x T x T x T x Tx x− − − −− = − + − + + −  

1 1 2
0 0 0 0 0 0 0 0

p p p p pT x x T x T x T x T x Tx x− − −⇒ − ≤ − + − + + −

 
1 1 2 2

0 0 1 0 1 0 1 0
p p p p pT x x T x T x T x T x x x− − − −⇒ − ≤ − + − + + −

 
1 2

0 0 1 0 1 0 1 0
p p pT x x K x x K x x x x− −⇒ − ≤ − + − + + −

 

( )1 2
0 0 1 01p p pT x x K K x x− −⇒ − ≤ + + + −

 

0 0 1 0
1
1

p
p KT x x x x

k
−

⇒ − ≤ −
−

                   (8) 

by the sum of G.P. series whose ratio < 1. Since 0 1k< < , so the number  
1 1pK− < . Using this result in (8) we get  

0 0 1 0
1

1
pT x x x x

k
− ≤ −

−
 

with the help of this result (7) becomes  

1 01

n

n p n
kx x x x

k+ − ≤ −
−

 

when n →∞  then m n p= + →∞  then  

n p nx x+ − → ∞  

This shows that ( )nx  is a cauchy sequence in X. Hence, ( )nx  must be con-
vergent, say lim nn

x x
→∞

=  
2) Limit x is a fixed points of T:  
Since T is continuous, we have  

( ) 1lim lim limn n nn n n
Tx T x Tx x x+→∞ →∞ →∞

= = = =  

[Since the limit of ( )1nx +  is the same as that of ( )nx ] 

Thus, x is a fixed point of T.  

https://doi.org/10.4236/ajcm.2021.112011


Md. A. Mannan et al. 
 

 

DOI: 10.4236/ajcm.2021.112011 164 American Journal of Computational Mathematics 
 

3) Uniqueness of the fixed point:  
Let y be another fixed point of T. Then, Ty y= , We also have  

Tx Ty K x y− ≤ − , as T is contraction mapping. But Tx Ty x y− ≤ − .  
Tx x∴ =  and Ty y=  x y K x y∴ − ≤ −  1 K≤ . Since 0 1K< < , So the 

above relation is possible only when  

0x y− =  

0x y⇒ − =  
x y⇒ =  

This proves that fixed point of T is unique.  
Application-1: Let X R=  be the Banach space of real numbers with  

x x=  and [ ],a b R⊂ , [ ] [ ] [ ]: , , ,f a b a b a b→ → , a differentiable function 
such that ( ) 1f x k′ ≤ < . Find the solution of the equation ( )f x x= . 

Solution: Let [ ], ,x y a b∈  and y z x< < . Then by Lagrange’s mean value 
theorem we have  

( ) ( ) ( )
f x f y

f z
x y
−

′=
−

 

( ) ( ) ( ) ( )f x f y x y f z′⇒ − = −  

( ) ( ) ( ) ( )f x f y x y f z′⇒ − = −
 

( ) ( ) ( )f x f y x y f z′∴ − = −
 

( ) ( )f x f y k x y⇒ − ≤ −
 

Thus, f is a contraction mapping on [ ],a b  into itself. Since [ ],a b  is a closed 
subset of X R= . Therefore, by Banach contraction theorem exists a unique 
fixed point [ ]* ,x a b∈  such that ( )* *f x x= . Hence, *x  is the solution of the 
equation ( )f x x=  

Application-2:  
Find the solution of the system of n linear algebraic equation with n un-

knowns:  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 









 

Solution:  
The given system is  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 









                  (9) 

This system can be written as  
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( )
( )

( )

1 11 1 12 2 1 1

2 21 1 22 2 23 3 2 2

1 1 2 2

1

1

1

n n

n n

n n n nn n n

x a x a x a x b

x a x a x a x a x b

x a x a x a x b

= − − − − + 


= − + − − − − + 


= − − − + − + 









         (10) 

Let ij ij ija a δ= − +  where 
1 for
0 forij

i j
i j

δ
=

=  ≠
. Then the Equation (10) can be 

written in the following equivalent form.  

1 , 1, 2,3, ,n
i ij jjx a x b i n

=
= + =∑                   (11) 

If ( )1 2, , , n
nx x x x R= ∈  then Equation (11) can be written in the form  

Tx x= , where T is defined by  

Tx y=                             (12) 

where ( )1 2, , , ny y y y=   and 
1

n
i ij jjy a x b

=
= +∑ . Here : n nT R R→  and  

( )ija  is a n n×  matrix. 
Finding solutions of the system (9) or (11) is thus equivalent to find the fixed 

points of the operator (12). In order to find a unique fixed points of T, that is, a 
unique solution of (9), we apply the Banach contraction Principle, Equation (9) 
has a unique solution, if 

1 1
1, 1, 2, ,

n n

ij ij ij
j j

a a K i nδ
= =

= − + ≤ < =∑ ∑   

For  

( )1 2, , , n
nx x x x R= ∈  

( )1 2, , , n
nx x x x R′ ′ ′ ′= ∈  

( )1 2, , , n
ny y y y R= ∈  

( )1 2, , , n
ny y y y R′ ′ ′ ′= ∈  

We have Tx Tx y y′ ′− = −  

1
, 1, 2, ,

n

ij j i
j

iy x b i nα
=

′ ′= + =∑   

Also if ( )1 2, , , n
ny y y y R= ∈  then 

1
sup i

i n
y y

≤ ≤
= . Therefore  

( )

1

1 1 1

1 1

sup

sup

sup

i i
i n

n n

ij j i ij j i
i n j j

n

ij j j
i n j

Tx Tx y y y y

a x b a x b

a x x

≤ ≤

≤ ≤ = =

≤ ≤ =

′ ′ ′− = − = −

′= + − −

′= −

∑ ∑

∑

 

1 1
sup

n

ij j j
i n j

Tx Tx a x x
≤ ≤ =

′ ′⇒ − ≤ −∑
 

1 11 1
sup sup

n n

j j ij
i n i nj j

Tx Tx x x a
≤ ≤ ≤ ≤= =

′ ′⇒ − ≤ −∑ ∑
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1 1
sup

n

j j
i n j

Tx Tx K x x
≤ ≤ =

′ ′⇒ − ≤ −∑
 1

1
n

ij
j

a k
=

∴ ≤ <∑
 

Tx Tx K x x′ ′⇒ − ≤ −  1
sup j j

i n
x x x x

≤ ≤
′ ′∴ − = −

 
This shows that T a contraction mapping of the Banach space into itself. Hence, 
by Banach contraction principle, there exists a unique fixed point *x  of T in 

nR , that is, *x  is a solution of Equation (9). 
Application-3: 
Let the function ( ),K x y  be defined and measurable in the square  

( ){ }, : ,A x y a x b a y b= ≤ ≤ ≤ ≤ . 

Further, let ( ) 2
, d d

b b

a a
K x y x y < ∞∫ ∫ , and ( ) ( )2 ,∈g x L a b . Then the integral 

equation  

( ) ( ) ( ) ( ), d
b

a
f x g x K x y f y yλ= + ∫                 (13) 

has a unique solution ( ) ( )2 ,f x L a b∈  for every sufficiently small value of the 
parameter λ . 

Proof: Let 2x L= , and consider the mapping T 

 ( ) ( )2 2: , ,T L a b L a b→   

 Tf h=   

where ( ) ( ) ( ) ( ), d
b

a
h x g x K x y f y yλ= = ∫ . This definition is valid for each  
( ) ( )2 2, , ,f L a b h L a b∈ ∈ . Since ( )2 ,g L a b∈  and λ  is a Scalar, it is sufficient 

to show that  

( ) ( ) ( ) ( )2, d ,
b

a
x K x y f y y L a bψ λ= ∈∫   

By Cauchy –Schwartz inequality we have  

( ) ( ) ( ), d
b

a
x K x y f y yψ = ∫   

( ) ( ) ( ), d
b

a
x K x y f y yψ⇒ ≤ ∫   

( ) ( )( ) ( )( )1 2 1 22 2
, d d

b b

a a
x K x y y f y yψ⇒ ≤ ∫ ∫

  

( ) ( )( ) ( )( )2 2 2
, d d

b b

a a
x K x y y f y yψ⇒ ≤ ∫ ∫

  

( ) ( )( ) ( )( )2 2 2
d , d d d d

b b b b b

a a a a a
x x K x y y x f y y xψ⇒ ≤∫ ∫ ∫ ∫ ∫

  

By the hypothesis ( ) 2
, d d

b b

a a
K x y x y < ∞∫ ∫  and ( )( )2

d d
b b

a a
f y y x < ∞∫ ∫   

( ) 2
d

b

a
x xψ∴ < ∞∫  

Thus, ( ) ( ) ( ) ( ) ( )2, , d ,
b

a
x K x y f x y f y y L a bψ = ∈∫ . We know that ( )2 ,L a b  is 

a Banach space with norm  

( )( )1 22
d

b

a
f f y y= ∫  
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We now show that T is a contraction mapping. We have 1 1Tf Tf h h− = − . 
Where ( ) ( ) ( ) ( )1 1 1, d

b

a
h x g x K x y f y yλ= + ∫ . But,  

( ) ( ) ( ) ( ) ( ) ( )1 1 1, d , d
b b

a a
h h g x K x y f y y g x K x y f y yλ λ− = + − −∫ ∫  

( ) ( ) ( ) ( ) ( ){ }1 1 1, d
b

a
h h g x g x K x y f y f y yλ  ⇒ − = − + −    ∫  

( ) ( ) ( ) ( ) ( ){ }1 1 1, d
b

a
h h g x g x K x y f y f y yλ  ⇒ − ≤ − + − ∫  

( ) ( ) ( ){ }1 1, d
b

a
h h K x y f y f y yλ  ⇒ − ≤ − ∫  

( ) ( ) ( ){ }
1 22

1 1, d d
b b

a a
h h K x y f y f y y xλ

  ⇒ − ≤ −    
∫ ∫   

( )( ) ( ) ( )( )1 2 1 22 2
1 1, d d d

b b b

a a a
h h K x y x y f y f y yλ⇒ − ≤ −∫ ∫ ∫   

[By using Cauchy –Schwartz-Bunyakowski inequality] 

( )( )1 22
1 1, d d

b b

a a
h h K x y x y f fλ⇒ − ≤ −∫ ∫   

Hence, ( )( )1 22
1 1, d d

b b

a a
Tf Tf K x y x y f fλ− ≤ −∫ ∫ . If  

( )( )1 22

1

, d d
b b

a a
K x y x y

λ <

∫ ∫
 then  

1 1Tf Tf K f f− ≤ −   

where, ( )( )1 22
, d d 1

b b

a a
K K x y x yλ= <∫ ∫ . 

Thus T is a contraction and so T has a unique fixed point. That is, there exists 
a unique ( )*

2 ,f L a b∈  such that * *Tf f= . This fixed point *f  is a unique 
solution of the Equation (13).  

Application-4: Show that the fredholm integral equation  
( ) ( ) ( ) ( ), d

b

a
x s y s K s t x t tµ= + ∫  has a unique solution on [ ],a b   

Solution: We assume that ( ),K s t  is continuous in both variables a s b≤ ≤  
and a t b≤ ≤ . Let [ ],y C a b∈ . Hence, ( ),K s t λ≤  for all ( ) [ ] [ ], , ,s t a b a b∈ × . 
We first consider the integral equation on [ ],C a b , the space of all Continuous 
defined on the interval [ ],a b  with the metric.  

( )
[ ]

( ) ( )
,

, max
t a b

d x y x t y t
∈

= −  

Write the given integral equation in the form x Tx= , where  

( ) ( ) ( ) ( ), d
b

a
Tx s y s K s t x t tµ= + ∫                 (14) 

Since the kernel K and the function y are continuous, it follows that Equation (i) 
defines an operator  

[ ] [ ]: , ,T C a b C a b→  
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It follows that 

( )
[ ]

( ) ( )

[ ]
( ) ( ) ( ) ( ) ( ) ( )

[ ]
( ) ( ) ( )

[ ]
( ) ( ) ( )

,

,

,

,

, max

max , d , d

max , d

max , d

t a b

b b

a at a b

b

at a b

b

at a b

d Tx Ty Tx t Ty t

y t K s t x t t y t K s t y t t

K s t x t y t t

K s t x t y t t

µ µ

µ

µ

∈

∈

∈

∈

= −

= + − −

= −  

= −  

∫ ∫

∫

∫

 

( )
[ ]

( ) ( ) ( )
,

, max , d
b

at a b
d Tx Ty K s t x t y t tµ

∈
⇒ ≤ −∫

 

( )
[ ]

( ) ( )
,

, max d
b

at a b
d Tx Ty x u y u tµ λ

∈
⇒ ≤ − ∫

 
( ) ( )( ), ,d Tx Ty d x y b aµ λ⇒ ≤ −  

( ) ( ), ,d Tx Ty Kd x y⇒ ≤ , where ( )K b aµ λ= −  

If ( ) ( )
11 1K b a

b a
µ λ µ

λ
< ≥ − < ⇒ <

−
, then T becomes contraction. Under 

this condition, we conclude that T has a unique solution x on [ ],a b . 

Application-5: Show that the Voltera integral equation on  
( ) ( ) ( ) ( ), d

b

a
x s y s K s t x t tµ= + ∫  has a unique solution on ,a b  for every µ , 
where a t s≤ ≤  and a s b≤ ≤  

Solution: We notice that here a is fixed and s is variable limit of integration. 
Suppose that y is continuous on ,a b  and the kernel ( ),K s t  is continuous on 
the triangular region G in the s-t plane given by a t s≤ ≤ , a s b≤ ≤  
 

 
 
Writing the given equation as x Tx= . Where [ ] [ ]: , ,T C a b C a b→ . Defined by 

( ) ( ) ( ) ( ), d
s

a
Tx s y s K s t x t tµ= + ∫ . Since ( ),K s t  is continuous on and G is 
closed and bounded, it follows that ( ),K s t c≤  for all ( ),s t G∈ . We define 
the metric  

( )
[ ]

( ) ( )
,

, max
t a b

d x y x t y t
∈

= −  

By using this metric we get  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

[ ]
( ) ( )

( )( )
,

, d , d

, d

, d

, d

max d

,

s s

a a

s

a

s

a

s

a
b

at a b

Tx s Ty s y s K s t x t t y s K s t y t t

K s t x t y t t

K s t x t y t t

K s t x t y t t

c x t y t t

cd x y s a

µ µ

µ

µ

µ

µ

µ
∈

− = + − −

= −

= −

≤ −

≤ −

= −

∫ ∫

∫

∫

∫

∫

 

( ) ( ) ( ) ( ),Tx s Ty s c s a d x yµ⇒ − ≤ −  

By induction, now we will prove  

( ) ( ) ( ) ( ),
!

m
mm m m s a

T x s T y s c d x y
m

µ
−

− ≤             (15) 

For 1n = , the rersult holds, assume that this holds for n m= . Then  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

( )
( ) ( )

1 1

1
1 1

, d

, d

, d
!

,
1 !

sm m m m
a

s m m
a

m
sm m
a

m
m m

T x s T y s K s t T x t T y t t

K s t T x t T y t t

t a
c c d x y t

m
s a

c d x y
m

µ

µ

µ µ

µ

+ +

+
+ +

− = −

≤ −

−
≤

−
≤

+

∫

∫

∫
  

( ) ( ) ( )
( ) ( )

1
11 1 1 ,

1 !

m
mm m m s a

T x s T y s c d x y
m

µ
+

++ + + −
− ≤

+  
This completes the inductive proof of (15). Using ( ) ( )s a b a− ≤ −  on the right 
hand side of (15) and then taking the maximum over [ ],t a b∈  on the left, we 
obtain from (15)  

( ) ( ), ,m m
md T x T y d x yα≤   

where ( )
!

m
m m

m

b a
c

m
α µ

−
= . 

For any fixed µ  and sufficiently large m we have 1mα < . Hence the cor-
responding mT  is a contraction on ,C a b . 

Therefore, by Banach fixed theorem, mT  has a fixed point x on [ ],a b . We 
know that if mT  has a fixed point, then T has the same fixed point. Thus T has 
a unique solution x on [ ],a b . 

Application-6: (Picards Theorem): Let ( ),f x y  be a continuous function 
of two variables in a rectangle, ( ){ }, : ,A x y a x b c y d= ≤ ≤ ≤ ≤  and satisfy the 
Lipschitz condition in the second variable y. 

Further, let ( )0 0,x y  be any interior point of A. Then the differential Equa-

tion ( )d ,
d
y f x y
x
=  has a unique solution, say ( )y g x=  which passes through 
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( )0 0,x y .  

Proof: Given that the differential equation is  

( )d ,
d
y f x y
x
=                         (16) 

Let ( )y g x=  satisfy (16) and the property that ( )0 0g x y= . Integrating (16) 
from x0 to x we get  

[ ] ( )( )
0 0

, d
xx

x x
y f t g t t= ∫  

( ) ( ) ( )( ) ( )
0

0 , d
x

x
g x g x f t g t t y g x⇒ − = =  ∫ 

 

( ) ( )( )
0

0 , d
x

x
g x y f t g t t⇒ = + ∫                (17) 

Thus a unique solution of (16) is equivalent to a unique solution of (17). Since 
( ),f x y  satisfies the Lipshitz condition in y, there exists a constant 0q >  such 

that ( ) ( )1 2 1 2, ,f x y f x y q y y− ≤ −  where ( ) ( )1 2, , ,x y x y A∈   
 

 
 

The Rectangle A. 
Since ( ),f x y  is continuous on a compact subset A of R2, it is bounded. So 

there exists a positive constant m such that ( ) ( ), , ,f x y m x y A≤ ∀ ∈ . Let us 
choose a positive constant p such that 1pq <  and the rectangle. 

( ){ }0 0 0 0, ,B x y x p x x p y pm y y pm= − ≤ ≤ + − ≤ ≤ +  

is contained in A.  
Let X be the set of all real –valued continuous functions ( )y g x=  defined on 

[ ]0 0,x p x p− +  such that ( ) 0g x y mp− ≤  i.e. X is a closed subset of the Ba-
nach space [ ]0 0,C x p x p− +  with the sup norm. 

Let :T X X→  be defined as Tg h=  where ( ) ( )( )
0

0 , d
x

x
h x y f t g t t= + ∫ . 

Here ( ) ( )( )
0

0 , d
x

x
h x y f t g t t− = ∫  

( ) ( )( )
0

0 , d
x

x
h x y f t g t t⇒ − ≤ ∫  

( )
0

0 d
x

x
h x y m t⇒ − ≤ ∫  
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( ) ( )0 0h x y m x x mp⇒ − ≤ − ≤
 

( )h x X∴ ∈  and so T is well defined. Let 1,g g X∈ . Then  

( )( ) ( )( )

( )( ) ( )( )( )
( )( ) ( )( )

0 0

0

0

1 1

0 0 1

1

1

, d , d

, , d

, , d

x x

x x

x

x

x

x

Tg Tg h h

y f t g t t y f t g t t

f t g t f t g t t

f t g t f t g t t

− = −

= + − −

= −

≤ −

∫ ∫

∫

∫

 

( ) ( )

( )
0

1

0 1

1

d
x

x
q g t g t t

q x x g g

pq g g

≤ −

= − −

≤ −

∫

 

1 1Tg Tg k g g− ≤ − ,  

where 0 1k pq< = < . 
Hence, T is a contraction mapping of X onto itself. Therefore, by Banach con-

traction theorem, T has a unique fixed point *g X∈ . This unique fixed point 
*g , is the unique solution of (17). 
Problem-1: Let :T R R→  be defined by ( ) 2T x x= . Determine the fixed 

point of T.  
Solution: 
Given that ( ) 2T x x= . From the definition of fixed point we have, 

( )T x x=  

( ) 2T x x x∴ = =  
2x x⇒ =  

2 0x x⇒ − =  
( )1 0x x⇒ − =  

0x∴ =  or 1 0x − =  

0,1x⇒ =  
Thus the fixed points of T are 0 and 1. 

Problem-2: Does a translation mapping ( )T x x a= +  where a is fixed have a 
fixed points.  

Solution: 
Given that ( )T x x a= + . From the definition of fixed point we have, 

( )T x x=  

0x a x∴ + = +  
0a⇒ =  [By Left Cancellation Law] 

Since ( )T x x a= +  is a translation mapping, so 0a ≠ . Thus, the translation 
mapping ( )T x x a= +  has no fixed point.  

Problem-3: Show that ( )f x x= −  for [ ] [ ]2, 1 1, 2x∈ − −   has no fixed po- 
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int. 
Solution: 
Given that ( )f x x= − . From the definition of fixed point we have  

( )f x x= −  

( )f x x x= = −  

It is clear that no point of [ ] [ ]2, 1 1,2− −   will satisfy the Condition  
( )f x x x= = − . Thus, ( )f x x= −  has no fixed point [ ] [ ]2, 1 1, 2x∈ − −  .  

Problem-4: Let T be a mapping of R in to itself defined by ( ) 1
2

T x x= . Show 

that T has a unique fixed point.  
Solution: 

Given ( ) 1
2

T x x=  

( ) 1
2

T y y∴ =  

( ) ( ) 1 1
2 2

T x T y x y x y∴ − = − = −
 

Thus T is a contraction mapping. Hence, by Banach fixed point theorem, T has a 
unique fixed point. 

Problem-5: Given an example to show that T satisfies ( ) ( )T x T y x y− = −  
may not have any fixed point?  

Solution: 
Let :T R R→  be defined by  

( )
1 e for 0
2

1 1 for 0
2 2

xx x
T x

x x

 − ≤= 
− + ≥


                   (18) 

( )
1 e for 0
2

1 1 for 0
2 2

yy y
T y

y y

 − ≤∴ = 
− + ≥


                  (19) 

Now for , 0x y ≤  

( ) ( ) ( ) ( )1 1 1e e e e
2 2 2

x y x yT x T y x y x y x y− = − − + = − − − ≤ −   

For , 0x y ≥  

( ) ( ) ( )1 1 1 1 1
2 2 2 2 2

T x T y x y x y x y− = − + + − = − ≤ −   

Thus T satisfies, ( ) ( )T x T y x y− ≤ − . But from the definition of fixed point 
we have ( )T x x= .  

Now for 0x ≤ . 

( ) 11 1 1e e 0 e e 0 e
2 2 2

x x x xT x x x x x= = − ⇒ = − ⇒ = − ⇒ = =  
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1x⇒ =  

This is not acceptable as 0x ≤ .  
For 0x ≥  

( ) 1 1 1 1 1 1 1
2 2 2 2 2 2

T x x x x x x x= = − + ⇒ = − + ⇒ = − ⇒ = −  

This is not acceptable as 0x ≥ . 
Thus, T defined in (18) is an example which satisfies the given condition (Ba-

nach contration theorem) but have no fixed point. 
Again from the definition of fixed point we have  

( )T y y=   

Now for 0y ≤  

( ) 11 1 1e e 0 e e 0 e
2 2 2

y y y yT y y y y y= = − ⇒ = − ⇒ = − ⇒ = =  

1y⇒ =  
This is not acceptable as 0y ≤ . 

For 0y ≥  

( ) 1 1 1 1 1 1 1
2 2 2 2 2 2

T y y y y y y y= = − + ⇒ = − + ⇒ = − ⇒ = −  

This is not acceptable as 0y ≥ . 
Thus, defined in (19) is an example which satisfies the given condition (Ba-

nach contration theorem) but have no fixed point.  

4. Conclusion 

The Banach theorem seems somewhat limited. It seems intuitively clear that any 
continuous function mapping the unit interval into itself has a fixed point. We 
hope that this work will be useful for functional analysis related to normed 
spaces and fixed point theory. Our results are generalizations of the corres-
ponding known fixed point results in the setting of Banach spaces on its norm 
spaces. Then all expected results in this paper will help us to understand better 
solution of complicated theorem. In future, we will discuss of Banach spaces on 
its norm spaces related properties to physical problem. 
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