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Abstract 
A creative and/or innovative computer aided design environment is devel-
oped around the concept of an evolutionary optimization algorithm. Designs 
are generated within a set of prescribed design frameworks using a problem 
specific encoding and modified through operations including recombination, 
crossover and mutation. Evaluation of all candidate designs is performed by a 
user through a graphical user interface. A set of problems involving the crea-
tion of graphic images is presented. The examples include the generation of a 
set of two dimensional polygonal shapes, fractal images, path generation from 
a multi-degree freedom mechanical planar linkage and a mathematically pre-
scribed pattern generation from a graphic design application utilized in quilt-
ing. Post design evaluation of the user input to the process provides insight 
into the individuals design strategy as well as determination of common user 
attributes in the creative design process. 
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1. Introduction 

A fundamental question which has been the continual subject of debate over the 
past several decades is whether it is possible to perform creative design within a 
computational environment. Traditional computer aided design (CAD) and com- 
puter aided engineering (CAE) tools offer significant design representation ca-
pability, but little in support of the generation of creative or innovative designs. 
Here the word “creative” refers to a design which has unexpected or surprising 
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content. This is unfortunate as the majority of intrinsic value of a design is de-
veloped in this phase of the design process. Design innovation has been the 
economic driver in this country and it must be viewed as a critically important 
resource in support of future economic growth. Computers follow rigorous sets 
of instructions and are ideally suited for conducting well defined design tasks 
such as analysis, detailing and documentation. These tasks are most often asso-
ciated with left brain characteristics defined by such terms as logical, sequential, 
rational, objective and analytical. What is less obvious is how a computer may be 
utilized in the less well defined and often non-numeric process of creativity. The 
creative, or right brain influence may be defined in terms of random, intuitive, 
holistic, subjective and synthesis. In order to successfully address innovation in a 
design context, it is clear that any computational tool must support both right 
and left brain thinking. In other words, the tool must support the needs of both 
an engineer and an artist.  

Engineering may be defined in part as “the science concerned with putting 
scientific knowledge to practical uses.” [1]. Likewise, the definition of art en-
compasses “the conscious use of skill and creative imagination in the production 
of aesthetic objects” [2]. From these definitions, engineering and art would seem 
to have much more in common than in conflict. Engineering, in its broadest 
context, is concerned with all aspects of design, including aesthetics. Here, aes-
thetics refers to far more than just shape or color. It includes style, visual appeal 
and how the object relates to its environment. Design is the common link be-
tween engineering and art. The approach to design may differ, but the goal is the 
same. The process of design is incredibly complex and involves a large number 
of interconnected activities. There is no single sequence of predetermined steps 
that will always lead to a successful design. The process is iterative and not se-
quential and it is often necessary to backtrack from one point in the process to 
an earlier point. It involves combining and recombining alternatives in new and 
novel ways. With the largely unstructured process of design, it is difficult to 
capture the core of the process in a computational construct.  

Design optimization provides one path to a computationally driven design 
process. A traditional optimization approach provides the framework for per-
forming design improvement once a baseline design has been developed. More 
recently, the scope has been expanded to allow for the search to include signifi-
cant topological modification to a design. To date, however, the application of 
optimization to problem classes with aesthetic, or non numeric input has been 
limited. With the consideration of evolutionary or genetic optimization algo-
rithms, a way forward may exist. These algorithms emulate many aspects inhe-
rent in the creative process and as such they can become an integral part of a 
computational design environment. Characteristics of this class of methods in-
clude significant latitude in design representation, randomness as an integral 
part of the process, global and local search, capture of design history and the 
ability to support design in a group setting with both numeric and emotion based 
feedback.  
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2. Review of Related Work 

There has been a continual growth in the application of evolutionary optimiza-
tion methods to design and artistic endeavors. There are primarily three areas of 
past research and application which relate to the investigation of evolutionary 
algorithms as a framework for creative design. These areas include: 1) the de-
velopment and application of genetic algorithms to design problems, 2) work in 
the area of artificial intelligence applied to engineering design and 3) the appli-
cation of evolutionary algorithms to the field of art. A small sampling of the re-
search efforts in each of these areas is reviewed, as well as a few general refer-
ences for other fields such as the creation of computational, artificial life forms.  

Applications of evolutionary or genetic algorithms to engineering design are 
numerous. Those directed at the early stage of design, however, are much more 
limited. Those involving issues as topological design and the fundamental con-
figuration (or structure) of a design are rather rare. Genetic algorithms have been 
applied to solve a wide range of engineering based problems over the past twenty 
years. These applications include mechanical component design [3], structural 
design [4], optimal tolerancing of mechanical parts and assemblies [5], produc-
tion scheduling [6] and the design of fluid and thermal systems [7]. The range of 
application encompassed by these examples demonstrates the broad capability of 
a genetic algorithm for problem solving and design optimization. Specific appli-
cations involving shape [8] and topology [9] also exist which indicates that this 
class of algorithms can handle issues that are fundamental to aesthetic design, 
although few if any of these applications actually address such concerns.  

The advancement of the concept of design as a human-computer cooperative 
activity (CCAD) has occurred continuously over the past twenty years. The ma-
jority of these applications are based on analogical reasoning which forms the 
foundation of many AI systems [10]. Several interesting design oriented envi-
ronments exist for specific applications such as drawing [11], building layout 
[12], architectural design [13], shape synthesis [14] and designing air circulation 
systems [15]. One application even involves the creation of a painting in a very 
general sense [16]. An interesting classification exists for work in this area which 
establishes benchmarks for varying levels of design [17]. These benchmarks 
range from the lowest level of routine design to innovative design and finally to 
creative design. The differentiation hinges around whether or not the design va-
riables and/or the ranges for the design variables are fixed or variable. By this 
definition, it would seem that an innovative, if not creative design could be pro-
duced within the context of an evolutionary algorithm. In her book [18], Mar-
garet A. Boden asks four basic questions. 

1) Can computational ideas help us understand how human creativity is possi-
ble? 

2) Can computers ever do anything that appears to be creative? 
3) Can computers appear to recognize creativity? 
4) Can computers ever really be creative? 
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The proposed answers were given as yes to questions 1 - 2, maybe to question 
3 and a probable no to question 4. However, if the computer is employed as a 
cooperative design tool, the answers to all four questions posed could be ans-
wered in the affirmative. 

The final and perhaps the most interesting exploration into evolutionary de-
sign has taken place in the application of computer generated art. Early efforts in 
the field of evolutionary art include the pioneering work of Sims [19]. This work 
has been followed by activity in the areas of sculpture [20] [21], mathematically 
based images [22] and animation [23]. The interesting aspect of most of these 
design environments is that they are interactive environments and involve the 
evaluation of the user to differentiate among various designs. Considerable effort 
has been placed towards the development of encompassing encoding representa-
tions as well as specific genetic operators. In virtually all cases, very few designs 
were generated for each population. The need for local manipulation of a design 
by the user is an integral part of the process. The possibility of an autonomous or 
semi-autonomous system has been investigated by a number of researchers in-
cluding DiPaola [24] and Machado [25]. A more recent effort in the application 
of optimization to artistic design has been demonstrated by Kim et al. [26]. In 
this work, a vibrational framework was developed to allow for the generation of 
images.  

On the artificial intelligence and neural networks involving deep learning, sig-
nificant progress has been made recently. Perhaps this work is best represented by 
the work of Elgammal and his team at Rutgers University [27]. In this work, a 
large collection of images representing various styles of art are contrasted with 
an adversarial neural network which creates random deviations from existing 
works and styles to form new art. Results using this technique have been able to 
produce art which to many observers is indistinguishable from human generated 
art. The resulting images remain similar to the existing images and styles which 
helps the results to be recognized as art, but true creativity is still somewhat li-
mited. 

Although the results presented are promising, the optimization approach uti-
lizing evolutionary methods remains valid and deserving of further research. 
Significant hurdles remain in the quest for a useful computer aided creative de-
sign environment. Users tend to get bored quickly as populations of images get 
less diverse along with the limited image framework required for most imple-
mentations. This work seeks to demonstrate creative designs that were generated 
on problem classes defined by engineering and mathematical frameworks. The 
usefulness of design history is investigated as well as the design drivers for vari-
ous aged users.  

3. An Evolutionary Approach to Creative Graphic Design 

Design optimization has often been the mechanism to computationally capture 
aspects of the design process. With continual advances on both the hardware 
and software fronts, it seems feasible that an interactive creative design envi-
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ronment might be possible using a formulation from the framework offered by 
design optimization. Although the field started with a rigid mathematical frame-
work, evolutionary optimization methods offer nuances which can extend the 
formulation into one that can capture aspects of a creative environment or at 
least introduce randomness. The formulation of design optimization problems 
from nonlinear programming to evolutionary design are reviewed and followed 
by a discussion of the framework required to enable the formulation to capture a 
creative component. 

3.1. Nonlinear Programming Formulation 

Perhaps the best computational statement of the design function is captured in 
the nonlinear programming formulation for optimization. The mathematical state- 
ment of the problem is given as: 

( ) [ ]T1 2 3Maximize or Minimize ; , , , , nf x x x x x x= �             (1) 

Subject to: 

( ) 0; 1,2,3, ,jg x j J> = �                      (2) 

( ) 0; 1,2, ,kh x k K= = �                       (3) 

and 

1,2,3; , ,l h
i i i ix x x n< < = �                      (4) 

In the above statement, x represents the set of design variables, f(x) represents 
the measure of goodness a design possesses and g(x) and h(x) represent sets of 
constraints, which along with the variable bounds described in Equation 4, de-
fine the feasible design space. Extensions to this basic formulation allow for mul-
tiple design objectives, integer and discrete design variables and “fuzzy” as well 
as hard constraints. This mathematical formulation has been successfully applied 
to a diverse range of engineering design problems. 

Perhaps the most limiting factor in the general mathematical formulation de-
scribed in Equations (1)-(4) is that it is a mathematical abstraction of the “real” 
design problem. As such, the optimal design generated may not be optimal or 
even a good design when viewed in a practical setting. A second limiting factor is 
the inability to include stylistic or aesthetic considerations in the formulation. 
That is, the computer can easily deal with numeric concepts such as stress and 
displacement, but it is incapable of interpreting a simple statement such as 
“looks good”. Both of these limitations can be overcome by direct inclusion of 
the user in the optimization process. The user can apply his/her knowledge of 
the actual design issues and react to design form on an aesthetic level through 
this feedback. This may run counter to the trend of the complete automation of 
design tasks, but it is an attractive concept for conceptual design where the user 
has the capability to fill in the proficiency gaps of the direct computational ap-
proach. 

Allowing the user to help guide the search process eliminates several of the 
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main difficulties with a traditional computational design optimization approach. 
Other problems also exist for a conventional nonlinear programming solution to 
the problem statement. Among these problems are the inability to perform a 
global search; the lack of randomness that might be linked to a creative process; 
the concentration on a single design alternative; and the difficulty to broaden the 
range of search alternatives due to the rigidity of the formulation. Each of these 
issues can be seen to run counter to the ability to perform creative or innovative 
design. Many of these limitations can be removed through the emulation of the 
way in which nature performs design. This parallel considers an evolutionary 
approach to design which offers an interesting framework for the task of creative 
design, particularly when coupled with user interaction.  

3.2. Genetic Optimization Formulation 

Genetic optimization parallels the process of the natural evolution of a species. 
In nature, the fittest of the population survive to produce offspring which em-
body the important traits of the parents. Over a period of time, the species either 
adapt to better survive in the surrounding environment or perish. Put very 
simply, the progression is dominated by the concept of survival of the fittest. The 
conceptualization of this process may be used to create a fundamental design 
paradigm which can be implemented to perform a wide variety of tasks, includ-
ing creative or innovative design. The progression of designs or solutions created 
by such a process actually demonstrates some rudimentary form of intelligent 
behavior. The process is more than just design refinement. When applied at an 
early stage of the design or evaluation process, the most freedom and the greatest 
potential benefit is available.  

A design representation to a genetic algorithm is an encoded string of infor-
mation which is analogous to a chromosome in a living organism. Each position 
or gene in the string represents a specific design characteristic. These characte-
ristics can represent physical attributes of a design such as size, and position, but 
can equally well represent aesthetic characteristics such as form, texture and 
color. The collection of all possible gene states represents the number of possible 
designs in the population. The overall suitability of a chromosome, or the per-
formance of a specific design configuration, is termed its “fitness”. The property 
of fitness may be related to any function or functions of the design and is used to 
determine the probability of a particular design chromosome becoming a parent 
and therefore have an influence on future generations of designs. The fitness 
characteristic may be a combination of numerically defined values and user in-
put. The chromosomes possessing the greatest fitness have the highest probabil-
ity of becoming parents, but even the least fit chromosome has a finite chance of 
being selected. The chromosome strings are combined using various genetic op-
erators in order to produce the next generation of designs. This recombination 
may be performed to fundamentally alter the design structure to generate new 
and unexpected design alternatives. The process is continually repeated with the 
expectation that both the average fitness of the population and the maximum 
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fitness contained in the population will improve. 
In order to start the algorithm, an initial population is generated randomly 

and the rules which specify how parents are selected and combined to form 
offspring are defined. Special operators such as mutation are included in order 
to guard against the loss of important design information and to introduce un-
anticipated features to the design itself. The search requires no gradient infor-
mation and produces a number of design configurations rather than a single de-
sign. The process relies on the randomness present in natural selection, but 
quickly exploits information gathered in order to produce an efficient design 
procedure. Additional speed may be accessed due to the parallel nature of the 
algorithm. Details of genetic algorithms are described in depth by Goldberg [28] 
and Davis [29]. 

Several key distinctions separate a genetic algorithm from a conventional non-
linear programming algorithm. Among these distinctions are: 

1) The genetic algorithm operates by manipulating the coding of the set of 
gene values composing the chromosome (coding itself may be part of the deci-
sion string). 

2) A population of designs is considered rather than a single design point 
(global search). 

3) The rules which govern the transition from one set of designs to the next 
are probabilistic rather than deterministic (randomness—produces unexpected 
results). 

4) The algorithm operates in a discrete instead of a continuous design space 
(allows for topological change).  

5) The evaluation criteria need not be based on a physical model, and can in-
corporate user feedback (stylistic feedback). 

6) The genealogy of the design process is maintained. (design history—ex- 
traction of design drivers and a better understanding of the process). 

7) Multiple populations may be maintained and combined at various stages in 
the process (opens the possibility of design in a group setting). 

8) Local refinement may be performed in conjunction with a global search as 
a two phase approach (taking a new idea and refining it).  

These differences provide the necessary attributes for conducting creative or 
innovative design. As a whole, the area of evolutionary algorithms for innovative 
engineering design has been the subject of very limited investigation. This is un-
fortunate as they appear to offer significant benefits over most traditional ap-
proaches to computational design. 

3.3. Creative Design Framework 

If a blank canvas approach were taken, one implementation would be to assign a 
value representing the color of each pixel which is then be encoded into the ge-
netic string for manipulation. For a 1000 by 1500 pixel area this would result in 
one and a half million decision values to be determined by the genetic algorithm 
in concert with the human user. This creates a difficult enough problem to solve, 
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but the difficulty does not stop here. If a pallet of 256 red green and blue color 
components were allowed for each pixel value, a total of 16 million choices 
would result for each of the 1.5 million decision value positions in the problem 
encoding. On one hand, the image space is virtually unbounded in that even a 
work of art such as the Mona Lisa is contained within the design space. On the 
negative side, it is difficult to imagine a user interface which could produce any-
thing approaching a work of art in a finite amount of time. The futility of gene-
rating meaningful images is documented in Figure 1 which presents an image 
from the 50th generation for a 500 by 500 pixel design region with a total of 256 
possible colors for each pixel. With the colors limited in number to 256, this 
represents only a tiny fraction of the total design space. The progress from the 
randomly selected first generation is indistinguishable as the user is unable to 
drive the design toward anything remotely interesting. 

Figure 1 is the result of continuous user input consisting of a selected value 
from one to ten for each image generated. When all of the images contain pri-
marily random content, it is extremely difficult to discern much of interest in 
any image, much less drive it toward a more significant or attractive design. This 
difficulty diminishes as the design space is limited to a specific image class. The 
total scope of the design is reduced in this case which significantly simplifies the 
process. If even the initial population of images contains interesting content, 
then the process is more easily driven to a final creative or interesting design. 
Limiting the design space is not as much of a disadvantage as one might think. If 
an artist is painting a picture, it is true that he or she starts with a blank canvas, 
but the artist has some idea of what they are trying to create. Similarly, if one is 
interested in producing a fractal image, it makes sense that the design space is 
limited to include only the characteristics of fractal images. 
 

 

Figure 1. Pixel level representation of image for 50th generation of optimization. 
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The question becomes what kind of images can be created within a restricted 
design space and do the images contain interesting content that the designer or 
artist would not have generated without such a process. A rich set of mathemat-
ically based functional forms exist which can serve as a basis for a particular im-
age set. A genetic or evolutionary algorithm coupled with an elementary user in-
terface and a general functional description of the image class is all that is re-
quired to implement a computational creative design environment. Such an en-
vironment was created along with a set of image classes and tested with a num-
ber of users differing widely in age and occupational background. The image sets 
include a simple polygonal design, a multi-degree of freedom, planar linkage 
path generator, a block pattern based on a quilting design concept and a fractal 
pattern. A brief description of each image class is provided along with a small 
number of images created by the users in conjunction with the evolutionary al-
gorithm. 

4. Design with Simple Polygonal Shapes 

The first example concerns the design of an abstract image consisting of a collec-
tion of shaded polygons. The formulation is simple, but the resulting image can 
be quite complex. The images generated consist of polygons ranging in number 
from 1 to 120 drawn on a grid specified by the encoding. All parameters, such as 
the number and type of polygons, the grid placement, color selection and shad-
ing are controlled through the manipulation of the encoding by the evolutionary 
optimizer which is driven by user feedback. As the number of polygons is a va-
riable, the encoding for the genetic algorithm is variable in length as well. Much 
of the image generation process is controlled by random selection, so to insure 
that a particular image can be replicated at later stages in the search, a random 
seed for each image is also contained in the design specific genetic encoding. The 
actual encoding structure for this example is pictured in Figure 2. The first 
through the 18th position in the encoding represent global image parameters. 
Sets of five encoding values follow, with each set defining the specific details of 
the polygon to be drawn. These sets of five positions are repeated allowing for a 
maximum of 120 polygons to be drawn. 

Although the image creation is based on simplistic logic, the design space is 
quite large. Images are generated by the genetic algorithm, starting with a ran-
domly generated population. For the following examples images generated, a  
 

 

Figure 2. Design encoding for the polygon drawing example. 
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population of 100 images was created. The user reacts to each image generated 
and selects an overall likeability index ranging from 1 to 10. No guidance is pro-
vided for the selection and it may be based on color, shape, position or any other 
combination aesthetic parameters. The images created are interesting enough at 
the initial stages to maintain the user’s interest and the user was clearly able to 
drive the image population to an interesting set of images. The user controls 
how many populations are executed. As soon as the images generated are no 
longer improving or the user becomes bored with the process, the user can ter-
minate the progression. The user also controls which images to save and each 
image which is saved requires that the user supply input as to what characteris-
tics of the image are appealing.  

A number of different users executed the design algorithm, ranging in age 
from 8 to 60 and in occupation from student, artist and engineer. Four images 
which were generated and saved by the users are pictured in Figures 3-6. The  
 

 

Figure 3. Image number one from final population for user generated design. 
 

 

Figure 4. Image number two from final population for user generated design. 
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Figure 5. Image number three from final population for user generated design. 
 

 

Figure 6. Image number four from final population for user generated design. 
 
reasons given for saving the images include color selection, overall image design, 
resemblance to a physical object and image complexity. Although the individual 
ratings varied widely during the design process, the algorithm converged on an 
interesting set of final designs in every case. A post optimal analysis to determine 
common attributes among the set of highly rated designs documented that color, 
shading and image placement tended to drive much of the process. The com-
plexity of the design was strongly related to the user’s age, but color appeared to 
be the driving factor in this example. 

5. Design with Mechanical Linkages 

Consider the two degree of freedom, planar mechanism pictured in Figure 7. A 
five bar linkage is formed from links r2, r3, r4, and r5. Ground positions for the 
input links are established at points O2 and O4. Coupler points C1 and C2 are de-
fined in location relative to links r3 and r4. As links two and five are given  
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Figure 7. Five bar linkage with dual coupler point tracing. 
 
positions specified by input angles Θ2 and Θ5, the positions of all links and 
coupler points may be determined by a number of numerical techniques [28] 
[30] [31]. As the input angles are rotated through specified ranges of angles, the 
motion of the coupler points form curves, potentially intricate in nature. By spe-
cifying these rotation angles, the relative speed of rotation, the increments be-
tween each new position, along with the various link lengths, ground point loca-
tions, background color and coupler path colors, an image can be created. De-
pending upon specific input variables, the linkage may not assemble, which can 
create non-smooth and discontinuous coupler paths which may actually add to 
the interesting nature of the design by introducing discontinuities and unex-
pected characteristics to the curves.  

The design encoding for this example consists of a string of twenty six values. 
The first fifteen locations define the link lengths, coupler point locations, initial 
angles and speeds of rotation. These variables define the relative motion of the 
links and the coupler paths that will be generated. The next nine locations define 
the hue, saturation and intensity for each of the coupler curve traces as well as 
the background color. The final two encoding variables define starting estimates 
of the angles of links three and four which allow the numerical process to deter-
mine the linkage assembly position for the specified initial input link angles. 
There are two assembly positions for most input link orientations, so this helps 
specify which assembly position to start the process from. The possibility of a 
position of non-assembly also exists which can result in numerical instability 
which can add a level of abstraction to the final image. Figure 8 presents an im-
age which contains both discontinuity as well as a convergence problem. The 
convergence problem is documented by rapid back and forth movement on por-
tions of the curve, while the convergence issue is documented by the straight 
lines connecting remote portions of the curve. Whether or not these aspects are 
interesting to the evaluator is strictly an individual preference. A population of 
one hundred designs was utilized with the user providing a response value of 
from one to ten for each design generated. The process was terminated by the 
user when the images no longer were progressing or after a maximum of twenty 
generations. 

https://doi.org/10.4236/mme.2021.112003


W. M. Alobaidi, E. Sandgren 
 

 

DOI: 10.4236/mme.2021.112003 39 Modern Mechanical Engineering 
 

 

Figure 8. Coupler curve with convergence issues and discontinuities. 
 

The initial population of designs generally did not produce much in the way 
of interesting designs, but more of blobs of color. The user was, however, able to 
select images based on color and in rough image shape. After a few generations, 
many of the designs were similar to those generated on the spirograph toy which 
has a gear holding a pencil which rotates around an internal gear. Progressing 
further, the designs became more defined and more unique, sometimes generat-
ing surprisingly interesting images. As with the first simple shape example, 
working with hue, saturation and intensity values was found to be far easier for 
the user than red, green and blue values A sampling of images generated through 
the interactive evolutionary design process are pictured in Figures 9-12. The 
image space is limited but a large variety of designs can and have been generat-
ed. Clearly, many of the images created would have been difficult to generate 
using other approaches.  

6. Design of Bargello Patterns 

The next example involves a repeating pattern of a prescribed color run where 
the pattern run variation is controlled by the intersection of an arbitrary curve 
and a prescribed grid. The design is common in quilt designs and is called a 
Bargello pattern [29]. The pattern is formed from a set of repeating colors in 
vertical blocks. The blocks are constant height, but the width varies, depending 
upon where the curve intersects the initial blocks in the layout shown in Figure 
13. When the curve is fairly flat with respect to the horizontal, the blocks in the 
flat region become wider. Conversely, when the curve is sharper with respect to 
the horizontal, the block width is reduced. The first color of the block pattern is 
determined by the intersection of the curve with the blocks in a vertical column. 
When a number of colors is selected and all colors in the block run are specified, 
the curve is completely defined. For an arbitrary set of colors, the pattern result-
ing from the block layout and curve selected in Figure 13 is shown in Figure 14.  
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Figure 9. User generated image from final population of coupler 
curve generation. 

 

 

Figure 10. User generated image from restart with new initial popula-
tion of coupler curves. 

 

 

Figure 11. User generated image from restart with large initial popula-
tion of coupler curves. 
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Figure 12. User generated image from final restart with large initial pop-
ulation of coupler curves. 

 

 

Figure 13. Bargello curve design layout. 
 

 

Figure 14. Bargello curve example. 
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The pattern formed may be represented by an arbitrary curve passing through 
a pre-specified block grid. The curve for this example is defined as a B-Spline 
with a set number of control points. The evolutionary algorithm specifies the 
position of each control point, the number of colors and each color in the block 
run. To add an additional level of interest and control, symmetry is also allowed 
in the x, y and xy planes. The resulting design encoding consists of forty eight 
values with the first 23 values defining the x, y position and number of replica-
tions for each of the nine B-Spline control points. The remaining encoding 
string positions define colors, mirroring, and border style. Each generation con-
sisted of a population of one hundred designs and as with the previous examples, 
the user rated each design with a single value ranging from one to ten. The process 
ran for a total of ten generations.  

A number of final images developed by the users are pictured in Figures 
15-18. The images demonstrate the wide variety of designs and application of  
 

 

Figure 15. User generated image one from quilt design generation. 
 

 

Figure 16. User generated image two from quilt design generation. 
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Figure 17. User generated image three from quilt design generation. 
 

 

Figure 18. User generated image four from quilt design generation. 
 
color. A post design analysis of the common characteristics of the final design 
population documents that color and mirroring were the consistent dominant 
factors in the design process. For this example, interesting images were available 
in the initial population and were continually refined during the interactive de-
sign process. Increasing the population size increased the range and diversity of 
images, but with a large population the interactive process can become tedious 
to the user. The images created are in many cases fundamentally different than 
would be found in existing quilt design publications. 

7. Design of Fractal Images 

The final example for the interactive design environment involves the generation 
of fractal images based on the well known Mandelbrot set. Computation of the 
set involves the generation of a sequence of complex numbers where each is the 
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square of the previous number plus the original coordinate of the selected point 
in the complex plane. For a general point c = x + iy, the sequence can be ex-
pressed as: 

1i iD D c+ = +                            (5) 

For a given point c, the sequence of operations produces two possible out-
comes. The sequence can approach a fixed number, placing the point in question 
as a member in the set; or it can increase arbitrarily which indicates that it is not 
a member of the set. By assigning a color mapping to each trial point (pixel loca-
tion), based on the number of iterations required to reach a threshold value, an 
interesting image can be created. Figure 19 graphically represents the region 
surrounding the set with the points contained within the set colored in dark 
blue. Areas not in blue represent points which fell outside of the set by varying 
degrees. Other fractal representations are possible and a general fractal generator 
is described by Babbs [32].  

The color mapping can take on a wide variety of forms. In order to guarantee 
the greatest likelihood of a design with some interesting features, a large number 
of pre-selected regions were used as base points for the search. These points 
were generally located near the set boundaries. As the image in these regions is 
continually magnified, more detail is defined with the limit being the numerical 
precision of computation. The genetic encoding contained the following ele-
ments for this example: 

1) Which of the pre-selected regions served becomes the primary location in 
the set for the image. 

2) The threshold value to determine whether a point is inside or outside the 
set. 

3) The background color (hue, saturation and intensity). 
 

 

Figure 19. The Mandelbrot set. 
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4) Center coordinates of the image in the specified region. 
5) Image scale factor. 
6) Color set #1 (hue, saturation and intensity) min and max values. 
7) Color set #2 (hue, saturation and intensity) min and max values. 
8) Color set #3 (hue, saturation and intensity) min and max values. 
9) Color scheme representing type of color model. 
10) Number of colors to utilize. 
11) Number of colors between transitions among color models. 
Inclusion of the above parameters results in an encoding containing thirty one 

elements. Each image, resulting from the processing of the encoding string, was 
displayed to the user and a number was assigned to the image ranging from zero 
to one hundred. The score assigned was completely based on the aesthetic quali-
ty or the uniqueness of the image. No explanation of how to assign a score was 
given. Ten generations, each containing a population of two hundred and fifty 
images were evaluated by each of the three users. All three users started the 
search from the same randomly generated set of two hundred and fifty images.  

The results from the exercise were extremely interesting. The average rating 
for three individuals, a child, an artist and an engineer is plotted in Figure 20 for 
the evaluation process. The first point of note is that the average rating improved 
continuously for all three users. Initially the scores were very low, indicating lit-
tle if any interesting images were generated. The averages by the end of 10 gen-
erations were extremely high and many interesting images were generated. The 
final images were excellent in all three cases. Each of the users commented that 
not only the quality of the average image continuously improved, but the best 
images produced were continually improved through the process as well.  

A selection of six of the final images generated is pictured in Figures 21-26. 
All users were impressed at the ability of the genetic algorithm to continually re-
fine the images from one generation to the next. A cursory evaluation of the ge-
nealogy of several of the final designs brought forth some interesting design 
drivers for each of the users. While the significance of the results are severly li-
mited by the small number of users involved, the results indicate the value of  
 

 

Figure 20. Average design evaluation ratings for the three users. 
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Figure 21. User generated image one from fractal design application. 
 

 

Figure 22. User generated image two from fractal design application. 
 

 

Figure 23. User generated image three from fractal design application. 
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Figure 24. User generated image four from fractal design application. 
 

 

Figure 25. User generated image five from fractal design application. 
 

 

Figure 26. User generated image six from fractal design application. 
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further research in the area. The encoding for the evolutionary algorithm gener-
ated a design history and it is generally east to isolate specific portions of the de-
sign string as being color or geometry related. The child focused a considerable 
amount of attention on color (particularly shades of orange), the engineer fo-
cused on location and color scheme and the artist on color, location and color 
scheme. Local refinement within the scope of the process is being considered as 
an extension of this example, to allow the user to refine specific characteristics of 
an individual design. Even in its’ present elementary form, however, this exam-
ple, as well as the previous examples demonstrate the power of coupling a genet-
ic algorithm with user evaluation input.  

8. Summary and Conclusion 

An interactive design environment has been built around the concept of an evo-
lutionary optimization algorithm and has been demonstrated on a series of ex-
amples. These examples include the image generation of polygonal shapes, frac-
tal images, planar mechanism path generation and a sequence of color block 
runs utilized in quilt design. The resulting encoding length for the design repre-
sentation ranged from thirty one to over six hundred variables. A number of the 
images generated by the group of users for each of the examples have been dis-
played. The users include children, artists and engineers. The images generated 
are interesting if not surprising in content which is one definition of a creative 
design. The design history for each example allowed for a rudimentary analysis 
of common and differentiating characteristics for the various users and user 
groups. Every user admitted that they could not have generated the final images 
without the aid of the computational environment.  

Many interesting observations can be made from the user generated results on 
the four examples. In every case, there was a consistent progression in the quali-
ty of the images produced in the overall population and this progress did not 
seem to be hindered by inconsistent user input. The images do, however, be-
come repetitive at later stages which can decrease the evaluation of the user as 
the images are in the refinement stage rather than in the initial design stage. The 
length of the encoding required generating sophisticated images points out the 
large bandwidth of design information being processed by the user and input to 
the interactive environment through feedback. In all of the examples considered, 
only a single evaluation value was allowed, but this could easily be expanded to 
include multiple issues such as independent evaluations of form, color and gen-
eral layout. Such a system would require more effort from the user, but might 
guide the search in more productive directions. The evolutionary algorithm uses 
recombination and should discover user likes and dislikes during the process, 
even when supplied with an overall assessment of a design or image. 

Many areas for additional work in this area remain. In this study, each user 
worked independently and no group evaluations were considered. The environ-
ment certainly could be utilized to facilitate a group design environment and this 
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is currently being investigated. Before the impact of a group design environment 
could be assessed, a baseline of individual design history is required and this was 
accomplished in the current study. Additional effort is still needed on the analy-
sis of design history on the individual and in user groups (i.e. children, artists 
and engineers). Clearly how each person and each user group addresses the de-
sign process is different and the capture of this information would be valuable. 
Overall the evolutionary approach to interactive design seems sound and addi-
tional design examples will be implemented and the scope of these examples will 
be expanded as well. In order to track relevant design process information, a sig-
nificantly larger group of users would have to be included. While this would be a 
significant effort, the ability to track design methodology would be extremely 
valuable. 

Ultimately, a more general formulation of the encoding string in the evolu-
tionary algorithm is needed in order to move from specific classes of mathemat-
ically generated art to a more inclusive artistic environment. It is certainly possi-
ble to move in this direction, but the size of such a design chromosome could 
become an issue as the number of generations and the size of each generation 
could become excessive. A link between the evolutionary optimization approach 
and the competing neural network approach would also be of significant value.  
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