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1. Introduction 

The first study of differential equations with multivalued 
right-hand sides was performed by A. Marchaud [1,2] 
and S.C. Zaremba [3]. In early sixties, T. Wazewski [4,5], 
A.F. Filippov [6] obtained fundamental results on exis-
tence and properties of the differential equations with 
multivalued right-hand sides (differential inclusions). 
One of the most important results of these articles was an 
establishment of the relation between differential inclu-
sions and optimal control problems, that promoted to 
develop the differential inclusion theory [7]. 

Considering of the differential inclusions required to 
study properties of multivalued functions, i.e. an elabora-
tion the whole tool of mathematical analysis for multi-
valued functions [8–10]. 

Simultaneously there were appeared papers [11–14] 
which used Hukuhara derivative [9,10] of multivalued 
function for investigation of differential equations with 
multivalued right-hand sides and solutions. 

In works [15,16] annotate of an R-solution for differ-
ential inclusion is introduced as an absolutely continuous 
multivalued function. Various problems for the R- solu-
tion theory were regarded in [17–22]. 

The basic idea for a development of an equation for 
R-solutions (integral funnels ) is contained in [23]. 

Here the equation was considered as a particular case 
of an approximated equation in a metric space. Ap-
proximated equations make possible to exclude an dif-
ferentiation operation and there by to avoid linearity re-
quirement for a solution space and to consider differen-
tial equations in linear metric spaces, equations with 
multivalued solutions and dynamical systems in nonlin-
ear metric spaces by unified positions [14,20,23,24]. 

Therefore, an approximated equation is a quasidiffer-
ential equation for determination of the dynamical sys-
tem in a metric space. 

The theory of mutational equations in metric spaces, 
which deals with multivalued trajectories (pipers) and 
trajectories in nonlinear spaces has been developed in 
[25]. 

As well as in [23] it is taken an approach that does not 
use a derivative in explicit form for description in 
nonlinear metric spaces, while in [25] analogous results 
are obtained by construction "differential calculus" in 
nonlinear metric spaces. 

Moreover in [23] quasidifferential equations were 
considered for locally compact spaces, while in [20] for 
complete metric space . 

In the last years there has been forming new approach 
to control problems of dynamic systems, which founda-
tion on analysis of trajectory bundle but not separate tra-
jectories. The section of this bundle in any instant is 
some set and it is necessary to describe the evolution of 
this set. Obtaining and research dynamic equations of 
sets there is important problem in this case. The metric 
space of sets with the Hausdorff metric is natural space 
for description dynamic of sets. In theory of multivalued 
maps definitions on derivative as for single-valued maps 
is impossible because space of sets is nonlinear. This 
bound possibility description dynamic sets by differential 
equations. Therefore, the control differential equations 
with set of initial conditions [26–28], the control differ-
ential inclusions [29–40], the control differential equa-
tions with Hukuhara derivative [14] and the control qua-
sidifferential equations [14,40,41] use for it. 

In recent years, the fuzzy set theory introduced by 
Zadeh [42] has emerged as an interesting and fascinating 
branch of pure and applied sciences. The applications of 
fuzzy set theory can be found in many branches of re-
gional, physical, mathematical, differential equations, 
and engineering sciences. Recently there have been new 
advances in the theory of fuzzy differential equations 
[43–55] and inclusions [50,56–59] as well as in the the-
ory of control fuzzy differential equations [60–62] and 
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inclusions [63–65]. 
In this article we consider the some properties of the 

fuzzy R-solution of the control linear fuzzy differential 
inclusions and research the optimal time problems for it. 

2. The Control Differential inclusions 

2.1. The Fundamental Definitions and Designations 

Let     nn RconvRcomp  be a set of all nonempty (con-

vex) compact subsets from the space , nR

   ABSBASBAh rr
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 


)(,)(min,
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be Hausdorff distance between sets A and B, Sr(A) is 
r -neighborhood of set A. 

Let En be the set of all  such that u sat-

isfies the following conditions: 

]1,0[: nRu

1) u is normal, that is, there exists an  such 

that ; 

nRx 0

1)( 0 xu

2) u is fuzzy convex, that is, 
   )(),(min)1( yuxuyxu    

3) for any  and nRyx , 10   ; 

4) u is upper semicontinuous, 

5)  is compact.    0)(:0  xuRxclu n

If , then u is called a fuzzy number, and En is 
said to be a fuzzy number space. For 0 < α ≤ 1, denote  

nEu

     )(: xuRxu n . 

Then from 1)-4), it follows that the α-level set 

 for all 0 ≤ α ≤ 1.    nRconvu  


Theorem 1 (Negoita and Ralescu [66]). If , then nEu

1)  for all    nRconvu  ]1,0[ ; 

2)  for     uu  10   ; 

3) If   ]1,0[k  is a decreasing sequence converg-

ing to 0  then    
1


k

kuu   

Conversely, if  10: A
nR

1

 is a family of convex 

compact subsets of  satisfying 1)-3), then 

 for   Au   0   and   0

10

0 AAu 




 . 

If  is a function, then using Zadeh’s 

extension principle we can extend 

nnn RRRg :

g~  to  

by the equation 

nnn EEE 

 )(),(minsup))(,(~
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yvxuzvug
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It is well known that  

       vugvug ,),(~   

for all  and continuous function g. 

Further, we have  

10,,  nEvu

      vuvu  , ,     ukku 

where Rk . 

Define  by the relation  ),0[:  nn EED

    


vuhvuD ,sup),(

10 
 , 

where h is the Hausdorff metric defined in comp(Rn). 
Then D is a metric in En. 
Further we know that [67]: 

1)  DEn ,  is a complete metric space, 

2)    vuDwvwuD ,,   for all , nEwvu ,,

3)    vuDvuD ,,    for all andnEvu , R . 

It can be proved that  

  ),(),(, zvDwuDzwvuD   

for . nEzwvu ,,,

Definition 1. A mapping  is strongly 

measurable if for all 

nETF ],0[:

]1,0[  the set-valued map 

 nRconvTF ],0[: defined by is Leb- 

esgue measurable. 

 ()( FtF  )t

Definition 2.  A mapping  is said to be 

integrably bounded if there is an integrable function 
 such that 

nETF ],0[:

)(th ) )(tx()( thtx   for every . )(0 tF

Definition 3. The integral of a fuzzy mapping 

  nETF ,0:  is defined levelwise by  

.The set of all  such that 

 is a measurable selection for  for all 















T

dttF
0

)(

F


T

dttF
0

)(

nRTf ],0[:


T

dttf
0

)(

 1,0 . 

Definition 4. A strongly measurable and integrably 

bounded mapping   nETF ,0:  is said to be inte-

grable over  T,0  if .   
T

nEdttF
0

)(

Note that if   nET ,0:F  is strongly measurable 
and integrably bounded, then F is integrable. Further if 
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  nETF ,0:  is continuous, then it is integrable. 

Theorem 2. [43]. Let   nETGF ,0:,  be integrable 

and , Tc ,0 R . Then 

a)    
T T

c

c

dttFdttF
0 0

;)()(dttF )(

 
T

GtF
0

)(


T

dttF
0

)(

 GFD ,

tFD





)(

x

x

b) ;  
TT

dttGdttFdtt
00

)()()(

c) ;  
T

dttF
0

)(

d)  is integrable; 

e) .   dttGtFDdttGdt
TT T

  






00 0

)(),()(,

Consider the following control linear fuzzy differential 
inclusions 

,)(),,()( 00 xtxwtGxtA          (1) 

and the following nonlinear fuzzy differential inclusions 

,)(),,,( 00 xtxwxtFx  ,         (2) 

where  means dt
dx ;  is the time;  is 

the state;  is the control; A(t) is (n×n)- dimen-

sional matrix-valued function; , 

 are the set-valued functions. 

Rt nRx

nm E

m



Rw

mn RRRF :

x

RRG :
nE

Let  

)(: mRconvRW              (3) 

be the measurable multivalued map. 

Definition 5.  Set LW of all single-valued branches of 
the multivalued map W(·) is the set of the possible con-
trols.  

Obviously, the control fuzzy differential inclusion (2) 
turns into the ordinary fuzzy differential inclusion 

  ,)(,, 00 xtxxt                (4) 

if the control   LWw ~  is fixed and    xt, . 

 )(~,, twxtF

  LWw 

 

The fuzzy differential inclusions (3) has the fuzzy 
R-solution, if right-hand side of the fuzzy differential 
inclusion (3) satisfies some conditions [59]. 

Let X(t) denotes the fuzzy R-solution of the differen-
tial inclusion (3), then X(t,w) denotes the fuzzy 
R-solution of the control differential inclusion (2) for the 
fixed . 

Definition 6. The set  

    LWwwTXTY  :,)(  

be called the attainable set of the fuzzy system (2). 

2.2. The some properties of the R-solution  

In this section, we consider the some properties of the 
R-solution of the control fuzzy differential inclusion (1). 
Let the following condition is true. 

Condition A: 
A1. A(·) is measurable on  Tt ,0 ; 

A2. The norm  tA  of the matrix  is inte-

grable on 

 tA

 Tt ,0 ; 

A3. The multivalued map    mRconvTtW ,: 0  is 

measurable on  Tt ,0 ; 

A4. The fuzzy map  satisfies the 

conditions  

nm ERRG :

1) measurable in t; 
2) continuous in w; 
A5. There exist    TtLv ,02   and    TtLl ,02  

such that 

       tlwtGtvtW  ,,  

almost everywhere on  Tt ,0 . 

A6. The set       LWwtwtGtQ  :)(,

Tt ,0 )(tQ 

 is compact 

and convex for almost every  ,i.e. . )( nEconv

Theorem 3. Let the condition A is true. 
Then for every   LWw   there exists the fuzzy R- solu-

tion  wX ,  such that 

1). the fuzzy map  wX ,  has form 

      
t

t

dsswsGstxtwtX

0

))(,()(, 1
0 , 

where  Ttt ,0 ;  t  is Cauchy matrix of the differ-

ential equation xtA )(x  ; 

2).  for every ; nEwtX ),(  Ttt ,0

3). the fuzzy map  wX ,  is the absolutely continuous 

fuzzy map on  Tt ,0 . 

Proof. The proof is easy consequence of the 
[32,37,40,59] and theorem 1.  

Theorem 4. Let the condition A is true. 
Then the attainable set Y(T) is compact and convex. 

Proof. The proof is easy consequence of the [32,37, 
40,59] and theorem 1.  

We obtained the basic properties of the fuzzy R- solu-
tion of systems (1). Now, we consider the some control 
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Clearly, that there cases of the transversal condition of 
the maximum principle correspond to the three ses of 

 pair 

ca
fuzzy problems. 

3. The Optimal Time Problems  

Consider the following optimal control problem: it is 
necessary to find the minimal time T and the control 

 such that the fuzzy R-solution of system (1) 
satisfies one of the conditions: 

  LWw *

  kSwTX *, ,             (5) 

  kSwTX *, ,               (6) 

  kSwTX *, ,               (7) 

where  is the terminal set. n
k ES 

Clearly, these time optimal problems are different 
from the ordinary time optimal problem by that here 
control object has the volume. 

Definition 6. We shall say that the pair     ** ,, wXw 
T

 

satisfies the maximum principle on  , if there ex-

ists the vector-functio  
 t ,0

n  , which is the solution of the 
system 

  )0(,)( 1STtAT    

and the following conditions are true 
1) the maximum condition 

    )(,),(max)(,)(,( 1

)(

1* twtGCttwtGС
tWw









  

almost everywhere on ;  Tt ,0

2) the transversal condition: 
a) in the case (5): 

    )(,)(,),( 11* TSCTwTXC k  




 ; 

b) in the case (6): for all  1,0  

      TSCTwTXC k  
,)(,),( * 





  

and there exists  1,0  such that 

        TSCTwTXC k  
,,),( * 





 ; 

c) in the case (7): for all  1,0  

    )(,)(,),( * TSCTwTXC k  






 

 

and there exists  1,0  such that 

    )(,)(,),( * TSCTwTXC k  






  . 

the time optimal problems. 

Theorem 5. (necessary optimal condition). Let the 

condition A are true and the   *, wT  is optimality. 

Then the pair     ** ,, wXw   satisfies the maximum 

principle on  Tt , .  0

Proof. The proo nsequence of the [32,37, 
40]. 

f is easy co

where 

Example. Consider the following control linear fuzzy 
differential inclusions 

,0)0(,
01

10









 xFwxx  


 Txxx 21,  is the state;   Wwww T  2,  1

 0S1  is the control; 2EF   is the fuzzy set, where 

  

 


194,41

2

2

 


194,0

9

2
2

1

2
2

2

ff

f 2

Consider the following optimal control prob : it is 
necessary to find the minimal time T and the control 

2
11 fff

f . 

lem

  LW*  such that the fuzzy R-solution of system 

satisfies of the conditions: 

w

  SwTX *,  k

where is the terminal set su , that 2ESk   ch

 

   
 
   
















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2

2
2

1 



Qx

xQxxx
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0

1,121

11,21
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2
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2
2

1

2
2
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
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  


































121
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:
2

1

2
2

1

1

2
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1




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x
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x

R
x
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Q . 

2TObviously, the optimal pair  and 

    tttw sin,cos)(*   satisfy of the co  of the 

th

1) 

nditions

eorem 5: 

      )(, t  for a.e.  ,* WCttw   2,0t ; 

2)        TTwTXC  




,)(,, 11* SC k , 

 for a.e.  2,0t , where       Tttt sin,cos 

      ,0,2,cos,
1* TTwT   sin TTTTX  

    11,2:, 2121
1  xxxxS T

k  . 
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