/
oo Resmurch
0... Publishing

International Journal of Modern Nonlinear Theory and Application, 2021, 10, 49-64
https://www.scirp.org/journal/ijmnta

ISSN Online: 2167-9487

ISSN Print: 2167-9479

Bifurcation and Stability Analysis of HIV
Infectious Model with Two Time Delays

S.Q.Ma

Department of Mathematics, China Agricultural University, Beijing, China

Email: caumasuqi@163.com

How to cite this paper: Ma, S.Q. (2021)
Bifurcation and Stability Analysis of HIV
Infectious Model with Two Time Delays.
International Journal of Modern Nonlinear
Theory and Application, 10, 49-64.

https://doi.org/10.4236/ijmnta.2021.102004

Received: February 19, 2021
Accepted: May 14, 2021
Published: May 17, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

The HIV problem is studied by version of delay mathematical models which
consider the apoptosis of uninfected CD4* T cells which cultured with in-
fected T cells in big volume. The opportunistic infection and the apoptosis of
uninfected CD4" T cells are caused directly or indirectly by a toxic substance
produced from HIV genes. Ubiquitously, the nonlinear incidence rate brings
forth the increasing number of infected CD4" T cells with introduction of
small time delay, and in addition, there also exists a natural time delay factor
during the process of virus replication. With state feedback control of time
delay, the bifurcating periodical oscillating phenomena is induced via Hopf
bifurcation. Mathematically, with the geometrical criterion applied in the sta-
bility analysis of delay model, the critical threshold of Hopf bifurcation in
multiple delay differential equations which satisfy the transversal condition is
derived. By applying reduction dimensional method combined with the cen-
ter manifold theory, the stability of the bifurcating periodical solution is ana-
lyzed by the perturbation near Hopf point.

Keywords
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1. Introduction

The serious infectious problems of the human immunodeficiency virus (HIV)
which can attack human immune system to infect human body healthy cells
have drawn more attentions in the fields of dynamical investigation. Through its
slowly replicating retrovirus process to cause the acquired immunodeficiency
syndrom (AIDs) of human health problem, the body becomes gradually very
susceptible to opportunistic infections while CD4" T cells fall below a critical
level or oscillate for a long period with the lower level [1] [2] [3]. The most de-
vastating thing is that people have made big efforts in mathematical models to
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give a deep understanding of the inherent dynamical mechanism of HIV viral
infection [4] [5]. Especially, the classic mathematical model of HIV infection
dynamics which is originally modeled by Anderson and May and developed
subsequently by Nowak and Bangham is well accepted as the basic model(ODEs)
to be investigated both by theorists and experimentalists [6] [7] [8].

As is well known, HIV gene expression products can produce toxic substances
which indirectly or directly lead to apoptosis of uninfected CD4" T cells [1] [2]
[8]. It is verified in a laboratory experiment that the apoptosis may occur with-
out virus replication while both uninfected cells and infected cells are cultured
together [9] [10]. It is suggested that viral proteins associate with uninfected
CD4" T cells can induce an apoptotic signal which induces the death of unin-
fected CD4" T cells [11] [12]. People also have made consideration of the inte-
raction relationship acts between infected cells and uninfected T cells via Holling
type III functional response, Beddington-Deangelis functional response, and bi-
linear infection rate or more general nonlinear infection rate as suggested in pa-
pers [7] [13] [14] [15].

Accordingly, based on the biological meanings, we develop the following HIV

infection model with a viral infection and replication kinetics

v (0)=s—ax -y,

O+x(t)
y'(t)= QC% y(t—z)+ne 2v(t—z,)—(d+k)y(t), (L1

V() =ky(t)—-mv(t)

where X(t),y(t) denote uninfected and infected CD4'T cells respectively,
whilst Vv(t) represents the concentration of virus. The explainition of system
(1.1) biologically meaningful lies that virus replication is fractionally positive to
the increasing number of infected T cells. In addition, the bilinear incidence rate
of uninfected T cells and infected cells induces the increasing number of infected
T cells with time period 7,. The virus replication exaggerates the number of in-
fected T cells through virus replicating time 7, though the apoptosis of virus is
reduced with time 7,. In comparison with other HIV infection model, system
(1.1) is delay differential equations(DDEs) which contains double time delay 7,
and 7,. With multiple time delay, the dynamics of system is complicated since
instability produces period oscillation phenomena. With the attempt to track the
period varying and bifurcation phenomena of the limit cycle as varying parame-
ters continuously, the DDE-Biftool is a technology tool of art in the dynamical
investigation field [16] [17].

The extending geometrical criterion to work out the eigenvalue problem of
DDEs with multiple time delay is recently given in papers [18] [19] [20]. Hopf
lines are tracked by varying time delay in parameter space and the transversal
condition is also tidily outlined. The state of instability switching phenomenon
happening is associated with the characteristic roots with zero real parts appear-

ing in complex plane and limit cycle always arise near the threshold value. With
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time delay, the quanititive property of the evolution dynamical behavior of sys-
tem (1.1) is investigated with the estimated value of loss rate k varying.
Periodical oscillation phenomena in every respect of T cells population arise
as system equilibrium loses its stability. It is verified that T cells population os-
cillating in a time period with delayed feedback control of state variable. It is ex-
plained that difference estimation of T healthy cells of past history and present
time may induce periodically evolutional behavior of system states. In another
respect, in some extent, the difference estimation is regarded as disease symptom

proof. Therefore, we introduce the delayed feedback control in system (1.1) as

the following
X'(t)=s—dx(t)-c Hi(;[zt) y(t)+ r(x(t—rl)—x(t)),
y'(t)=ac X(t-7) y(t—7)+ne*2v(t—7,)—(d+k)y(t), (1.2)

0+ X(t—rl)
V'(t)=ky(t)—-mv(t)

Based on the fundamental theory of DDEs, the dynamics of disease model (1.2)
are studied as varying time delays. We also apply the geometrical criterion to
deduce the quantitative property of system (1.2) to derive the instability condi-
tion with k regraded as free parameter. The periodical solution is bifurcating
from the threshold value of Hopf bifurcation hence Hopf bifurcation lines are
tracked as varying free parameters continuously on the parameter plane. The
associated normal form is also computed via using Schmidt dimension reduc-
tion scheme combined with center manifold theory [21] [22].

The whole paper is organized as the following listed. In Section 2, the stability
property of disease infectious equilibrium is analyzed by applying the geome-
trical criterion to derive Hopf bifurcation with regarded as time delay varying. In
Section 3, the normal form is computed by applying center manifold theory and
combined with dimension reduction method near Hopf point. Finally, the pe-
riodical solutions bifurcated from Hopf point and the continuous calculation of

periodical solution is carried out as varying time delay continuously.
2. Study of System Stability
System (1.2) has two equilibrium solutions which are denoted as E, = (%,0, Oj

and E, = (X*, y*,v*) with the expression

o = 0(—kne — ur, +dm-+km)

acm+kne ™2 —dm—km '’
. e"2gm(d=*x-5s)

y "~ de“zm +ke*2m—nk '
« k.
Vi==y",

m

Do axis transformation by setting
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X=X=-X,y=y-y v=v-V

then the linearized equation of Equation (1.2) is listed as

’ v oy e
X' = _d_C9+x*+<9+X*)2 x—c0+x*y+r(x(t—rl)—x(t)),
. acoy ach e
y=ﬁx(t—rl)+—*y(t—rl)—(d+k)y+ne v(t-7,), (2.1)
(0+x ) 0 +x
v =Kky—mv,

The characteristic coefficient matrix of Equation (2.1) is

— * — 2 — g - 2 ’
coy —do 2d2¢9x S = 0
(9+X*) 0+ X
A acly : o aCX* et _d—k—1 ne“t 97 |(2.2)
(49+x*) 0+x
0 k -m-A

Compute the determination of the matrix A, the characteristic equation of the

equilibrium solution E, hasroot A, =-d and another branch is
A(AK7,7,) = (-d0-5) A" + (e acs —d*0 - dk@ — dm6 —ds — ks —ms ) 1
+e " gems +e 2 dkng + e )2 kns (2.3)
—d*m@ - dkm@ — dms —kms
=0
It is seen that the stability of E, is determined at time delay 7, =7, =0 by
the above coefficient matrix with

Condi, = acs —d?0 —dké —dm@ —ds — ks —ms

That is, Equilibrium solution E, is asymptotically stable if Condi, <0; or
otherwise unstable as Condi, >0. Hence, we have the conclusion that E, is
also asymptotically stable if Condi, <0 forany 7, =0,7, >0 or
7,>0,7,=0.

The stability of equilibrium solution E, is successively studied as varying
time delay 7, which is the period of the occurrence of disease. Compute the
determination of the matrix A, the characteristic equation of the equilibrium
solution E, is written as

A4k 7,7,) = P(A.k,7,,7,) +Q(A,K, 73,7, )" + R(A,k, 7,7, ) e 440 (2.4

+S(A.k, 7,7, )e " LW (4K, 7y, 7, ) e '
with

P(Ak,7,7,) = (=0" = 20X =X?) 2° +(~cOy" —2d0° — 4dOX - 2dx™ — ko’

—2kOX" —kx* —mo® —2mOx" —mx? —r6” —2rox" —1x* ) *

+(-cdoy” —ckoy” —cmoy” —d?6” - 2d*0x" - d*x” - dk6®
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—20dkéx" —dkx? — 2dm@? — 4dméox” —2dmx? —dr@* — 2drox”
—drx? —km@? — 2km@x" —kmx? —kr@? — 2kr@x” —krx™
—mré® —2mrox” —mrx? )/1 —cdm@y” —ckm@y” —d’mé?
—2d?’méx" —d’mx? — dkm@? — 2dkméx” —dkmx? — dmr&®
—2dmréx” —dmrx? —kmr@? — 2kmréx” —kmrx2,
Q(A.k,7,7,) =acd 20X +acd AX? + acdmOX +acdmx” + acA’OX”
+aCA* X + aCAMOX” +aCAmX? +acArOx +acirx’?
+acmréx” +acmrx? +dAr6” + 2d Ardx” +dArx? +dmré?
+2dmréx” +dmrx? + KAr@® + 2k Ar@x" + kArx + kmro?

+2kmréx” + kmrx?0c+ A2r0? + 2A%rox" + A*rx? + Amr&?
+2Amrox” + Amrx’?,

R(A.k, 7,,7,)=ckngy” +dknd® + 2dknox" +dknx? + kAn@® + 2k AnOX"
+kAnx? +knr@? + 2knréx” +knrx?,

S(A.k,7,,7,)=ckndy" +2dkndx" + 2kAn@x" + 2knrgx” —knré?

—2knr@x" —knrx?,
W (4,k,7,,7,) = —aCArOx —acirx* —acmrx’ —acmrx?,
Set Y =72, with the assumption A = l®, then separate the real part from
the imaginary part in Equation (2.2), one has

(R, cos(8)+Rysin(0)+S, )Y sin(S)+(cos(0)R, —sin(O)R, +S, )Y cos(S)
+ P, cos(6)+W, cos(&)— P sin(0)+W, sin(0)+Q; =0,
(—cos(0)Rg +sin(O)R, =S, )Y sin(S)+(R, cos(6)+Rysin(8)+S, )Y cos(S)
+P, cos(8)+W, cos(@ )+P sin(0)—Wgsin(0)+Q, =0

(2.5)

and introducing two angle variables S =wr, and 6= wr,, by solving
Y COS(S),Y sin (S) from Equation (2.4), one gets Hopf surfaces
Y cos(S) =D, (7,7, 1,0), (2.6)
Ysin(S)=o,(z,7,,1.0),
with
CI)l(z'l,z'z,k,S)
(F’,SR —PBS, —Q, Rz +QgR, +S,W, —S.W, )sin(H)
(R, c0s(0)+ R sin(0)+S, ) +(cos(0)Rg —sin(6)R, +5; )’
. (-PS, —P:S; —Q R, —QgR; —S\W, —S W, )cos(&)
(R, cos(8)+Rgsin(8)+S5, )2 +(cos(F) Ry —sin(F) R, +Sq )2
(RW; —RW, )sin(26)+(-RW, — RW, )cos(26)
(R, cos(8)+Rgsin(0)+$, )2 +(cos(0) Ry —sin(O)R, + S, )2
N -PR, —P;R; —Q,S, —QgS;
(R, cos(8)+Rgsin(0)+S, )2 +(cos ()R, —sin(0)R, +SR)2 '

+
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o, (Tl,Tz,k,S)
(P,S, +PS; —Q,R, —QgRz —S,W, —SRWR)sin(H)
(R, c0s(0)+Rgsin(0)+S, ) +(cos(0)Rg —sin(6)R, +5, )’
. (P Sg —P:S, +Q Ry —QgR, — S, W, +S.W, )cos ()
(R, cos(8)+Rgsin(8)+S, )2 +(cos(F) Ry —sin(F) R, +Sg )2
(-RW, =R W, )sin(20) +(—R,W, + RW, )cos(26)
(R, cos(8)+Rgsin(0)+$, )2 +(cos(0) Ry —sin(O) R, + S, )2
N P R: —P:R, +Q,S; —QgS,
(R, cos(6)+ Ry sin(0)+S, )2 +(cos ()R, —sin(O)R, +S, )2 ’

By the relationship of triage function, one gets the following equality
F(0,7,7,,k) = ®, (7,,7,k,0)° + D, (7,,7,,k,0)" ~Y? =0 (2.7)

We also assume

S=5,+2ln,0=6,+2l,n
for I, =0,12,---,1,=0,1,2,---, and define new mapping
k=k(8)=k(6,+2lx) (2.8)

For given k =k., we seek for the finite values of S. which determined by
the inverse function of k(&)=k. with more than one branch. However, what’s
necessary is to find the admissible value of the range that parameter x chosen.
With this attempt, by differentiating Y'with respectto &, one gets

vdy , ,
W: (qu)lt‘) +CD2(D29 (29)

with the assumption 3—; =0, we get the value of @ of the bottom of the curve

Y (0),forsome |, and 6 =6, +2ln. In another respect,

U = —Ziln (Y2 (6’*)) , and we assume O<u<g to assure the solvability
&
condition for Equation (2.6).
Subsequently, for some |, >0, for given K., we derive the solution 6. of
mapping (2.8) since the interSection of curve Y? (0) with the curve Y =e %72,
Therefore, one gets the threshold value of time delay 7, determined by Equa-

tion (2.5) with the formula

i{arctan [&]+2|1n:|, sin(@)>0,cos(8) >0,
6. @,
%[arccos(@l) + 2l ], sin(6) > 0,cos(9) <0,
Tpe=4 (2.10)

%[arccos((bl) +n+2lm],  sin(6)<0,cos(0) <0,

%{arctan [&j +2m+ 2I1n}, sin(#) <0,cos(8)>0

* 1
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for 1,=012,--
To obtain the transversal condition at 7, =7,., we apply the mathematical
technique as shown by geometrical criterion given in paper [20] and rewrite Eq-

uation (2.2) as
P(Z,k,rl,rz)+Q(/1,k,rl,rz)e"”1 + R(/?L,k,rl,rz)e_(/“”)r2

(2.11)
+V (ﬂ., k, Tl,z'z)e*lrr(lﬂl)rz +W (ﬁ,, k, 7,7, )e—zml -0

Furthermore, differentiate Equation (2.11) with respectto 7, to get

d2 d2 i)
Pl—+P +]Q,—+Q —7,Q— e
Ydr, " (Qidrz Q ~1Q J

2 7

+

’ di ’ —(A+u)p
(RA_TZR)dZ'Z (R _/IR)j /
(2.12)

+ (Vi—(71+fz)V)j—A+(V’ (ﬂtﬂt)V)]e“l““‘)T2

7}

+ (W) -2z W)d—/1+W’ e =0
dr,

Solving ;—/1 from Equation (2.12) to get

2}

d,1 ~ Fl(/i,k,rl,rz) (2.13)
dr2 F,(4.k,7,7,) '

with
F(AK7,7,) =P, +Qe ™ +(R] —AR)e ")
+(VT’2 —(ﬁ+y)v)e‘“1'(“”)72 +W, e,
F, (4.k,7,,7,) =P/ +(Q, —7,Q)e*" +(R; —7,R)e *"*)
+(V] = (g, +1, )V )& #E2 (W) - 20W)
In another respect, Set A =iw, differentiate P,Q,R,S,W with respectto &0
to get
P':iP'(' ) ’(0)+P’ 7, (0)+PKk'(0),
Q'(iw)w'(0)+Q;, 7 (0)+Qk' (),
iR'(i )w'(9)+R' 7, (0)+Rk'(9), (2.14)
v; V'(io)a'(0)+V,z; (0)+VK'(6),
w;:.w( )0 (9)+w;2f;( )+ WK’ (6)

and differentiate Equation (2.13) with respect to @ and &k respectively, to get
Ay (4K 7,,7,) =P, +(Q, —iQ)e™
+(Ry —ie'(6)7,R)e )7
+(Vy =iV =i (0) 7,V ) o)
+(W, —2iW )e?*

(2.15)
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and

Ay (A k,7,7,) = P+ Qe + Rie )z pyfe oz e (2.16)

Noticed that a)’(é’) = i , then we have
2

i .
a —T—lFl(la),k,z'l,z'z)

—= - — (2.17)
A7, ALK (0)+73(0)(F +ioRe %4 i+ p)ve (12 )

Further, we have

. di . 1
o(6.)=sign< Re| — |+ =sign< Re| ——
( ) g{ [drzj} ’ dz

dr,
- sign‘ﬁ{i (Aik(6:)+ 75 (6.)(F, +iRe % i+ )V (o))
x(%(F)-i3(R))f
= sign{S(Fl)‘R(A’kk’(@h 73 (6.)(F +iwRe 0% 4 i+ p)Ve e ))

-R(R)3 (ALk’(@)+ 7 (@)(F1 +ioRe 1% 4 (i + p)Ve o) ))}

:sign{s(a)m(A;)k'(a)ﬂg(a){m(apewzw[m(R)sin(ﬁrzj

O
—S(R)cos(%rzj+y[i}?(v)cos(& +%rzj+3(v)sin(€* +érZD
7, 7 7

‘“’(3<v>c°{"**%’ZJ”‘(VW”[@*%”m

—‘B(FJ{S(A;)k’(&*ﬁrg(9*)(S(F1)+e“%{S(R)sin[irz]

2]

(2.18)

(e o st -1

21 21 2}

ﬂ(”mw{“’**%”J”(V”‘”(e”%”m

Therefore we give the following result of the stability analysis of equilibrium
solution E,,

Theorem 2.1 E, losses its stability at the threshold value 7, =7, with the
fixed parameter k=k. with g satisfies the solvability condition. The trans-
versal condition &(z,.)#0 given by formula (2.19) determines the transverse
direction of the characteristic roots associated with Hopf bifurcation. That is,
there is a pair of imaginary roots that can transverse from the left half plane to
the right half plane if & (71*) >0, or otherwise transverse from the right half
plane to the left half plane if & (Tl*) <0.
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3. Stability of Periodic Solution

In Section 2, stability of infectious disease equilibrium solution E, loss as pa-

l;tO.
T

rameter cross over Hopf line given that the transversal condition

The stability of bifurcating periodic solution is analyzed by perturbation tech-
nique near Hopf point (kc,rc). We suppose that Hopf bifurcation happens at
the critical parameter pairs (K, 7, ). Do axis transformation

X=x-X,y=y-y ,V=v-V" (for simplicity the overbar is ignored), to write
Equation (1.1) as the following truncated system with Taylor expansion to three

orders,

, y Xy X
t)=|-d-c—— - t—7,)-x(t
X'(t) [ C'9+X*+(9+x*)2]x ce+x*y+r(x( 7,)-x(t))

Oy o coy” G SO0 X2y

+(6?+x*)3 (0+x*)4 (¢9+x*)3

Y () =2 x(t-n) + 22y (15 ~(d +k)y  ne ()
+ X

(9+x )2 -
+<Zi9x¥;4 X(t—T1)3_%i)axz(t_ﬁ)y(t‘fl)
(Zieﬁ)s z(t_,l)+(;’f§)zx(t_q)y(t_m,

V'(t)=ky(t)—mv(t)
Equation (3.1) is defined on Banach space C([—TmaX,O],R3) with the su-

preme norm defined as ||¢| = ST |¢(9) ,herein 7, =max{z,7,}.

We define the phase space to be the extended phase space C([—Tmax,O], R3)
with a possible jump discontinuityat ¢ =0.Set 7.V, =7, —7,, and
kv, =k —k, and the linearized equation is written as
X' (t) =ayX+a,y+r(x(t—z,)=x)+r(x(t—z — 1.V, )= X(t =7 ),
y'(t)=bx(t—7, )+b,y(t—z ) - (d +k, )y +ne “2v(t—7,) -k, y
+by (X (=7 =7V, ) = X(t =7 )+, (Y (t =7 — 7V, ) - Y (t— 74, )),
V'(t)=k.y+kyv,y—mv

(3.2)

with
v oy’ -
=—d-c—2—+ : =—Cc—,
% 0+x (9+x*)2 %z 0+x
_acly’ acl
- o 2 i ——
(49+ x”)2 0+x

Set u(t):(x(t),y(t),v(t))T and u, =u(t+6) for —r,,, <0<0, Equa-
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tion (3.2) can be rewritten as

u'(t) = Lu, + Ly, (3.3)

By Rieze representation theorem, there exists a 3x3 matrix function 77(6‘)

of bounded variation and 7, () to express

Lu =" dn(0)u(6) (3.4)
with
ay, (k.)5(0)  a,(k.)5(0) 0
dn(6)= 0 —(d+k,)8(60) ne*25(0+1,)
0 k.5 (0) -ms ()
r5(0+1,.)-r3(0) 0 0
+ bl(kc)5(9+71c) bz(kc)5(9+rlc) 0
0 0
and
Lu, = J._Ormax d7, (‘9) Uy (6) (3.5)
with
aj, (k. )k.5(0) aj, (k. )k.5(0) 0
dn, (0)=| b/ (k, )k.5(0+7.) —b;(k,)k,S(0+7,)—k5(8) 0
0 k.0 (0) 0
and
r(5(0+z, +1,V,)—0(0+1,,)) 0 0
dn,, (0) = bl(kc)(é'(HJrrlc+rleve)—é'(¢9+rlc)) b, (k. )(6(0+1, +73,V, ) =5 (6+7,)) O
0 0 0

Based on the fundamental theory of DDEs, define A to be the infinitesimal
generator of the solution semigroup associated with linear operator Lg(-) such
that

d—¢, — T < 60 <0,
Ag = d09 (3.6)
[,_dn(e)s(6). 0=0,

for g€ C([—rmax,O], Rs). For yeC’ ([O,Tmax], Rs), the adjoint operator of A

is defined as

—d—"l/, 0<s<r7.,.
Ay={ O (3.7)

Define the inner product

(v.0)=7" (0)p(0)-[°

“Tma

7 (£+0)dn(0)9(2) 69)
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Suppose that the eigenvector gand ¢ satisfy
Aq(0)=iwq(0), Aq (s)=ieq (s) (3.9)
with
(0.97)=1,(a.q")=0

For example, we choose

(-m-iw)a,,
q= —(ia)— re”e —a, + r)(ia)+ m) (e’
K, (a11 +re7ne —r— ia))

—be"e (-m+iw)
q =— (a11 +re'ne

(—ne“‘fz*“‘”2 )(a11 Fre'@te 4 ia;)

—iws

—r+ia))(—m+ia)) e

with
M = b (-m+io)(a, (M’ +o’))
~(ay e 1 +io) (-m+o?)(-m-iw)
+ (—ne’“rze‘“”2 (a11 +ren —r4 |a))) K, (a11 +rene —r4 ia))(—m —~io)
(2((W2)b, (o m) e + ((Y2)* + (~(Y2)m-r+a,)o
-i((Y2)r+m-(y2)a, )(r -y )0+ (Y2)m(r -a,)’ )b,
+(1/2)b, (-a,0° +(-imay, —ira,, +ianaiz)w+(r—an)aum))e

—b,r (e’ +(-im—ir +ia, ) o+m(r -a,)) ) m +o’ )7,

—iory

— 7,8 (i —re —a, +r) k. (-m* - o”)

We also write Equation (3.1) into an operator differential equation

<0<0 (3.10)

max —

u, = Au, + Ru,,—,

with nonlinear terms

o [0 1, <0<0, o)
U, = .
C Ly +F(y,), 0=0

and
al,l (kc ))kevex(t)+ a{2 (kc)kevey(t)
Leut = _bll(kc ) I(evex(t _Tlc)_bz' (kc)kevey(t _Tlc)_ kevey(t)
k.V,y(t)
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2

C, X
F(Ut) = szz (t—z'lc)+C3X(t—Tlc)y(t—z'lc)
0

3.12
c, X+ X7y (3.12)

+egx(t—7 ) +0 X (t—7 ) Y (t—17y,)

0
- cHy*s, - acay*y ¢ - ach = cHy*w
(6+x) (6+x) (6+x) (6+x)
¢, - co _ acly” o o o
(0+x*)3, ° (9+x*)4’ ' (0+x*)3

Since Hopf bifurcation occurs at the critical parameter pairs (k,,7,;) with
the imaginary roots A = {i®,—iw}, it is supposed P, be the corresponding ei-
genspace and Q is its complementary subspace. By decomposition, C=P, ®Q,

and we define 7:C — P, be the projection operator and

x, = =0 (3.13)
o, -7, <0<0 '
Therefore, set U, =z0+Z0+y with yeQ, then by Equation (3.5) one gets
7' =iwz+7 (0)R(zq+Zq+Y),
7' =-iwz+q (0)R(zq+Zq+Y), (3.14)

y' =Ay+(1 -7)X,R(zq+7Zq+Y)

henceforth, set ®(6)= (q(@),ﬁ(@)), Equation (3.14) is written as Taylor ex-

pansion to be truncated to 3 order with the expression

(;j =Jz+ (z,Z,0,v)+ £ (2,7,y,0),

3.15
)70 £ (2,Z,0,0), T $0 <0, G19
y =Ay+
f2(2,2,0,0)-®(0) " (z,2,0,0)  €=0,
with J :(Iw 0 J,and
0 -iw
F(zq+Zq+y)= £ 22+ 2 77+ 2 7%+ (3.16)

Define the operator Mj? on the space of homogeneous polynomial
H,(z,Z) by

(3.17)

On the center manifold, the normal form of Equation (3.15) is expressed as
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[;j:J[;JJr 0% (2,z,0,v)+g{" (2,7,0,0) (3.18)

with

(3.19)

By choosing

one gets
i(2.2,0,0)= (2,2,0,0)- £} (2.2.0.0) p(2.7) (3.20)
~£9(2,2,0,0)p(2,2)+ 1, (2,7,0,0)U (2,
and the normal form (3.17) is derived as

7' =iwz+ky2v, +Ky2°7 (3.21)

The bases of Im(Mf) is expressed as

()
[3ia())fz}(—3i(c)022]’(—i227]l[iwofzj

The bases of Im(M N ) is expressed as

(_Zig) 23]’£2iagﬁz}[4iaf3]'(—43}?)'[—2i2227j’[2i273)

Hence, we choose

fZ((;lO](-)) 2 fl(]flO](-) fO(;(Y)](-J) 2
2,7 Z+——7°, 3.22
P ( ) —-iw iw 3iw ( )

Set
U(2,7)=Hy2z? +H,7Z + H,,7°
By the above definition of U(z,Z) in Equation (3.7), one gets
Ay, = 2i0Hs +(0) T +(0) Too,
AH,, =q(0) £l +T(0) T, (3.23)
AHg, ==2iwHy, +q(0) fog +T(0) fz(olélo)
which satisfies the initial condition
LH,, = 2in20( )+a(0) fom +q(0) T = 20,
LH,, = q(0) £ +g(0) flee) — £, (3.24)
LH;, = —2ioH, (0)+4(0) fix +(0) T - fio
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By the computation of integral of Equation (3.23), we derive all of the coeff-
cients H,;,H,, and H,. Based on Equation (3.8), Equation (3.15), Equation

(3.17), one gets

ko = fltélv
'fzéolo flllot) (1) (1) @)
k21 ® + f]_glg Hll (0)+ f0110H20 (0)+ thlO Hll (_Tlc) (3.25)

1 ,
+ h(gl)lo Ha (_Tlc ) + fo00
By calculation, the coefficients in Equation (3.21) is derived as

’( ke (”(0)‘*“)( )+, (k. )k.a“ (0)T™ (0)

flt(l)l =a;
0 e—iwz’lC _ =2 0)b’ (k. )k (2) 0 e—iwrlc
(k. )ka" (0) a7 (0)b5 (k. )k.a™ (0)

9 (0)b
" (0)b; ( )ka? (0)+™ (0)ka™ (0)
)rd

(0 ( )a)r e ionc _Iq— *(2) (O)blq(l) (O)a)ree'i“”lc
2

(2 (0)b, q ( )a)ree’i”’“

_|q_
iq

and
1 2 iwr,

fiso =0 (0)ea™ (0) +3™7 (0)c,q™ (0)"e
+

q*(z) (O)qu(l) (0) q(z) (O)EfZiwnc ’

Zq—*(z) (0) Czq(l) (O)e*imm + q*(z) (O)qu(z) (0) g ionc

q—*(z) (O)qu(l) (O)Efiwqc ,

h1010 =
0

zq*(Z) (O)czq_(l) (O)ei“’Tlc + q—*(z) (O)c3q_(2) (O)e“”“

q*(Z) (0) C3(T(l) (O)eimm ,
0

h011o =

fzﬁéoo—Sq (0)c,g” (0" 7™ (0)+ 25" (0)csa™ (0) 9™ (0)7 ()
a®(0)c;q” (0)" T (0)+37" (0)c, g™ (0)q™ (0)" e
+2q"?(0)c,g" (0)g" (0)e ¢ (0)+q"? (0)c,q (0)" e =q'? (0)

By the above analysis, we conclude that
Theorem 3.1 There is a periodical solution with small amplitude bifurcating

from Hopf point (Tlc,kc) which is stable if the first Lyapunov exponent
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l,(0)=%R(ky ) <0, otherwise unstable if 1, (0)=%R(k,,)>0 and the bifurcating
R(k,, )

g 42
dr

=11 }

direction is determined by the signature of u = , which is super-

critical if 4 <0 or subcritical if £ >0.

4. Conclusion

The stability property of the disease infectious equilibrium solution of a type of
HIV mathematical model with delay feedback control was investigated by vary-
ing parameter pairs (k,z’l) on parameter space. The Hopf bifurcation lines
were tracked via using geometrical criterion of DDEs with multiple time delays.
By using Schmidt dimensional reduction method combined with center mani-
fold analytical technique, the universal norm form was computed near Hopf
point. As period time delay 7, is prolonged, stability of the disease infectious
equilibrium solution loss and the stable periodical oscillation solutions arise near

Hopf point.
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