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Abstract

In this work, we will derive a numerical method of sixth order in space and
second order in time for solving 3-coupled nonlinear Schrodinger equations.
The numerical method is unconditionally stable. We use the exact single so-
liton solution and the conserved quantities to check the accuracy and the effi-
ciency of the proposed schemes. Also, we study the interaction dynamics of
two solitons. It is found that both elastic and inelastic collisions can take place
under suitable parametric conditions.
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1. Introduction

In recent years the concept of soliton has been receiving considerable attention
in optical communications. Since soliton is capable of propagating over long
distances without change of shape and velocity, it has been found that the soliton
propagating through optical fiber arrays is governed by a set of equations related

to the coupled nonlinear Schrédinger equation [1] [2] [3].
. 2 .
Ith+quX+2|:z’::1|qp| :|qj :0112172,"'1N (1)

where i*=-1, q ; is the envelope or the amplitude of the jth wave packets.
Equation (1) reduces to the standard nonlinear Schrédinger equation for
N =1, to Manakov integrable system for N =2, and recently for this case the
exact two soliton solution obtained and novel shape changing in elastic collision
property has been brought out. The system for N =3 is of physical interest, in
optical communication, and in biophysics, this system can be used to study the

DOI: 10.4236/apm.2021.114017 Apr. 15, 2021 237 Advances in Pure Mathematics


https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2021.114017
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2021.114017
http://creativecommons.org/licenses/by/4.0/

K. Alamoudi, M. S. Ismail

lunching and propagation of solitons along the three spines of an alpha-helix
shape changing in protein [1] [2] [4] [5]. In this work, we are going to derive a

numerical solution for the three coupled nonlinear Schrodinger equations

0 + G + 2(|q1|2 "'|c12|2 +|Q3|2)ql =0, (2)
0+ O+ 2(J0f + [0+ ), =0, 3)
i + e + 2(|[” +[05 " +[ag|" ) a5 =0, (4)

with initial conditions

qj(x,O):gj(x), X, <X<Xq, j=1,2,3. (5)

and the homogenous boundary conditions
q; (x,t)=0a;(%,t)=0, j=12,3. (6)

The exact soliton solution of the 3-coupled nonlinear Schrédinger equation

[2] [3], is given by

g; (x.t) = Ajkze" sech (AR +§j j=12,3. 7)

A® = ‘0‘1(1)‘2 ""051(2)‘2 +‘al(3)‘2 .

(2) (@)

_i =a1 =aL
Ai A AZ A Az A
R A i i
e =———, A=k (x+ikt), j=123.
(k +K)

where al(j) K, J=12,3 are four arbitrary complex parameters. Further 2k
gives the amplitude of the jth mode and 2k, the soliton velocity.

The proposed system is of physical interest, in optical communication, and in
biophysics. This system can be used to study the lunching and propagation of
solitons along the three spines of an alpha-helix shape changing in protein [1]
[2] [4] [5]. In this work we are going to derive a numerical method of sixth order
in space and second order in time for the three coupled nonlinear Schrodinger
Equations (2)-(4).

Many numerical methods for solving the coupled nonlinear Schrédinger equ-
ation are derived in the last two decades. Finite difference and finite element
methods are used to solve this system by Ismail [3] [6] [7] [8] [9] [10] [11]. A
conservative compact finite difference schemes are given in [12] [13]. Xing Li
studied the bright soliton collisions with shape change by intensity for the coupled
Sasa-Satsuma system in the optical fiber communications in [4] and [5]. To avoid

complex computations, we assume

0, =U, +iu,
q, =U; +iu, (8)
Oz = Us +1Ug
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where u, (x,t),i =1,2,---,6 are real functions, by separating the real and imagi-

nary parts, and we write,
U (X,0)=giz (X), U,(%,0)=0, ()
U (X,0) = gpr (X), Uy (X,0) =0, (X)
Us (X,0) = g3 (X), Ug(X,0)=g; (X)
and we have assumed
0;(X)=Gir +i0y,, 9,(X)=0,r +i0,, and g;(X)= gz +ig;,

where g, and g;,j=12,3 are real functions.

i

by substituting (8) into(2)-(4), the following system is obtained:

o’y ou,
R %2 oy 9
oxt ot ! ®)

o’u, oy
=——-2wU 10
ox? ot 2 (10)

o’u, au,
=—=2-2wuU 11
ot ot : (1

d’u,  ou,
=——=2_2wu 12
ox? ot N (12)

o’u,  ou,
=—-2wU 13
oxt ot ° (13)

o’u;  oug
=——2-2mU 14
ox? ot o (14)

where

a):(uf+u22)+(u32+u§)+(u52+u§) (15)

the system (2)-(4) can be written in a matrix-vector form as

ou . d%u
—+A—+2F(u)u=0 16
ot ox? (u) (16)
where
_ul_ [0 12 0 0 0 O] [0 w 0 0 0 O]
u, -1 0 0 0 0 O -o 0 0 0O O O
U, 0 0 01 0 O 0 0 0 w 0 O
u= JA= JF(u)= )
u, 0 0 -1 0 O O 0 0 - 0 0 O
Ug 0 0 0 0 0 1 0 0 0 0 0 w
lu,] [0 0 0 0 -1 0 |0 0 0 0 -0 0]

Proposition 1: The three coupled nonlinear Schrodinger equations have the

conserved quantities
= J:LR|C11(X,t)|2 dx = = LXLR

= [, o (o d== [, (O o (15

6, (%0 o (17)
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1o =[] (Xt dx == "o (4,0) x (19)
T 2 T N A Y
4 2 XL (3X aX (3X 1 2 1 3 2 3 (20)
+<|q1|4 +|q2|4 +|q3|4)}dx
To prove the first conserved quantity (17), we have
2
6ul§tx,t)+6 u;)fzx't)+a)u2(x,t):0 (21)
2
auz(gtx,t)_a ué)fzx't)—a)ul(x,t)zo (22)

by multiplying (21) by u,(x,t) and (22) by u,(x,t), and by adding the re-
sulting equations to obtain

0 [u? (x,t)+u3 (x,t)}t% u, (x,t)

ou, (x,t)
ot

au, (x,t)
OX

-u,(xt)

=0 (23)

Integrating Equation (23) with respect to x from x; to x; and using the va-

nishing boundary conditions to obtain

0 PRl 2 2
F [ul (x,t)+u; (x,t)]dx =0
and this is the proof of the first conserved quantity (17). The other two con-
served quantities (18) and (19) can be proved in the same way.
The exact values of the conserved quantities using the exact soliton solution

(7) are given by the following formula
A2
2K, |
I .=
i 2 2 2
[T e T

The paper is organized as follows. In Section 2, we derived the high order

,J=12,3 (24)

compact finite difference scheme. The Fixed-Point scheme is derived in Section
3 to solve the block nonlinear penta-diagonal systems obtained in Section 2. In
Section 4, we study the stability of our scheme. The numerical results of the de-
rived method are reported in Section 6. Finally, we draw some conclusions in
Section 7.

The scheme in (33)-(38) is of sixth order accuracy in space and second order
in time, and it is unconditionally stable using von-Neumann stability analysis. A
nonlinear block tridiagonal system must be solved at each time step. Fixed point

method is used to do this job, and this will be discussed later.

2. High Order Compact Finite Difference Scheme

The compact finite difference is a numerical method to compute finite difference

approximations. Such approximations tend to be more accurate for their stencil
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size (Ze. their compactness) and, for hyperbolic problems, have favorable disper-
sive error and dissipative error properties when compared to explicit schemes
[14]. In order to develop a numerical method for solving the system given in
(2)-(4), the region R =[x_ < X< Xz]x[t>0] will be covered with a rectangular
mesh of points with coordinates,

X, =X _+mh, m=0,12,---,M

t=t =nk, n=0,12,---

where A and 4 are the space and time increments respectively. We denote the
exact and numerical solution at the grid point (x,,t,) by uIm and UI m > re-
spectively. To evaluate the second derivatives at interior nodes, we assume that

they can be obtained by solving the following penta-diagonal system [14]

a@zx‘f_j Jml +£‘§le ]m +a£a;:i ]M =%5§um h_25 U, (25)
where
5x2Ui, =Uina—2Ui 0 +Ui s
U, =V nn =20, +U;
and i=12,---,6.

Now, by Taylor Expansion, we can have the truncation error as the following

2 4
R=(2a+1-b-a)| L% ( ——b—— )hz oy
ox" ) 12 ox" )
6
+(ia—ib—ia)h4 s
12~ 45 360 )

1 1
if we solve (2a+1-b—a)=0 and (a—gb—ﬁaj=0,weget

4
a= and b==(10a -1
2(1-a) and b=>(100-1)

so0, the truncation error becomes

= —6—(11a 2)h4(§( ] +0(h?)

4
if a=0 then a =§ and b= 3 which gives the explicit fourth-order
scheme for the second derivative. Furthermore, when « :1—21, the scheme be-

12 3
comes sixth order accurate, in this case azl— and b =11 By substituting

these on formula (25) and after simplification, the space derivative of sixth order
can be given implicitly as

111[2um  +11u, +2um+1] ” 3h2 [um_2 +16u,, , —34u, +16u, , +um+2] (26)
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Imposing the approximation given on the spatial direction, by using (9)-(14)

into Equation (26), we get
(2ult,m—l +1lult,m + 2u11,m+1)
3
= _W[uz‘“’z +16U,, , —34u, , +16U, ., +U,, , | (27)
-(20u,,, , +110U, , + 20U, ;)
(2u21,m—1 +lluznm + 2u21,m+1)
3
= W[ULM +16U, , ; — 34U, +16U; .y +Uy | (28)
+(20u, , | + 11000, , + 2000, )

(2u3t,m—1 +10uy  + 2u3t,m+1)

3

T
-(20u,,,, +110u, , + 200, ;)

I:U4,m-2 +16U4,m-1 - 34u4,m +16U4‘m+1 + U4,m+2] (29)

(2u4t,m—1 +11u4t,m + 2u4t,m+l)
3
= W[u&m_2 +16Uy ;, ; — 34Uy, +16U; o+ Uy | (30)
+(200 ,, +110U,,, + 20U, ,.,)
(2u51,m—1 +11ug, , + 2“51,m+1)
3
= —W[UG,M +16Uq 5,y — 34U, +16Ug g +Ug . | (31)
- (Za)uevmf1 +1lwug , + 20)“5,m+1)

<2u6t,m—l +11u6t,m + 2u6t,m+l)

3

T 4h?
+ (2005, 4 +110Ug , +200Us ., )

[[Ug p_p +16Ug , y — 34U, +16U; 1y +Us | (32)

The Crank-Nicolson discretization on the temporal direction of the 3-CNLS

equation to obtain the numerical scheme

(207, +11U0 + 200 )+ p(Ug, +16U 7, —34U7 7 +16U ], +UJ )

1,m+1 2,m+1

=(2u/, , +100], +20], ) - p(U], , +16U7, , —34U], +16U], , +U] ) (33)

1,m+1 2,m+ 2,m+2

— (2R +LIR + 2R )

2,m+1

(2070, +10055 + 20550 ) - p(U[, +16U7", —34U 7 +16U, " + U, )

2,m+1 1,m+1 1,m+2

=(20, , +1005, +20] )+ p(U], , +16U],, , —34U], +16U], ., +U], ,) (34)

2,m+1 1,m+2
n+l n+l n+l
+(2FL + 1R + 2R, )

(2030, +10070 + 207 )+ p (Ul , +16U 5, —34U; +16U 0 +U[T, )

3,m+1 ,m—-2 4,m+1 4,m+2

= (205, +10], + 203, )-p(US, , +16U], , ~34U] +16U] ., +U] ) (35)

4,m+2

— (2R, +11F 2R )

4,m+1
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(200, +110 0+ 2070, ) - p(Ugi, +16U5:, —34U%: +16U5 1 + UL, )
=(20], . +10], +20] )+ p(Us, , +16U], , —34U] +16U] , +U] ) (36)
+ (2Rt + LR + 2R )

3,m+1
(200, +11070 + 2000 )+ p(Ugn, +16U7 7 —34U0 7 +16U 75, +Ul., )
= (200, +10], + 207, ) - p(Ug, , +16U7, , —34U7 +16U,, +U{ ) (37)
— (2Rt +LIRN + 2R )

6,m+1

(ZU o F1UGT+2U g,?nlu)_ p (Us"}iz +16U5,, — 34U +16U¢ 1, +U5n,:nl+2)

=(2ug,, +107, +207 )+ p(Ud, , +16U7, , —34U] +16U7, ,+UJ, ) (38)
+ (2R + LIRS + 2R )

5,m+1
where
Fn+1 k 3 n+1[2 no|? n+l n i=12
j.m :EZizl(qi,m +qi,m (Uj,m +Uj,m>’ J: d 13 (39)
4 p 3k
an =—.
8h?
Equations (33)-(38) form a block pentadiagonal system as the following
c D E O - - - 01 U, 1T G, 1
B CDE O 3 VS
A B CDE O Sl Uis Gis
0 e e : . :
= . 40
) . 0 : : (40)
0 B C D E|Upys| |Gius
: 0 B C D|Uin Giv-2
0 - - . 0 A B C__L_Ji,M—l_ _Gi,M—l
where 1=1,2,3.
Un;]l Un;rnl Un:rnl
LJl,m :Iiulr;+1:|’ LJZ,m :I:Ui+1:|, L—J3,m = |:U5nv+l
2,m 4,m 6,m
0 -
A= p}zE
Lp 0
[ 2 -16
B= P =D
| 16p 2
[ 11 34
C= P
|-34p 11

f f f
G — 1m , G — 3,m , G — 5m
1m |: fzym:| 2,m |: f4'm:| 3,m |: feym:|
fim = (200, +100], +2U7 )

1,m+1

-p(U3,,+16U7, 3407, +16U], , +U]

2,m+1 2,m+2)

2,m+1

(2R, +1IR + 2R )
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fym =(208,, +110],

fom = (204, +11U]  +2U

fym = (204, +11U7,, +2U

fG,m = (zug‘m—l +11U(;m

fom =(2U5 1 +11U7, +2U

+Pp (Ulrjm—z +16U7,

,m-1

+ (2R 1R+ 2R )

- p(Ug,,+16U7,

—(2F, + 1R+ 2

+p(U3,,+16U] .,

+(2F3”+1

,m-1

+2U]

3,m+1)

4,m+1

+11F 42

2,m+1

F n+l

4,m+1

)

~34U0 +16U]

)

= n+1

3,m+1

5,m+1)

)

~34U;, +16U

n
1,m+l +Ul,m+2 )

- 34U :,m +16U:,m+1 + U:‘m+2 )

)

n
3,m+1 +U3,m+2 )

—p(Udn, +16U7, 3407 +16U7 ., +Ul ;)

_(zF;;{ L +H1IRM 42

+p(Ug, ,+16U7,

+(2RN 1R+ 2

+2U;

6,m+1)

F n+l

6,m+1

Fn+1

5,m+1

)

~34U0 +16U

)

6,m+1

n
5,m+1 +U5,m+2 )

The present method is of second order accuracy in time and sixth order in

space, it is unconditionally stable, see Ismail [11]. The resulting system is a block

nonlinear penta-diagonal system which can be solved by fixed point method and

this will be discussed next.

3. Fixed Point Method

Since the compact finite difference scheme (40) is nonlinear and implicit, an

iterative method is needed to solve it. The fixed point for solving the resulting

system can be given in a matrix vector form as follows [6] [14].

Cc
B
A

0

D E O
C D E O
B C D E O

where 1=1,2,3 then

0

O U m o

uSh ] el

utr ] [ 6%
Uy G
us? | | G6Y

US| |G
ulsh | (6l

(41)
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n+1 +1 n+1,(s+1 n+1,(s+1
s+1 ) +1) _ U3,m =y U(s+1) _ U5,m -y
n+1 s+1) - U n+l(s+1) |1 =3m T U n+1,(s+1)

4,m 6,m

Gl,sm Gz,m o G am = ?
ff) f}nl fn

fim = (207, +100], + 207, )

il

-p(U3, ,+16U;, ,~34U] +16U] ., +U], )

~ (2R +10R ) 2R )

2,m+1
fom =(207,, +11U],, +2U] )
+p(U], ,+16U], , -34U], +16U;

1m+l

n
+Ul m+2)

+(2Fl,nr;f’]fS) +11F1,nr:1V( ) + 2FlanJ1r}r1 ))
fym = (203, +1107, +207, )
- p(U:m , +16U7,, , —34U; +16U:m+l+u4m+2)

(2R 11R ) 2R )

ot 4mit
fom = (2040, +110U]  + 207 )
+p(U3, ,+16U], , —34U] +16U], +U], ;)
(2R +11R ) 2R )
fom = (208, +100¢  + 200 )
-p(Ug, ,+16U7, ,-34U7  +16U ., +U ;)

— (2Rt + 11RO 4 2R )

6,m+1
fom =(2U80, +1107, +207 )
+p(Us, , +16U, , —34U7  +16U]

5,m+1

+U5nm+2 )
+(2F;;{'§S> +11F;;1< +2RH)

5,m+1
n+1 z(

where the superscript s denotes the sth iterate for solving the nonlinear system of

n+1

" 2)( Ul +ur, ). i=123

equations for each iteration. The system in (41) can be solved by Crout’s me-
thod, where we need only one LU factorization for the block-pentadiagonal ma-
trix at the beginning of the calculation, and the solutions of lower and upper
pentadiagonal block systems at each iteration are required only. The initial ite-

n+l

rate U,:+1’(0 can be chosen as U, =U_. We apply the iterative schemes till

the following condition

U n+l,(s+1) U n+1,(s)

m m

<10°®

is satisfied.
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4. Stability

To study the stability of the scheme (2)-(4) we use the Von Neumann method,
we do the following.

As we know Von Neumann method can be applied only for linear schemes, so
we must study the linear version of (2)-(4) by freezing the nonlinear terms by

assuming

3
®= k mZ|qj |2 = constant
2 j=1

where j=1,2,3.
The linear version of imposing the approximation given on the spatial direc-
tion (26) and the Crank-Nicolson discretization on the temporal direction of the

Equations (2)-(4) can be displayed as follows:
i(zqn+l +11q(1+1+2qn+1 )+a)p2 (an+l +11qn+l+2qn+l )

j,m-1 j.m j,m+1 j,m-1 jm j.m+1

+p, (], +16q]0 , —340] 1 +16q]0, + ], )

- j,m-1 j.m (42)
= |(2q;m_1 +11q?1m + Zq?ymﬂ)— ®p, (Zq;.“m_1 +11q;“m + Zq?vmﬂ)
- pl (q?,m—z +16q?,m—1 _34qu +16q?,m+l + q?,m+2)

k
— and pZ:E.

h = =
where P, =p ah

We assume
qf, =e™e’™, j=1,23, (43)

By using (43) we can deduce the following relations

0] s =20 + 0 g =—4sin’ (%hjq?e"””“ (44)
By substituting (43) and (44) into (42), we can get
i[11+4cos(ph) e +wp, [11+4cos(ph) Je“"
+2p, [cos(gh)+16cos(ph)-17 Je "k
=i[11+4cos(ph)|e™™ —wp,[11+4cos(h) |e ™
—2p, [ cos(sh)+16cos(sh)—17 [e™

(45)

We can write equations (45) as
[(a)pzj/1 +2p1;/2)+i71]e“k =—(@pyy +2py, ) +in,
where
7, =11+4cos(ph) and 7, =2p,[cos(Ah)+16cos(h)-17 |
then

ek — _((Up27/1+2p172)+i7/1
(a)pzy1+2p172)+i}/1

e (@p+2p,) v

(wpz71+2p172)2 +712

ak

e

DOI: 10.4236/apm.2021.114017 246 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2021.114017

K. Alamoudi, M. S. Ismail

So, the necessary condition for stability using Von Neumann is the absolute
maximum of €™ is less than or equal 1 and it is clearly satisfied then the scheme
is unconditionally stable according to Von Neumann stability analysis.

5. Numerical Results

In this section we conduct some typical numerical examples to verify the accu-
racy, conservation laws, computational efficiency and some physical interaction

phenomena described by 3-coupled nonlinear Schrédinger equations.

5.1. Single Soliton

In this test, we choose the initial condition as

q; (x,0) = Ak exp(ik;, x)sech(kle+§j (46)
a(J) Az 3 a2
A==t A=l j=123
A (K, +k; ) i

The following set of parameters are used
h=0.1k =0.001, x, =-30,t=0,2,---,10
o =1+, a? =0.8+0.8i, & = 0.5+0.5i,k, =1+0.5i

The conserved quantities and the error for our scheme are displayed in Table
1. We have noticed that the method is conserved the conserved quantities exact-
ly and highly accurate results are obtained. The profile of |q1|,|q2| and |q3| at
different times are displayed in Figure 1, Figure 2 and Figure 3 respectively.

To test the convergent rate in space and time of the proposed schemes. We

define the L, error norm by
L. (h)=|

where uf\ and Uj, are respectively the exact and the numerical solution at

En

— n n
= MaX; oM u1,m _Ul,m

the grid point (x,,t,) . In this experiment, we take T =10.

The convergent rate “order” is calculated by the formula

Table 1. Errors & conserved quantities of single solitons.

T L, L, I,(a,) I,(a,) I,(q,) I,

0 0.000000 0.000000 1.058201 0.677249  0.264550  0.086748
2 0.193006E-06  0.218633E—-06  1.058201 0.677249  0.264550  0.086748
4 0.570301E-06 0.645860E—-06 1.058201 0.677249 0.264550 0.086748
6 0.114841E-05 0.132794E-05 1.058201 0.677249 0.264550 0.086748
8  0.170164E-05  0.187596E—05  1.058201 0.677249  0.264550  0.086748

10 0.153080E-05 0.180273E-05 1.058201 0.677249 0.264550 0.086748
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Figure 1. Simulation of single soliton |C]1|2 .
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Figure 3. Simulation of single soliton |(13|2 .
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o)

"(5)

order (rate of convergent in space) =

o )
o[ ]

To calculate the convergent rate in space, we take the time step 4 sufficiently

order (rate of convergent in time) =

small and the error from temporal truncation is relatively small k =0.0001.
From Table 2, we can easily see that the rate of convergent is 6 as we claim in
this work.

To check the temporal convergent rate, we fix the spatial step /4 small enough
so that the truncation from space is negligible such as h=0.01. The results are
given in Table 3 which indicate that the order is 2 as we claim in the text.

To improve the temporal accuracy of the proposed method, we use Richard-
son Extrapolation on the computed solution to eliminate the lower-order term
in the truncation error.

Since our method applied to the scheme is in the form O<k2)+0(h6), we
use

0 An (k/2)-Up (K)

u. =~ 47
m 3 (47)

to eliminate the term O(kz) , which makes the final solution fourth-order ac-

curate in time dimension. Although the extrapolation requires two times as

Table 2. Rate of convergence of single solitons ( k =0.0001).

Time (Erh=04).)  (ER(n=02)) P
2 0.221724E-3 0.316528E-5 6.130
4 0.500641E-3 0.710431E-5 6.139
6 0.961949E-3 0.135720E-4 6.147
8 0.126746E-2 0.182073E-4 6.121
10 0.135511E-2 0.195383E-4 6.116

Table 3. Rate of convergence of single solitons (h=0.01).

Time |[ER(k=0.2)| |[ER(k=0.1)|, P
0.2 0.156290E-2 0.390335E-3 2.001
0.4 0.326661E-2 0.836156E-3 1.966
0.6 0.509636E—-2 0.128218E-2 1.991
0.8 0.681457E-2 0.171404E-2 1.991
1 0.821445E-2 0.208123E-2 1.981
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much computation as the original scheme plus the application of the formula

(47). By using the parameters
h=0.1 k =0.002,0.001, k, =1+0.5i,
a” =1+i, o =0.8+0.8i, 2! =0.5+0.5i

with the extrapolation formula (47), we obtain results which are displayed in
Table 4.

5.2. Interaction of Two Solitons

To study the interaction of two solitons with different parameters, we choose the

initial condition as a sum of two single solitons of the form
q; (xt=0)=q%"(x,0)+4'? (x,0), j=1,2,3. (48)

where

. R
A\ (x,0) = Ak, exp ik, (x+X,))sech (km (x+ x0)+5j

. R
A\ (x,0) = APk, exp(ik, (x - xo))sech(klR (x- x0)+5j

For all examples in the case of interaction, we choose the set of parameters
h=0.1,k =0.01,x_ =-50,x; =50,x, =25
k, =1+0.8i,k, =1-0.4i
together with different values of {al(j) , agj), j=12, 3} for each test. We will

study the dynamics of the following cases.

5.2.1.Case 1

In this test we choose the set of parameters
al(l) =5, al(z) =3.5, 0‘1(3) =1, agl) =10, agz) =1, af) =2.

For this test, we have noticed that

which gives us elastic interaction. The interaction scenario is displayed in Figure
4.

Table 4. Richardson extrapolation using L, norm.

T k =0.002 k =0.001 RE
2 0.184703E-05 0.473693E—-06 0.1929E-06
4 0.363803E-05 0.930450E-06 0.3385E-06
6 0.338088E—-05 0.822299E—-06 0.2485E-06
8 0.346026E—-05 0.872163E—-06 0.2183E-06
10 0.790741E-05 0.203701E-05 0.7636E-06
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5.2.2. Case 2

In this test we choose the set of parameters

o =56 =350 =14 =24/ =250 =04

For this test, we have noticed that the formula

© (2) €]
a, (074 (04

TE T
a, a, a;

is unsatisfied which gives us inelastic interaction and it is clear in Figure 5.

For all cases, the conserved quantities given in Table 5, we have noticed that

our method is conserved the conserved quantities exactly.

la2|

-

la3|
o
o

S
S o

20 50

t 0 .50

lq1]

Figure 5. Inelastic interaction of two solitons.
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Table 5. Conserved quantities of interaction of two solitons.

T 1 (a,) 1,(a,) 1, (a,) I,

0 2.075681 1.841291 0.083027 —0.123487
2 2.075681 1.841291 0.083027 —0.123487
4 2.075681 1.841291 0.083027 —0.123487
6 2.075681 1.841291 0.083027 —0.123487
8 2.075681 1.841291 0.083027 —0.123487
10 2.075681 1.841291 0.083027 —0.123487

6. Conclusion

In this work, we have derived a highly accurate finite difference scheme for
solving the 3-coupled nonlinear Schrédinger equation. The scheme is of sixth
order in space and second order in time, it is unconditionally stable. A fixed
point is used to solve the nonlinear block penta-diagonal system obtained. Single
soliton solution and the conserved quantities are used to highlight the robust-
ness of the method. The interaction of two solitons is discussed in detail for dif-
ferent parameters to produce elastic and inelastic interactions. This behavior is
agreeing with [1] [2] [3] with the highest accuracy. The derived method can be

used to solve similar nonlinear problems.
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