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Abstract 
Small coastal pelagic fish are one of the fish families most affected by sea 
fishing. This man-made phenomenon leads to an imbalance in the marine 
and coastal ecosystem and is one of the main causes of migration north and 
offshore of the ranges. We used the ordinary differential equations to model 
the interactions existing between small pelagic resources and fishermen. 
Modelling follows the same of the Lotka-Volterra equations with a difference 
in the number of variables. This study confirmed the instability of the marine 
ecosystem. The objective is first of all to model a system of three interacting 
individuals composed of two distinct types of predators and two types of 
prey, and then optimise this interaction with the aim of conserving biodiver-
sity in the ecosystem under study. Determining the Jacobian matrix made it 
possible to calculate the reproduction rate basic (R0). The study of the strong 
connectedness has made it possible to reduce the number of variables without 
losing the objective of the study. A computer program implemented on the 
language computer python facilitated the visualisation of the results. 
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1. Introduction 

Overfishing has a dual impact on the marine ecosystem. It devastates the fish 
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families of a given area, but also destroys the corals that are places refuges and 
fish reproduction. This fact observed and multiplied by the changes climate 
leads to a displacement of fish shoals to other optimal areas by term of abiotic 
parameters and more stable in terms of exploitation. Understanding of the me-
chanism and the causes of the dynamics of small pelagic resources will allow the 
implementation of sustainable management policies. The reduction in the num-
ber of variables in the study facilitated the writing of interaction models. The 
strong connectedness in a graph allowed us to obtain strongly related subgraphs 
and thus to make variables out of them. It is important to know the (R0) in this 
type of studies, because this is the objective to stabilise the basic reproduction 
system. Since the behaviour of the different species is modelled by a system of 
differential equations of population dynamics in interactions, the threshold R0 of 
the variable representing small pelagics is determined from the stability study of 
the Jacobian matrix of the system. The mathematical model is an extension of 
the one of Lotka-volterra from two to three and then four variables. Numerical 
tests show a correlation with the research results published by a large number of 
biologists peaches. This decision-making tool is part of the contribution of 
science to the development of the fisheries sector, accurate in solving social and 
environmental problems. In one of their study, the authors in [1] have developed 
a three-variable differential equation system taking into account changes in the 
investment. This model has three variables: the biomass of the resource, the 
fishing effort and the market price of the resource. This model is based on the 
same principle as that of Lotka-Volterra, i.e. an interaction strong and natural 
exists between the species in the system. Biological scientists, mathematicians 
and other related profiles generally lean towards the pre-eminence of environ-
mental factors and are increasingly directing their work in this direction. Thus 
for a better management of marine protected areas, researchers have compared 
two areas, one of which has artificial reefs and the other does not. They thus 
measured the attraction which exists between two areas with different nutrition-
al potential [2]. The disappearance of some subfamilies of small pelagic fish such 
as sardines is indirectly imputed only to the action of fishermen and yet the lat-
ter protested against the development of intensive fishing which today threatens 
the balance of the marine ecosystem and economic development of coastal 
countries [3]. It is therefore important to consider in the models of management 
of fisheries the anthropic and economic aspects. In this study, the stock consi-
dered is that of small pelagic fish whose landings have increased slightly despite 
the very high increase in the number of fishermen in the seas [4]. These authors 
have proposed a solution for the spatialized management of small pelagic re-
sources, in the Senegalese Exclusive Economic Zone. It is also a confirmation of 
the importance of having reliable statistical data in continuity, because the cal-
culations of eight could disappear from the earth in the coming decades [5]. Bi-
ology has given rise to several computer disciplines, such as neural networks and 
genetic algorithms. She also represents the source of a new form of intelligence, 
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which is intelligence collective; that of simple multicellular beings, the colonies 
of social insects and the human [6]. In their studies, they have used Multi-Agent 
systems to model population dynamics [6]. In [7], the authors modelled the dy-
namics of a population of groupers in a fishing area of a marine coast, taking in-
to account to natural growth, fishing and migration, and to study the effect of 
poaching on this population. If one could at least describe the fluctuations in 
catchability by a dynamic model, then fishing mortality could be controlled in a 
way that would be more precise. By regulating fishing effort, catch per unit effort 
(CPUE) could be directly used as indicators of abundance [8]. Partial fishing 
mortality generated by a vessel or a fleet can be expressed in terms of catchability 
total (of all vessels/fleets exploiting this stock) and of the partial catch (of the 
vessel or fleet under consideration) [8]. 

The authors in [9] have developed a model to calculate the basic reproduction 
threshold. This knowledge of the threshold makes it possible to direct the study 
towards the search for this rate, which is important for the equilibrium of the 
system. 

The predation equations of Lotka-Volterra, which are referred to as the also 
referred to as the “prey-predator model”, are a pair of differential equations 
non-linear of the first order. They are commonly used to describe the dynamics 
biological systems in which a predator and its prey interact. 

2. Materials and Methods 
2.1. Choice of Variables  

The environment studied is composed of: small pelagic fish (SP), predators (SP), 
artisanal fishermen (IP), industrial fishermen (IP), managers (M), decision-makers 
(D), women processors (WP), traders (T) and consumers (Cons). A mathemati-
cal model taking into account the interactions between all these variables is dif-
ficult to write and to solve. Modeling in the form of a problem-oriented graph 
allows us to study its strongly related components.  

Figure 1 shows the interaction between the different variables of the problem 
under study. 

The strongly related components are:   
• Management := {G, D}  
• Fishermen := {PA, PI, FT, C, Cons}  
• Prey := {PP}  
• Predator := {P}  

The variables in the study are reduced to: Management, Fishermen, Prey and 
Predators. 

2.2. Mathematical Model  

In the logic of the Lotka-Volterra system, predators and their prey interact in a 
biological environment free of anthropic influence. The objective in this part is 
to introduce two new variables (fishermen and managers) into this system that  
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Figure 1. Interaction of ecosystem parameters. 

 
act on predators as well as on prey. The human species is predatory of all other 
species living on the sea bed. 

So what will the nature of the seabed be in a very long time and what is the 
solution to the problem? To the multiple assaults on this resource family. There 
is a double interaction between small pelagics and their ecosystem. The first in-
teraction is that with predatory resources, the second is that with men. The 
three-variable model (men, predators and prey), allows:   
• to know the bifurcation threshold which is the limit of disturbance of the 

system;  
• to know the mutual behaviour of the three species;  
• to know the level of disturbance of the system caused by the introduction of a 

new variable.  

2.2.1. Model Assumptions 
Based on the above, we make the following assumptions 

(H1) We are in the presence of climate change.  
(H2) the territory has favourable conditions for survival (a favourable sex ra-

tio, a regime optimal food quality and a sufficiently high water temperature);  
(H3) the ecosystem of our study is exclusively made up of small coastal pelagic 

fish. their natural predators and the fishermen’s population  

(H4) the initial level of the prey population is 
Θ
α

1. 

2.2.2. Parameters and Variables 
Table 1 groups together the terms used in the different parts.  

 

 

1Result obtained with Schaefer’s logistics function with infinite convergence. 
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Table 1. Parameters. 

Parameters Meanings 

Θ  saturation level of the medium 

α  natural growth rate of the small pelagic population 

1′α  natural mortality rate of prey 

1k  rate of increase due to management of small pelagic resource 

2k  regression rate due to small pelagic management 

3k  regression rate of predator management 

1β  mortality rate of small pelagics caused by predators 

2β  mortality rate of small pelagics caused by overfishing 

1ξ  proportion of decrease in sea trips 

δ  growth rate of predators 

r intrinsic reproduction rate of the population 

1γ  mortality rate of fishing predators 

2γ  natural mortality rate of predators 

δ  rate of increase in predators due to the abundance of small pelagics 

1η  Increase in the number of fishermen at sea caused by abundant prey 

2η  rate of change in the number of fishermen at sea caused by predators 

1µ  Rate of change in fishing effort caused by regulation. 

2µ  Rate of decline in fisheries management effort. 

 
The decision variables used in the model are:  
1) X +∈ : represents the population of small pelagics;  
2) Y +∈ : represents the predator population;  
3) Z +∈ : represents the population of fishermen.  
Model formulation  

( )

( )

( )

1 2

1 2

1 2

d (1)
d
d (2)
d
d (3)
d

X X Y Z
t
Y Y X Z
t
Z Z X Y
t

α β β

δ γ γ

η η ξ

 = − −

 = − −



= + −


                 (1) 

( ) ( ) ( )( ) ( ) ( )0 0 0 00 , 0 , 0 , , ,0,0X Y Z X Y Z X= =  

The objective of the model is to see the evolution of the three species interact-
ing in a lotka-Volterra. The model (1) is a system of three differential equations 
unknown.  
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1) Equation (1) shows that the evolution of the prey population is controlled 
by pre organic date fishermen and fishermen.  

2) Relationship (2) shows that the evolution of the predator population de-
pends on the quantity of prey and fishermen.  

3) Relationship (3) shows that the quantity of fishermen at sea depends on the 
quantity of prey and predators.  

Existence and uniqueness of the solution 
The system (1) can be written in the form of  

( ) ( )( )
( )0 0

,U t f t U t

U t U

 ′ =


=
                      (2) 

with ( ) ( ) ( ) ( )( ), ,U t X t Y t Z t′ ′ ′ ′=   

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2 1 2

:

, , , ,

d df I
X t Y t Z t X Y Z Y X Z Z X Y

× →

′ ′ ′ − − − − + − α β β δ γ γ η η ξ

 
 

f is of class C1 then according to the Chauchy-Lipschitz theorem the system (2) 
admits a single solution (2) admits a single solution ⇒  (1) admits a single so-
lution.  

Bifurcation parameter and model stability 
The bifurcation parameter ( 0 1R ≤ ) also called threshold, is the state of equi-

librium of the system without exploitation. Knowledge of this parameter is im-
portant in biology and dynamics populations. It makes it possible to measure the 
real consequences of abusive exploitation of a resource family. The physical pa-
rameter at stake is the biomass of resource small pelagics. It intervenes when a 
small change in a physical parameter produces a major change in the organisa-
tion of the system under study. This threshold R0 represents the limit parameter 
for the exploitation of small pelagic resources by predators and fishermen.  

In system (1) the solution space is ( ), ,E X Y Z= . The Jacobian matrix ( )J E  
gives:  

( )
1 2 1 2

1 2 1

1 2 1 2

, ,
Y Z X X

J X Y Z Y X Z Y
Z Z X Y

− − − − 
 = − − − 
 + − 

α β β β β
δ δ γ γ γ

η η η η ξ
 

The system is considered to be in equilibrium without any exploitation, with-
out any attack from the predators on the prey population X as well as without 
the action of sea fishing. This equilibrium of the system (1) is denoted 

( )0
0 ,0,0E X= . 

From this equilibrium ( )0
0 ,0,0E X=  the Jacobian matrix is deduced:  

( )
1 0 2 0

0
0 2

0 1

0 0
0 0

X X
J E X

X

− − 
 = − 
 − 

α β β
δ γ

η ξ
 

The system (1) is stable if and only if the matrix (3) below is stable  
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0 2

0 1

0
0

X
X

− 
 − 

δ γ
η ξ

                     (3) 

The matrix (3) is stable if and only if its determinant is positive. This results 
in:  

( )( )0 2 0 1 0X X− − ≥δ γ η ξ  

2
0 1 0 2 0 1 2 0X X X− − + ≥δ η δ ξ γ η γ ξ  

2
0 2 0 1 0 1 2X X X− − ≥ − −δ ξ γ η δ η γ ξ  

2
0 2 0 1 0 1 2X X X+ ≤ +δ ξ γ η δ η γ ξ  

0 2 0 1
2
0 1 2

1
X X

X
+

≤
+

δ ξ γ η
δ η γ ξ

 

then  

0 2 0 1
0 2

0 1 2

X X
R

X
+

=
+

δ ξ γ η
δ η γ ξ

 

R0 represents in our case the predation value not to be exceeded, otherwise to 

disturb the balance of the system, avec 0X Θ
=
α

.  

2.2.3. Determination of System Equilibrium Points (1)  
The point ( )0,0,0O  is a point of equilibrium at the origin. Another point of 
equilibrium different from point O exists. To determine it, let us consider the 
system (1) at equilibrium:  

1 2

1 2

1 2

0 (1)

0 (2)

0 (3)

Y Z

X Z

X Y

α β β

δ γ γ

η η ξ

− − =


− − =
 + − =

                     (4) 

with ( ) ( ) ( )( ) ( ) ( )0 0 0 00 , 0 , 0 , , ,0,0X Y Z X Y Z X= =   
To solve the model graphically we need to calculate the values of X, Y and Z in 

balance. Function (1) give us: 1

2

YZ −
=
α β
β

. By replacing Z in the function (2) 

the following system is obtained:  

1
1 2

2

1 2

0

0

YX

X Y

  −
− − =  

  
 + − =

α β
δ γ γ

β
η η ξ

                   (5) 

The resolution of the system (5) is:  

1 1 2 2 1 2
1

1 1 1 2 2

Y + −
=

−
η γ α β γ η β ξδ

β γ η β δη
 

( )2
1 1

1 1

X Y= −
ηξ

η η
 

1 1
1

2

YZ −
=
α β

β
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2.3. Stability of Critical Points 
2.3.1. Critical Point Stability O(0, 0, 0)  
As this model is non-linear, its stability is determined by the following theorem:  

Theorem 1 (linarisation) 
If f is differentiable en 0 and ( )0 0f = , then 

• if ∀λ  belongs to the set of eigenvalues of the original matrix, 0Re <λ , 
then 0 is asymptotically stable for (1).  

• if ∃λ  belongs to the set of eigenvalues of the original matrix, 0Re >λ , 
then 0 is unstable for (1).  

We therefore know nothing about behaviour near a point of equilibrium if all 
the eigenvalues of the differential are of negative real part or zero, with at least 
one of the real part nul. 

Let us study the stability of the point O(0, 0, 0): 

( ) 2

0 0

0,0,0 0 0

0 0

J

α

γ

ξ

 
 

− 
 − 

                     (6) 

Let’s calculate the eigenvalues of the Jacobian matrix J(0, 0, 0) 
The eigenvalues are the solutions of the matrix determinant below:  

2

0 0
0 0
0 0

− 
 − − 
 − − 

α λ
γ λ

ξ λ
 

its determinant gives: ( )( )( )2− − − − −α λ γ λ ξ λ . 
Let’s ask  

( )( )( )2 0− − − − − =α λ γ λ ξ λ  

0⇒ − =α λ  or 2 0− − =γ λ  or 0− − =ξ λ  

⇒ =λ α  or 2= −λ γ  or = −λ ξ  

or , , 0≥α γ ξ  

The equilibrium O(0, 0, 0) is unstable. 
According to the theorem (1); if there is an eigenvalue λ  with 0Re >λ  the 

equilibrium (0, 0, 0) is unstable.  

2.3.2. Stability of the Critical Point X1, Y1, Z1 

1 1 2 2 1 2
1

1 1 1 2 2

Y + −
=

−
η γ α β γ η β ξδ

β γ η β δη
 

( )2
1 1

1 1

X Y= −
ηξ

η η
 

1 1
1

2

YZ −
=
α β

β
 

Linearizing the system. 
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( )
( )
( )

1 2

1 2

1 2

(1)
(2)
(3)

X Y Z
Y X Z
Z X Y

− −
 − −
 + −

α β β
δ γ γ
η η ξ

                   (7) 

Let us determine the Jacobian matrix of the system (7) at the points ( )1 1 1, ,X Y Z :  

1 1 2 1 1 1 2 1

1 1 1 1 2 1 1

1 1 2 1 1 1 1 2

Y Z X X
J Y X Z Y

Z Z X Y

− − − − 
 = − − − 
 − + − 

α β β β β
δ δ γ γ γ
η η η η ξ

 

Let’s diagonalize the matrix J  

( )
1 1 2 1 1 1 2 1

1 1 1 1 2 1 1

1 1 2 1 1 1 1 2

1 1 2

3 2 4

5 6 3

d

Y Z X X
J I Y X Z Y

Z Z X Y

K m m
m K m
m m K

− − − − − 
 − = − − − − 
 − + − − 

− 
 = − 
 − 

α β β λ β β
λ δ δ γ γ λ γ

η η η η ξ λ

λ
λ

λ

 

with 1 1 1 2 1K Y Z= − −α β β ; 2 1 1 1 2K X Z= − −δ γ γ ; 3 1 1 1 2K X Y= − + −η η ξ , 

1 1 1m X= −β , 2 2 1m X= −β , 3 1m Y= δ , 4 1 1m Y= −γ , 5 1 1m Z=η , 6 2 1m Z=η  De-
termining eigenvalues from critical points ( )1 1 1, ,X Y Z  by solving the equation: 

( )det 0dA I− =λ ).  

( )det 0dJ I− = ⇒λ  

( ) ( )3 2
1 3 1 2 3 1 3 2 5

2
1 2 3 1 3 3 1 5 3 3 6 2 5 2 0

K K K K K m m m m

K K K m m K m m m m m m m K

− + + + + − + +

+ − + + + + − =

λ λ λ
        (8) 

By posing: 1 1 3 1K K K= + + , 2 2 3 1 3 2 5K K m m m m= − + +  and  
2

3 1 2 3 1 3 3 1 5 3 3 6 2 5 2K K K m m K m m m m m m m K= − + + + + −  
The Equation (8) gives:  

3 2
1 2 3 0− − − =λ λ λ                        (9) 

The stability of critical point ( )1 1 1, ,X Y Z  depends on the values and sign of 1 , 

2  and 3 . This stability is almost impossible because the signs of 1 , 2  
and 3  depend on of variable parameters according to the seasons and climatic 
conditions.  

3. Graphical Representation of the Numerical Test Results  

Figure 2 represents the result of the simulation of the model(1) on the Python 
language:  

Generally speaking, the interaction between three species in the same ecosys-
tem, leads to the disappearance of one of the species. The other two species will 
continue to evolve periodically. Of the four simulations carried out after varying 
the different parameters of the model, it shows that the population of biological 
predators is in danger of extinction. In all simulations, this population either 
cancels out or tends towards 0. 
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Figure 2. Temporal evolution of the interacting three-variable system. 

 
These graphs show the instability of the points of origin. Policies for the pro-

tection of fishing resources could be oriented towards the protection of fish fam-
ilies predators, many of which are already extinct. These graphs show a perfect 
disturbance of the predator-prey biological system. This is due to the action of 
intensive and unregulated maritime fishing. Resilience mechanisms favouring 
the evolution of the natural rate of increase of this predatory fish stocks are a 
necessity. 

The resolution is multiple but for an optimal solution we will consider an or-
dinary differential system by integrating a new variable (management).  

Model Optimisation Solution (1) 

In order to minimise the risk of extinction of the three species, we will introduce 
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a new variable in the system. The management variable will interact with the 
other three system variables. It is noted W, the graph obtained becomes strongly 
related. The objective is to design a strongly related graph by adding to Figure 2  
a new variable named Management (W). The associated graph becomes ( ),G S A′ ′ ′  
with { }, , ,S X Y Z W′ =  et ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , ,A Y X Z X Z Y X W W Z W Y′ =  
we have Figure 3. 

Figure 3 shows us the interaction between the different variables in the model. 
Direct interactions are represented by solid arrows and indirect interactions by 
dotted arrows. 

The mathematical model obtained from G' is:  

( )
( )
( )
( )

1 2 1

1 2 2

1 2 3

1 2 3

X X Y Z W

Y Y X Z W

Z Z X Y W

W W k X k Y k Z

′ = − − +


′ = − − +
 ′ = + − −
 ′ = − − +

α β β α

δ γ γ α

η η ξ α
                 (10) 

( ) 00X X= , ( ) 00Y Y= , ( ) 00Z Z=  et ( ) 00W W= . 
Stability and calculation of the operating threshold R0 
At equilibrium without exploitation ( )0

0 ,0,0,0E X= .  

( )
1 0 2 0 1 0

0 20

0 1

1 0

0 0 0
0 0 0
0 0 0

X X X
X

J E
X

k X

− − 
 − =
 −
 

− 

α β β α
δ γ

η ξ
 

( )0J E  is stable if the following matrix is stable:  

0 1

1 0

0
0

X
k X

− 
 − 

η ξ
 

Threshold calculation: The threshold 1 1R ≤ . 
( )( )0 1 1 0 0X k X− − ≥η ξ  

2
0 1 1 1 0X k k X≤η ξ  

2
0 1 1

1 0

1
X k

k X
≤

η
ξ

 

 

 
Figure 3. Graph of the strongly related after adding the variable W. 
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then  

0 1
0

1

X
R =

η
ξ

 

This threshold, or basic reproduction rate, is the basic value for maintaining 
the biotic balance of the ecosystem under study [9]. The system (11) is stable if  

the threshold 0
1

1

1
X

R = ≤
η

ε
. 

One solution to solve the model is to propose three pairs of two variables each, 
to be solved independently of each other while remaining within the same sys-
tem. For each couple, the variables that do not enter into a relationship will be 
considered as constant.  

System 1: Small pelagics/Managers 
1)  

( )
( )

( ) ( )( ) ( )

1 1

1 2

0 0

(1)

(2)

0 , 0 , (3)

X X W

W W k k X

X W X W

α α ′ ′= −
 ′ = −


=

                (11) 

The system (11) is an interaction between small pelagic resources and the fi-
sheries managers. Through better management of the resource, the resource has 
a normal growth. 

2) Numerical results 
These results of Figure 4 show that management needs to be very active 

around fisheries. Effort management is determined by the fish biomass in ex-
ploitation state:  

a) high biomass - passive management; 
b) low biomass - active management. 

 

 
Figure 4. Interaction between fisheries managers and small pelagic 
resources. 
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System 2: predators/managers 
1)  

( )
( )

( ) ( )( ) ( )
1 3

0 0

(1)

(2)

0 , 0 , (3)

Y Y W

W W k k Y

Y W Y W

δ γ ′ = −
 ′ = −


=

                 (12) 

This system connects predatory fish with the fisheries manager. The growth of 
predatory resources (1) is controlled by the fisheries manager (2)  

2) Numerical results  
Figure 5 shows that the monitoring stocks of predatory resources is a neces-

sity for a good management of fishing activity. This stock is the most important 
in this ecosystem sailor. The current dynamics of this family of resources is 
alarming. Fishery managers must monitor the behaviour of predatory resources 
at all times. by controlling their behaviour.  

System 3: fishermen/managers   
1)  

( )
( )

( ) ( )( ) ( )

1

1 2

0 0

(1)

(2)

0 , 0 , (3)

Z Z W

W W Z

Z W X W

η ξ

µ µ

 ′ = −
 ′ = −


=

                (13) 

This system connects fishermen and fisheries managers. This one allows for 
optimal maintenance of systems (11) and (12). 

The manager has the possibility to control the activities of the fishermen. This 
control must be based on the control of the seabed and fish stocks. The function 
(1) models the evolution of fishermen under control. 

Function (2) explains the behaviour of the manager in relation to that of the 
fishermen.  
 

 
Figure 5. Interaction between manager and predatory. 
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Figure 6. Interaction between managers and fishermen. 

 

 
Figure 7. Graphical solution of the prey, predator, human and man-
agement system. 

 
2) Numerical results  
Figure 6 shows, as in logic, that the control must be at the level of the tool or 

the field controlled. Fisheries managers must be vigilant in order to effectively 
manage the problem of sea fishing. The graph shows that a fairly large number 
of managers allow optimal management of the activity. The behaviour of the two 
types of compartments in the system through this graph shows perfect stability 
and periodicity. Figure 7 shows graphically the solution to the problem.  

4. Conclusion and Perspectives 

In this section, we have developed two models. It is a system three-variable dif-
ferential showing three different species interacting. This model has made it 
possible to describe the real consequences that threaten the human species if the 
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same abusively exploitative behaviour continues. The second model (11) is an 
optimisation of the use of resources under the watchful eye of the peaches. The 
role of the manager is crucial for the balance of the marine ecosystem, because 
he can act at all levels separately. This study has made it possible to see the poss-
ible disturbances in a system of predators and of prey interacting and in the 
presence of the human hand. For better management of small pelagic resources, 
the solution lies in adopting the same behaviour as the natural biological inte-
raction existing between predators and prey. 

In other studies we will be interested:  
• to the solution of the problem of fisheries management by graph theory; 
• the optimisation of demersal resource landings in the Senegalese EEZ. 
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