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1. Introduction

The earliest theory of optimal control was introduced by Lions [1].

Majority of the research in this field has focused on discussing the optimal
control problem by using several operator types (such as elliptic, parabolic, or
hyperbolic operators) [2]-[11], and by varying the nature of control (such as dis-
tributed control [6] [11] [12] [13] and boundary control [3] [5] [8]).

References [14] [15] were among the first studies that presented the control
problems of systems including infinite order operators. These problems were
then extended in different ways, such as for higher system degrees [16] [17], and
for parabolic and hyperbolic systems [14] [17] [18] [19] [20] [21].

Based on the theories proposed by Lions [1] and Dubinskii [22] [23] [24], the
distributed control problem with Dirichlet conditions for 2 x 2 non-cooperative
hyperbolic systems involving infinite order operators was discussed in a previous

study [13]; in this study, we extend this problem to cooperative hyperbolic sys-
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tems of the boundary type with Neumann conditions for different observation
functions.

The system can be defined as
o’y

ot i (1) a, Dy (x) = ay, (x) + by, (x)+ f; inQ,

62 > [ a .
St X (1) 0,0y (x) =en () + vy (x)+ £, Q.

‘a‘:O
Vi, ¥, =0, |x|—>oo, (1)
wl _, D _
ovl|y " ov s g2
1(%0)=y,0(x),  2(x0)=y,,(x) inQ,
oy, (x,0 oy, (x,0 .
I(T) = (x), % =Da (x) in Q,
where a, b, cand d are constant such that b,c¢>0.
(This implies that the system (1) is cooperative.)
oy, O
.y, €L, (Q)v %s%eLz(Q)v (2)

and Q=Qx]0,7[ with the boundaryas £=Tx]0,7].

The rest of this paper is organized into four sections. Section 2 presents the
Sobolev spaces of infinite order, which we refer to later in the paper. In Section
3, the state of the cooperative system with Neumann conditions is discussed. In
Section 4, the nascency and sufficient conditions for optimal boundary control
are derived. Finally, in Section 5, the formulation of the control problem for

boundary observation function is studied.

2. Necessary Spaces

The Sobolev spaces of infinite order operators, which are used in this study, have
already been presented in Reference [13]. We list them briefly below:

o HO(Q)=H"{a,.2}(Q)= {¢(x) cC(Q): Y, a, | < oo},
 The formal conjugate space to the space H” {a,,2}(Q) is defined as
H ()= H {a,21(Q) = v (x):w ()= 0, D, ()],

where y, e ’(Q) and Z;‘zoaa "D"‘y/a

2
<.
2

Then, we have the following chain:
s H*(Q)cI}(Q)cH " (Q),
e I’(0)=r (O,T,L2 (Q)) denotes the space of measurable functions

t— ¢(t),l IS ]O,T[ , such that ||¢||L2(Q) _ (_[OT"¢(I)"§ dt)g <o,

(1:8)=]; (/0 8(0) .

I} (Q) isa Hilbert space.
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e In a similar manner as that of I’ (Q), we obtain the constructed space
£ (0,7,H"(Q)) =L (H*(Q)), and the following chains:

. L(i Q)<L Q)L (1 (0)

Finally,
If

with the norm

o, - [Lm I

which is also a Hilbert space.

3. State of the System

(2(1 (@) < (£ (@) <(2 (1 ()

w(0,T)= {f e’ (H*(Q): % el’(H™ (Q))},

2
H*{a, ,2}(Q) + .[(o,T)

) 1/2
dr|
Ul {a, 2)(0)

We study the following 2 x 2 cooperative hyperbolic systems with Neuman con-

ditions:
0? .
szl + Ay, (x)=f, inQ,
ot
0? .
6;;2 +Ay,(x)=f, inQ,
V.3, >0, |x| > o0,
| |
ov, s & ov, s &2
Y (%0)=y,(x), »(x0)=y,(x) inQ,
oy, (x,0 oy, (x,0 .
%:ym(x)’ z(gt ) :yz,l(x) in Q,

with y,,y, e(L2 (H°° (Q)))z,% %6<L2 (H°° (Q)))2

ot ot

We have the following bilinear form:

7(1.5.8) = (47.6), V5.6 € I*(H" (0))

where A maps from (L2 (H°° (Q)))Z onto (L2 (Hf"O (Q)))2 ,and

A)_/(x):(Ayl,Ayz)=(Byl —ay, —by,,By, —cy, _dY2)a

. o 21 2 . . .
since B = z‘a‘:O(_l)‘ | a,D’* s an infinite order operator.

Then,

7(15.8) =5 [, X 0.0, (x) D, ()

lef=0

w23 a, DMy, (x) D, (x)dx

€ " lal=0
-] () (1) [, s (x)dh (1)
R () (e

(3)

(4)

(5)

(6)
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Lemma (1):
There exists a constant A,, 4, > 0, such that

SR AN o
that is, ﬁ(t,)_/,(g) is coercive on (L2 (Hoo (Q)))2 .
Proof:
We have
z(,3,¥ =—J‘ Z »(x ‘ dx+— J. z D‘a‘yz(x)rdx
‘a‘ 0
d
—;Iﬂyfdx—;fﬂyfdx—Znylyzdx
then,

—— d
ﬂ(t,y,y)+%.[gy12dx+—f yzzdx+2.[ »y,dx

2
Dy, (x) dx.

a, |D"y ()‘ dx+— Iuo

By the Cauchy Schwarz inequality, we have

7(6,7,7)+ Jyldx+—'f yade+2([ [nf dx) (fg|y2|2dx)l/2

2L Sapi (o @t l] Y,
b5 (R

2
DFy, () dr

Hence,

w34 2 2

L2 H*(0 )
Moreover, we assume that
_ _ _ 2
7(t.7.6)=7(1..5), V5.4 (L' (H"(Q))) -
Lemma (2):
By satisfying (7), system (3) has a unique solution:

7=(n0) (2 (57 (0)))
Proof: ,
Let ¥ =(y,,p,) > L(%) isdefined on (L2 (Hw (Q))) by

1 1 1 1
L(y/)z—j flt//ldxdt+—j glt//ldl"dt+—j J’zwzdxdt+zjzg2w2drdt

(8)
+— J- y11 ‘//1(xo dx+ I J’21 V’z(x O)dx
Vi ={y.v,} ( (" (0 )
Then, by the Lax-Milgram lemma, 3!y ={y,,} ( )2 such that
1( o — _
Z[?(J’pl/ll)] (& (yz"//z)] (t’y"//):L(l//) ©)
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— © 2
Vi ={w.wale(2(H7(0) -
Now, let us multiply system (2) by %l//1 and l1//2 as follows, and then in-
c

tegrate it over
1 j (6 Y

o’ 1
_J‘ [ Y2 By2 —cy (x) —dy, (x)}l//zdxdt = Z'[Q SLw,dxde.

1
(x —ay, (x)—by2 (x) y,dxdt =—| fiw,dxds,
bJe

Hence,

Tef&n, 1
1
I [ ]l// dxdt I ay, (x)+by, (x))y/ldxdt .[Qfll//ldxdt,

o’ 1
_J‘ ( Y2 + By, x)jl/lzdxdl - j (cy1 (x) +dy, (x))l//zdxdt = ngfzylzdxdt.
By applying Green’s formula, we obtain

o P o
=], a‘gl drdr +— j Za D!y, (x) Dy, (x)dx

oy, x,O 0
+Z'[Q]T)l/l ( dx J iy/ldl“dt + IQ(—%yl -y, (x)j w,dxdt

1
L 2w y,dxds +— jzaD‘“‘ , (%) Dy, (x)dx
cv? 6t2 a‘ 0 ’
1 9, (x,0) oy d
+ZJQTW2(x,O)dx+ijiy/2dZ+jQ —yl—zyz(x) w,dxdz
1
== jQ fow,dxdt.
¢

By summing the two equations, and from (6), (8), and (9), we obtain

1 ayl(x,O) 1, oy
ZJAQTV/I(X’O)dx-FZJ‘ZﬁWldE

1, oy, (x,0 1¢ 0
+ng%wz(x,0)dx+—fzﬁy/zd2

I)ﬁl l//l dex+ J.J’21 l//z(xO)dx

Then, we deduce that

5)/1 — 6)}2 —
ov, s & ov, s &2
oy, (x,0 oy, (x,0 .
lg, ) (), 2((% )y () ina.

DOI: 10.4236/0j0p.2021.101001 5 Open Journal of Optimization


https://doi.org/10.4236/ojop.2021.101001

A. H. Qamlo

Thus, Equation (9) is equivalent to system (2), thereby completing the proof.

4. Control Problem When the Observation Function Is Given
onQ

The space U = ( (= ) is the space ofcontrol i =(u,u,).

The state ¥ (it)=(( ( ) of the system is given by
the solution of
‘922 ) | By, () = av, (7) + vy (@) + fr» 0 O
L) gy, )= (@) s s (@) 1 5, im0
Jazl,y2—>0, |x|;>oo (10)

Y (x, 0,17) =Yio (x,LT), ¥, (x, 0,17) =20 (x, LT), xeQ

o, (x,O,LT) 3 oy, (x,O,ﬁ)
o (), ot

=y2,1(x), xeQ

ity s (2 (@) . 2022 (21 @)

The observation equation is given by
Z2(w)={z (@), (@)} =5 (@) = { (7)., (@)} (11)

The cost function is given by

()=, (0 @)=z, ) dede+ [ (3, (@)-2,.) dxdt+(1\_fﬁ,z7)(L2(z))z . (12)

where Z, ={z,,z,,} € (L2 (Q))z, and

— 2 2
N={N,N,} eﬁ((Lz(E)) (2 (2)) )
is a Hermitian positive definite operator:

(N i) > clji

,c>=0 (13)

Then, the control problem is to minimize /over U,,, which is a closed con-
vex subset of U = (L2 (Z))2 .

Le., to determine u such that

J(ﬁ):gt;dJ(v), v={v.n}.

Moreover, we have the following theorem:

Theorem 1:

Assuming that (7), (12), and (13) hold, 3! the optimal control = {ul,uz } elU,,
such that J(u)<J(v),vv ={v,v,} eU,, if the following equations and in-

equalities are satisfied:
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: gltz(ﬁ)+3pl () —ap, (&) —cp, () =y () -z, inQ
o’ p, (w
$+ Bp, ()~ bp, (@)~ dp, (it) = v, (i)~ z,, in©

p>p, =0 as|x|—>oo

p, ("7) -0 p, (ﬁ)
ov )

)2 (x,t,LT) =0, p, (x,t,ﬁ) =0, inQ

op, ()C,I,L_l) _ op, (x,t,t?) _0
o0 o

(14)
=0 onX

in Q

op, (x,0,w) op,(x,t,u)
L ,
o0 ot =L'(0)

(ﬁ(E)HVE,V—E)(

with p, (), p, (&) e I’ (Q),

s 20 (15)

together with (10), where i ={u,,u,} €U, and p(it)=(p,(ir),p,(ir)) is the
adjoint state.

Proof:

Since i ={u,,u,} is characterized by J'(#)-(v-u)=0, Vv ={v,v,}eU,,
which is equivalent to

I()T[(yl (@) =z, (V)-» (g))LZ(Q) +(y2 (i) =242 32 (V) =22 (ﬁ))LZ(Q)]dt

_ (16)
+(NE,V—L7)(L2(Z))2 >0.
Now, since
o 1 0 S 0,0 o) @)1 |
a|=0 LZ(Q)

+[ (pz (m,[i(—l)“ aaw}yz (@) e, (ﬁ)—dyxm} a,

(@)

where

AJ_’("_‘) = [[ i (_1)‘04 aaDzM J% (L_l)_ayl (a)_bh (E),

[i (-1)" aL,D“Jyz (it) -, (a)—dmm}

from (10), we obtain

(P A7) =, [(z (1 aawjpl(ﬁ)—ap] () (@) (a)] a

=0 2(0)

+ 0[( i (1) aaD“J p, (@) —bp, ()~ dp, (i), (a)] dt

=0 2(0)
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Thus,
Ap5(@) =4 (p @), p,(@))

:[i (1) 4,0 p () ap, (1) ep (),

|af=0

©

Z (_I)M aaDz‘a‘Pz (ﬁ)_bpl (17) —dp, (E)J

‘a‘:O

According to the form of the adjoint equation in [1] we have proved system (14).

Now, we transform (16) by using (14) as follows:

jj{azgltz(ﬁ) +{ i (—1)‘(1‘ aaDzaJH (b_l)_apl (ﬁ)—cpz (ﬁ)’% (v)_yl (E)J ds

=0 2()

+J.0T azl;z(ﬁ) * (i (_1)‘0" aaDz‘a‘ J )25 (17) —-bp, (17) —dp, (ﬁ)’yz (V) e (ﬁ)] d
2|=0 ()

+( _u,V—LT)(LZ(E))z >0.

Then, we obtain

I [pl (‘){57(2 (-1)" DDy (7)-» (ﬁ)} dr
0 2(@)
+_[()T—Q(P1 (@) 7 (v)-» (ﬁ))g(g) dr + J.OT _C(pz (@), (v)-» (ﬁ))Lz(Q) ds

o 2 )n0)| e J(O,T)[pl(m,wlz(r)dt

ov

2(r)

o [pz @ S e o <a>] ’
Q)

|a|=0
(2 (7). (7= (7)) p gy A [ (2 (). ()3 (1)) g
_J(o,T)[apgl(/ﬁ),yz (V)_YZ (ﬁ)j dt+-[(o,r)[pz (ﬁ)’ a(yz (\7)_)’2 (17))] dt
(1)

ov
+(]\_/ﬁ,7—t7)(L2(2))z > 0.

(1)

Using (10), we have

Ior(pl (i), —u, )Lz(l“) dr+ J‘Or(p2 (@),v, —u, )Lz(l') dt +( u,x_/—ﬁ)(Lz(z))z >0,
which is equivalent to

(ﬁ(ﬁ)+ﬁﬁ,7—ﬂ)<Lz(z))z 0.

Thus, the proof is complete.

5. Boundary Observation Function
2

Let us define the operator M € ,C((L2 (2)) (L2 (2))2) as follows:

DOI: 10.4236/0jop.2021.101001
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M()’(ﬁ)k) = M((yl (L7)|2 )’(yz (ﬁ)|2 )) - (Zl (LT)’ZZ (ﬁ)) = Z(’j) ;

therefore, Z (i) is the observation equationon .
The cost function J(v) is defined by

()= |y @), ~zs

2

2 7 —
2(z) +“y2 (i )|2 TEar| g +(Nva")(Lz(z))2 ,  (17)

2(
where N e E((L2 (2))2 ,(L2 (Z))z) is defined as in (13), and
2
z, = (Zm 245 ) S (L2 (2)) .
Then, the control problem is to minimize /over U,,, which is a closed con-
vex subset of U= (L2 (Z))2 , Le, to determine u =(u,,u,)eU, such that
J(u)<J(v).

Since the cost function (16) can be written as [14]
— — _ 2
J(v)= a(v,v)—2L(v)+||y(0)—zd||(L2(z))z ,

JueU, suchthat J(uw)<J(v), YweU,.
Based on the above considerations, we obtain the following theorem.
Theorem 2:
Assuming that (7), (13), and (17) hold, the optimal control

i =(u,uy)e (L2 (Z))Z is determined by the following systems:

o’ p, (ir)
or’

+(-A+q)p (u)—ap, (u)—cp,(¥)=0 inQ,

*p, (u _ _ — .
?tz( )+(—A+q)p2 (#)—bp,(w)—dp,(¥)=0 inQ,
pp, >0 as|x| oo,
= — (18)
6p1(u) - 8p2(u) -
TE _yl(“)|z ~Za TZ =¥, (”)|2 ~Za2>
p(x.T,0)=p,(x,T,u)=0 inQ,
op, (x, T,L?) _ op, (x, T,LT) _0 mO
ot ot '
with p, (&), p, () e’ (Hw (Q)), apla_(tu)’épza—gu) el (H°° (Q)) together with
(10) and (15).
Proof:
The optimal control u = (ul,u2 )e (L2 (Z))Z is described by [14]
J'(u)(v-u)=0, vweU,,
which is equivalent to
L0 @) =200 () =21 @) s o+ (02 @)= 20092 (F) =0 (@) | .

+(]VE,V—LT)(L2(Z))2 > 0.

According to the form of the adjoint equation in [1],
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2
gtgu)m*p(ﬁ):o inQ
@;(VL_{) :y(ﬁ)—zd onZX

Then, by using theorem 1, we have a unique solution p(u)e (LZ (Hw (Q)))2 ,

which satisfies p, (i), p, () € I’ (H°° (Q)), @maf(tu)’@pza_gu) el (Hw (Q)) :
This proves system (18).
Now, from (20) and (18), we have

(2 @on@] a2 0000

ov 2(r) 1%

+(Na,v-a)(L2 o >0.

Using the Green formula, we obtain

IT(PI(LT),G%(V)‘MJ dHIf(Pz(ﬁ),ayz—(V_)‘ayz—@J d
2(r) 2(r)

0 ov ov ov ov

Using (10), we have
jor(pl (E)’Vl —U )Lz(l“) dr+ .[or(pz (LT)’VZ —U )Lz(l') dr +(

which is equivalent to

Thus, the proof is complete.

6. Conclusions

In this paper, we have some important results. First of all, we proved the exis-
tence and uniqueness of the state for system (2), which is (2 x 2) cooperative
hyperbolic systems involving infinite order operators (Lemma 2). Then, we
found the necessary and sufficient conditions of optimality for system (10) that
give the characterization of optimal control (Theorem 1). Finally, we studied the
control problem when the observation function is given on the boundary
(Theorem 2).

Also, it is evident that by modifying:
¢ the nature of the control (distributed, boundary),
e the nature of the observation (distributed, boundary),
¢ the initial differential system,
e the type of equation (elliptic, parabolic and hyperbolic),
e the type of system (non-cooperative, cooperative),

o the order of equation.
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Many of variations on the above problem are possible to study with the help

of Lions formalism.
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