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Abstract

In this work, we will discuss Caristi’s fixed point theorem for mapping results
introduced in the setting of normed spaces. This work is a generalization of
the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points
theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and
Amini-Harandi’s results, we developed ideas that many known fixed point
theorems can easily be derived from the Caristi theorem.

Keywords

Norm, Uniformity, Mizoguchi and Takahashi’s, Rich’s Problem, Caristi’s
Fixed Point Theorem, Strong and Weak Contraction, Semi-Continuous

1. Introduction

This work was motivated by some recent works on Caristi’s fixed point theorem
for mappings defined on metric spaces with a partial order or graph. It seems
that the terminology of graph theory instead of partial ordering gives clearer
pictures and yields generalized fixed point theorems. The Caristi fixed point
theorem is known as one of the very interesting and useful generalizations of the
Banach fixed point theorem for self-mappings on a complete normed space. The
Caristi’s fixed point theorem is a modification of the e-variational principle of
Ekeland ([1] [2]), which is a crucial tool in nonlinear analysis like optimization,
variational inequalities, differential equations, and control theory. Furthermore,
in 1977, Western [3] proved that the conclusion of Caristi’s theorem is equiva-
lent to norm completeness. In the last decades, Caristi’s fixed point theorem has
been generalized and extended in several directions (Ze. [4] [5] and the related

references therein). Here at present, we discussed Caristi’s fixed point theorem
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in normed spaces where Caristi’s fixed point theorem was in matric space [6].

2. Preliminaries

We will discuss some applications of Caristi’s fixed point theorem in complete

normed space.
Theorem-1 [7]

Let (X,",”) be a complete normed space, and let 7:X — X be a map-
ping such that for

|x—Tx| < (x)—¢(Tx),Vxe X .

where ¢:X —[0,0) isalower semi-continuous mapping. The 7 has at least a
fixed point.

We denote by Nthe set of positive integers and by R the set of real numbers.

Let (X," ,”) be a complete normed space.

We denote by CB(X) the family of all no-empty closed and bounded sub-
sets of X.

A function H :CB(X)xCB(X)—>[0,).

Defined by H||4- B||=max {sup |x—A||,sup|jx— B} is said to be Housdorff
xeB xed

norm on CB(X) induced by the norm | || on X.
A point vin Xis a fixed point of a map 7if v=Tv (when T:X > X is

a single-valued map), or veTv (when T:X —>CB(X ) is a multi-valued
map).

Let (X, ") be a complete normed space and a map T :X — X . Suppose
there exists a function ¢:[0,00)—[0,00) satisfying ¢(0)=0, ¢(s)<s for

5>0 and suppose that ¢ is right upper semi-continuous such that

|7x —Ty||< ¢|x— y|, Vx,y € X . Then Thas a unique fixed point.
Problem-1 [8] [9] [10]

Let (X, ||) be a complete normed space and let 7:X — CB(X) be a
multi-valued mapping such that H(Tx—Ty) < /1(")6 - y”) .

Forall x,ye X, where 4:R"— R" iscontinuous and increasing map such
that 4 (¢)<t, Vt>0.Does Thave a fixed point?

In these works, the authors consider additional conditions on the mapping
M to find a fixed point.

1) Daffer et al assumed that x:R* — R*

i) 4 isupper right semi-continuous;

i) p(r)<t,vi>0 and;

iii) ,u(t) <t—at” where a>0,1<b<2 onsome interval [0,s], s>0.

2) Jachymski assumed that z:R™ — R*

i) p issuperadditive ie. p(x+y)>pu(x)+u(y),vx,yeR" and;

ii) +—>¢—u(t) is non-decreasing.

Problem-2 [11]

Let (X," ||) be a complete normed space and let 7: X — CB(X) be a map-
ping such that H ||Tx - Ty" <n (”x - y")"x - y" .
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Forall x,ye X ,where 7:(0,+0)—[0,1) isa mapping such that
limsupn(r)<1.

rt*

Forall re(0,+wx).Does Thave a fixed point?
Theorem-2 [12]

Let (X," ||) be a complete normed space and let 7: X — CB(X) be a map-
ping such that H||Tx - Ty|| < 77(||x—y||)||x - y|| .

Forall x,ye X ,where 7:(0,+0)—[0,1) isa mapping such that
limsupn(r)<1.

r>t’

Forall re(0,+).Then Thas a fixed point.

Normed Spaces [13]

A normed on Xis a real function |[e|: X — R defined on X such that for any
x,yeX andforall 1eK.

i) |x|=0.i) [x|=0 ifandonlyif x=0.iii) |Ax]|=|A/|x]-

iv) |Jx+ | <|]x]|+[ly] (Triangle inequality).

A norm on X defines a metric don X which is given by

d(x,y)z"x—y ;x,yeX

and is called the metric induced by the norm.

The normed space is denoted by (X ,"0”) or simply by X.

3. Further Extension

In this section, many of the known fixed point results can be deduced from light

version of Caristi’s theorem in normed space.
Theorem-3

Let (X, ,") be a complete normed space, and let 7: X — X be a mapping
such that for

||x—y|| < ¢(x,y)—¢(Tx,Ty), Vx,ye X.

where ¢: X xX —[0,00) islower semi-continuous with respect to the first va-
riable.

Then T has a unique fixed point.

Proof:

Foreach xe X' ,let y=Tx and y(x)=¢(x,Tx). Thenforeach xe X .

||x—Tx||Sl//(x)—l//(Tx) (1)

and ¥ is alower semi-continuous mapping.

If X is a normed space and T: X — X is a mapping, then
||x—Tx||S¢(x)—¢(Tx), Vxe X 2)

where ¢: X —[0,00) is alower semi-continuous mapping? And 7'has at least a
fixed point.

Comparing Equations (1) and (2), then we get 1//:X—>[O,oo) is a lower
semi-continuous mapping and 7'has a fixed point.
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Let u, vbe two distinct fixed points for 7

Now we will prove that the uniqueness of the fixed point 7.e. u= v
b=y < @(u,v) - ¢(Tu, Tv) = $(u,v) - p(u,v) =0
= ||u - v" <0
re.u—v=0

S u=m.

Hence Thas a unique fixed point.

3.1. Banach Contraction Principle

Theorem-4 [14]
Let (X , ) be a complete normed space, and let 7: X — X be a map-
ping such that for some « €[0,1), ||Tx Ty|| < |a|||x y|| Vx,yeX.
Then T'has a unique fixed point.

2

Proof: We define ¢(x,y) " ) . Then we have

1-lo]”
(1=l )=yl < =] -7 -3
It means that

el ool
b e

=[x =y <o (x,y)—¢(Tx.Ty)
=[xy <4(x.y)-¢(x.»)

= e <0
re.x—y=0
=>x=y.

Hence Thas a unique fixed point.
Theorem-5

Let (X , |) be a complete normed space, and let 7: X — X be a mapping
such that

>

o1y < 3], ey e X

where 7:[0,+00) —[0,%0) is lower semi-continuous mapping such that

t
n(t)<t, for each ¢>0 and # is a non-decreasing map. Then 7 has a

unique fixed point.
Proof:
|~
Define ¢(x,y)=—
SR e

=1

if x#y andotherwise ¢(x,x)=0.Then we

have
|7 =Ty <[m[lx - 5]
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= =[x =7z =[x - ¥
= [ = A =7 =1 2 = A =l - ]

nyx—-y
- ||{ '"'” "”}||x—y||—||rx—ry||

:>"x_y”£"x_y”_"Tx‘Ty”
il
=1
= =< - |7x -3
o
o
Since |77§t)| is non-decreasing and ||Tx— 7y <|Jx— |
. =yl -1
— < —
A e A4
=1 k=1
=[xy < (xy)-¢(x.)
:>||x—y||£0
Sx—y=0
=>x=y

Hence Thas a unique fixed point.
Theorem-6

Let (X ,
non-expansive mapping such that, for each x€ X, and for all y e Tx, there
exists zeTy such that |x—y|<@(x,y)-¢(y,z) where ¢:XxX —[0,00)
is lower semi-continuous mapping w. r. to the first variable. Then 7T has a fixed

|) be a complete normed space, and let 7:X — CB(X) be a

>

point.
Proof:
Let x,€X and x, €Tx,.If x, =x,,then x, isa fixed.
Now we will prove that T"has a fixed point.
If x,#x,3x, €Tx, such that

||x0—x1||S¢(x0,xl)—¢(xl,x2) 3)

Alternatively, we choose x, € Tx, , suchthat x, =x,_, and we find

x,,, € Tx, such that

n

0< ||xnf1 —

S¢(xn71,xn)—¢(xn,xn+l) (4)

which means that {¢(xn_1,xn )}n is a non-increasing sequence and bounded

xn

below. So it is convergesto r>0.

From Equation (4), then we get
>0 (5)

X X

n-1" n

Taking the limit in Equation (5), then we get,

X 71_xn =O:>‘xnfl =xn (6)

n
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Also forall m,ne N with m>n

m m
5 2 el < 2 [A(xx) =9 (5x )]
i=n+

i=n+l1

=

‘xn _xm"S¢(xn’xn+1)_¢(xm’xm+l) (7)
Taking the limit sup on both sides in Equation (7), then we get,

tim {sup|fx, =, | < (%, %,.1) =6 (%, )}

:>{sup xn—xm||:m>n:0}
n—>0

It means that {x,} isa Cauchy sequence and so it convergesto xe X
Now we will prove that xis a fixed point of 7.
=7 < e =5+

+ ||Txn - Tx"

Xl _Tx"

n+l

=|x-x

< "x - xn+l

+|A||[x, —x|| [Using (6)]

=[x +|2

x, — x|

||x —Tx" < ||x -X,

+|4

X, — x" (8)
Taking the limit on both sides in Equation (8), then we get,
x—Tx=0+|4]-0
=x-Tx=0
=>Tx=x
Hence T has a unique fixed point.
Theorem-7

Let (X, |) be a complete normed space, and let 7:X — CB(X) be a
multi-valued function such that

>

H(Tx,Ty) < |77|||x—y||, Vx,ye X

where 7:[0,00) —[0,0) isalower semi-continuous map such that
t
n(t)<t,Vte(0,+0) and # is a non-decreasing. Then T has a fixed point.
Proof:
Let x€eX and yeTx.If y=x,then Thas a fixed and the proof is com-
plete.
We suppose that y # x. Then we define

0(t)= n(t2)+t , Vte(0,+x)
Since
H (Tx, Ty) <|nlx =y <[0]}x = ] <[x~¥] ©

Thus there exists & >0 such that
|6’|||x—y||SH(Tx,Ty)+g (10)
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So there exists z €Ty such that
|v—z||< H#(Tx,Ty)+& [Using (10)]

=|6||x-y| [Using (9)]
<|x-
[y ==l <=1
Again, we suppose that y # z, then we have

be=sl=lellx =< > =1y ==

= [ =y(1=16f) < =]y -] (11)
<=yl -]
:>||x y”S 16|

0
[Since Tt is also a non-decreasing function and ||y - z|| < ||x —y|| ].

[>=1

Define ¢(x,y)= -

if x# y,otherwiseOforall x,yeX.

From Equation (3), then we get,
o=yl < (x.5)-4(r.2)
= =< 4(x.5)-¢(Tx.7y)
= |x-y|<é(x.y)-¢(x.y) [.yelxandzely]
=>x-y=0
=S>x=y

Hence Thas a unique fixed point.

3.2. Mizoguchi-Takahashi’s Type

Theorem-8
Let ( X,

multi-valued mapping such that

H (T5,79) <ol (Jx = y])x =] ¥x.v e X

|) be a complete normed space, and let 7:X — CB(X) be a

b

where 7:[0,00) —[0,1) is a lower semi-continuous and non-decreasing map-
ping? Then T'has a fixed point.

Proof:

Let xeX and yeTx.If y=x,then T has a fixed and the proof is com-
plete.

Let O(t)=n(t)t,0(t)<t,VteR, and Tz?](t) is a non-decreasing

mapping. Since,
(Tx=1y) <[l (o= ¥l |x = o = 0 ()= ¥ <[ =51 (12)
Thus there exists & >0 such that

|9(t)|||x—y||SH(Tx,Ty)+€ (13)
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So there exists z e Ty such that
||y—z|| < H(Tx,Ty)—i—g [Using (13)]

=|0(e)lx- | [Using (12)]
<[l-y]
|y =zl <[x-»] (14)

Again, we suppose that y # z, then we have

= yl=lo @k =< == ly-4

= e =(1-[0 ()]} < e =]~y ] (15)
sl
= [x—yf| < 207 =
ST
o(t
[Since - is also a non-decreasing function and ||y —z|| <|jx—y| .
ol .
Define ¢(x,y) =7 |9(t)| if x#y,otherwiseOforall x,ye X .

From Equation (15), then we get,

lr=yl<é(x.r)-¢(2.2)
==y <¢(x.r)-¢(Tx.17)
:>||x—y||£¢(x,y)—¢(x,y) [.yeTxand zeTy]
=>x—y=0
=S>x=y

Hence Thas a unique fixed point.

Theorem-9

Let (X,

multi-valued functions such that

H (75 7y) <[l =y =[] = ] ¥x.» € X

|) be a complete normed space, and let 7:X — CB(X) be a

>

where 6:(0,00) —(0,00) is an upper semi-continuous map such that
o(t
Vi e (0,4) and ¥ is a non-increasing. Then 7T'has a fixed point.
Proof:
Let xe X and yeTx.If y=ux,then Thasa fixed and the proofis complete.
Let 5(t)=t—6(t), for each t>0. Then p(r)<r, for each >0 and
20 _,_60)

is a non-decreasing. Since
t t

0
H (Tx,Ty) < ||x—y||—‘7

0
pe-st< (12

Jle=t
(16)

:>H(Tx,Ty)< @

e =sl<lx=]

Thus there exists & >0 such that
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My (e ) (17)

So there exists z € Ty such that

||y—z|| SH(Tx,Ty)+g = @ ||x—y|| [Using (17)]

< ||x—y|| [Using (16)]
= [y =zl <[x-» (18)

Again, we suppose that y # z, then we have

n(t
I L W
nit
o o170 et
:>"x_y||s||x—y||—||y—i|| (19)
70
t
ool l—d
= |x—y|< —
" " 1_‘77(0 1_77(f)
t t

[Since 7(¢) is non-increasing function and ||y —z| < [x—y|].

[

Define ¢(x,y)=
( ) 1_ ﬂ(f)
t

if x# y,otherwiseOforall x,yeX.

From Equation (19), then we get,

[x=yl < (x.5)-4(r.2)

= =] <4 (x.y)-9(Tx.Ty)
:>||x—y||£¢(x,y)—¢(x,y) [.yeTx and z e Ty]
=>x-y=0

=>x=y

Hence Thas a unique fixed point.

4. Remark

1) If y:[0,40)—[0,+0) is sub-additive ie. y(x+y)<y(x)+y(y), for
each x,ye[0,+%), then it is a non-decreasing continuous map such that

-1
77 ({0}) = {0}

2) Here we show that many of the known Banach contraction generalizations
can be deduced and generalized by Caristi’s fixed point theorem in normed

space and its consequences.
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5. Conclusion

Our aim is to discuss the Caristi’s fixed point theorem on normed spaces. We
hope that this work will be useful for functional analysis related to normed
spaces and fixed point theory. All expected results in this paper will help us to
understand better solution of complicated theorem. We give an important ap-
plication and use the fixed point theory related to different branches of mathe-
matics for the solution of physical problems. In future, we will discuss Caristi’s

fixed point properties related to physical problems.
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