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Abstract 
In order to deal with unmodeled dynamics in large vehicle systems, which 
have an ill condition of the state matrix, the use of model order reduction 
methods is a good approach. This article presents a new construction of the 
sliding mode controller for singularly perturbed systems. The controller de-
sign is based on a linear diagonal transformation of the singularly perturbed 
model. Furthermore, the use of a single sliding mode controller designed for 
the slow component of the diagonalized system is investigated. Simulation 
results indicate the performance improvement of the proposed controllers. 
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1. Introduction 

The design requirements for high precision and high maneuverable missile, need 
it to be slender and long. Using light weight material and thin wall structure to 
design the motor for these long and thin missiles induced elasticity in the body. 
The rigid body model does not satisfy the needs of precision controller. Singular 
Perturbation analysis is used by many researchers to overcome such a problem  
[1] [2] [3] [4] where the fast state variables are the elastic forces and their time 
derivatives. Singular Perturbation theory first appeared in mathematical litera-
ture then in control literature. Many books and research papers are found in this 
direction, the most famous are the books by Kokotovic [3] and Nadiu [4]. 

The use of sliding mode control for singularly perturbed systems is explored. 
A number of articles have been published on this topic. Slotine [5] [6] proposed 
one of the earliest attempts by applying his sliding mode tracking control algo-
rithm to a robot in singular perturbed form. Heck [7] also introduced sliding 
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mode control for a singular perturbed system. Heck [7] used two sliding mode 
controllers, one for each of the fast and slow subsystems. Alvarez-Gallegos [1] 
introduced an approach to find a maximum value of the perturbation parameter 
ε* when two sliding mode controllers are used for the full order singularly per-
turbed system. Alvarez-Gallegos [1] uses the Lyapunov approach that was in-
troduced by Kokotovic [3]. These articles propose to design two separate sliding 
mode controllers for the fast and slow subsystems. The singularly perturbed sys-
tem is separated into slow and fast modes by using quasi steady state techniques. 
The result is separate dynamic models for the fast and slow states, the literature 
proposed designing sliding mode controllers for the slow and fast modes. The 
difficulty with this method is that the quasi steady state model is only an ap-
proximation of the dynamics of the true full order systems. 

We propose, in this article, to transform the full order singularly perturbed 
system into block diagonal form [8]. Based on the transformed systems we con-
struct the slow and fast sliding mode controllers. We compare the performance 
of the sliding mode controller designed based on the quasi steady state approxi-
mation of the dynamics to the sliding mode controllers designed based on the 
block diagonal transformation. It is shown that sliding mode control design based 
on the transformed system has superior performance. 

We also investigate the design of a single sliding mode controller for the full 
order system. This single sliding mode controller is designed based on the slow 
dynamics of the transformed system, the fast dynamics are considered as un-
modeled high frequency dynamics. 

The outline of this paper is as follows. Section 2 describes the singularly per-
turbed system and the appropriate transformations. Section 3 illustrates the sliding 
mode controller design for both reduced subsystems obtained using the diago-
nalization method. Section 4 describes the design of a single sliding mode con-
troller for the full order system. Section 5 shows the simulation results. 

2. Problem Formulations 

The system considered in this paper may be represented in the following form, 

11 12 1x A x A z B u= + +                         (1) 

12 22 2z A x A z B uε = + +                        (2) 

where nx R∈ , mz R∈ , ru R∈  and ε is a small positive parameter. This is a 
form for standard linear time invariant singularly perturbed systems. Due to the 
high dimensionality of the full order system, singular perturbation theory is useful 
in decoupling the system into two reduced order subsystems considering the fact 
that fast modes are important only during a short initial period. After that pe-
riod they are negligible and the behavior of the system can be described by its 
slow modes. The model with fast modes neglected is called the quasi steady state 
model (or zeroth order model) [3] [9]. Neglecting the fast modes is equivalent to 
assuming that they are infinitely fast, that is setting the perturbation parameter ε 
in (2) to zero. Without fast modes the system described by equation (1) and (2) 
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are reduced to,  

1 11 12 1x A x A z B u= + +

                           (3) 

21 1 22 20 A x A z B u= + +                         (4) 

where ,x z   and u  are tracking vector error. 
Thus we can get the following reduced system [9] [10], 

0 0s sx A x B u= +                           (5) 

where 1
0 11 12 22 21A A A A A−= −  and 1

0 1 12 22 2B B A A B−= −  
The system (5) is called the zeroth order model and is an approximation of the 

slow varying state of the full order system. Assuming that the slow variables are 
constant during fast transients i.e. 0z =  and 1 constantsx x= =  thus the ap-
proximated fast subsystem for the system given by Equation (1) and (2) can be 
defined as, 

22 2f f fx A x B uε = +                         (6) 

The eigenvalues of A0 are good approximations of the slow modes of the full 
order system for sufficiently small ε [1] [11]. It is possible to design a controller 
based on the quasi steady state model to stabilize the full order system for suffi-
ciently small ε. However, for real systems the perturbation parameter ε is not 
zero. Validation problems for the zero order model arise where for a certain 
value of ε, the zero order model can be stable while the slow modes of the origi-
nal system are unstable  [1] for this value of perturbation parameter ε. To over-
come this problem, we introduce the diagonalization method [11]. This can be 
achieved by using two stage linear transformations. The first stage is to use the 
transformation,  

( )fx z L xε= +                           (7) 

This transforms the system described by Equations (1) and (2) into upper block 
diagonal form as shown in Equation (8) 

( )
11 12 12 1

22 12 2 1f f

x xA A L A B
u

x xR L A LA B LBε ε
−      

= +      + +     





          (8) 

We required that matrix L satisfy 

( ) 21 22 11 12 0R L A A L LA LA Lε ε= − + − =                 (9) 

Then using the second stage of transformation 

1s fx x Mx= −                        (10) 

To obtain,  

( )
0

s s ss

f f ff

x x BA S M
u

x x BA
      

= +      
      





                (11) 

where 1 2 1sB B MB MLBε= − − , 2 1fB B LBε= + , 11 12sA A A L= −  and  

22 12fA A LAε= + , also we required that n m×  matrix M satisfies the linear al-
gebraic equation, 
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( ) ( ) ( )11 12 22 12 12 0S M A A L M M A LA Aε ε= − − + + =         (12) 

Thus the system has the required block diagonal or decoupled form, 

0
0

s s s s

f f f f

x A x B
u

x A x B
       

= +       
       





                  (13) 

where the slow and the fast variables sx  and fx  can be solved independently 
of each other. The eigenvalues of As are exactly the same as the slow poles of the 
original system. Similarly, the eigenvalues of Af are the same as the fast poles of 
the full order model. The matrix L is dependent on the perturbation parameter, ε. 
Letting 0ε →  gives us 1

0 22 21L L A A−= =  which transforms the diagonal model 
into the same as the quasi steady state model ( 0sA A= ). Changing the value of 
the perturbation parameter ε to a considerable value and checking the difference 
between the eigenvalues of As and A0 gives us an indication if the quasi steady 
state is a valid approximation or not. One may expected that if As is very sensitive 
to the value of ε then using A0 instead of As may cause large errors in the ap-
proximation of the slow poles of the original system. Similarly, if A21 and A22 are 
dependent on ε, the approximation of the fast system where we put 22fA A=  
may lead to an unstable system or increase the steady state error of the closed 
loop system. 

Based on the pervious analysis the diagonalization method must be used in-
stead of quasi steady state to decouple the full order system especially when the 
quasi steady state fails to describe the stability properties of the full order model 
correctly. 

Equation (9) and (13) is an asymmetric Riccati equation which need special 
procedure to be solved reader can found more detail in the literature [9] [10]. 

3. Sliding Mode Controller Design 

In this section we will design sliding mode controllers based on the reduced sub-
systems obtained from transforming the systems into block diagonal form. This 
is different from the methods proposed in the literature [6] [12] [13] [14] [15] 
that design the sliding mode controllers based on the quasi steady state ap-
proximation of the slow and fast modes. The design of the sliding mode con-
trol for the full order system is done in two stages. First, design a slow control-
ler based on the slow subsystem. Second, design fast controllers based on fast 
subsystem, then, use the composite of these controllers to control the full or-
der model. 

3.1. Slow Sliding Mode Control Design 

The slow sliding mode controller is designed using the slow reduced order 
model in (14). The equivalent control method [3] is used to design such a 
controller. We define the linear switching surface as s s sS C x= . The equiva-
lent control law ensures that the system remains on the sliding surface and it 
has the form, 
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( ) 1
eq s s s s su C B C A x− = −                      (14) 

Using this control law in the slow subsystem obtained from the block diago-
nalized reduced system (14) we then obtained, 

( ) 1
eqs s s s s s Sx I B C B C A x− = −                  (15) 

To guarantee local stability for this controller we must ensure that the eigen-
values of the equivalent system given by equation (16) have negative real parts. 
A Lyapunov function is used to determine the discontinuous control law (uN) 
that will satisfy the reaching condition [7] [16]. This will ensure the global 
asymptotic stability of the closed loop system. The control law will have the 
form, 

( ) ( ) ( )1 1
1 sgns eq N s s s s s s s su u u C B C A x C B Sη− − = + = − −        (16) 

where uN is a discontinuous control action that drives the state to the sliding 
surface. 

3.2. Fast Sliding Mode Controller Design 

The same argument used to design the slow sliding mode controller can be used 
to design the fast sliding mode controller. Define the linear fast switching surface 

f f fS C x= . The equivalent control method is used to determine the control law 
for the fast subsystem given by Equation (14). The control law is given by, 

( ) ( ) ( )1 1
22 2 sgnf f f f f f f fu C B C A x C B Sη

− − = − −  
        (17) 

which ensures global asymptotic stability for fast subsystem. The control law for 
the full order model will be the composite of the slow and fast controllers as fol-
lows, 

( ) ( )s s f fu u x u x= +                       (18) 

Since the eigenvalues of the reduced order subsystems is the same as the full 
order model this means that the linear transformation preserves the stability 
condition for the closed loop system, and taking the stability analysis proposed 
by Kokotovic [3] into account, we could say that the full order model is globally 
stable for *0,ε ε ∈    almost everywhere given that * 0ε > . 

4. Slow Sliding Mode Controller for the Full Order Model 

In this section, a single sliding mode controller is proposed to control the full 
order model. The idea is to use the robust properties of the sliding mode con-
troller to counter the effects of the unmodeled high frequency dynamics. We will 
consider that the unmodeled high frequency dynamics are represented by the 
fast subsystem. The main assumption is that the matrix A22 is stable while the 
full order model given by Equation (1) and Equation (2) may be unstable at 
some specific value of ε. The surface parameter for the single sliding mode con-
troller is chosen based on Slotine’s [6] [17] [18] approach. The sliding surface 
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has the form,  
1d

d

n

J sS x
t

λ
−

 = + 
 

                        (19) 

where λ is the bandwidth of the system [5] and is taken to be smaller than the 
lowest frequency of the fast subsystem. The control law is chosen based on an 
equivalent control method and has the following form, 

( )
1 1

1 sgnJ J J
J s s s s J

s s s

S S S
u B A x B S

x x x
η

− −    ∂ ∂ ∂
 = − −   ∂ ∂ ∂     

       (20) 

An advantage of using the proposed controller is that the control law in this case 
will depends only on the slow state. As a result there is no need for measurement 
of the fast state, which is usually difficult to measure.  

5. Illustrative Example 

Sliding mode controller used usually in missiles and spacecraft [15] [19]. How-
ever, in analyzing the dynamics of flexible missiles, such as intermediate-range 
ballistic missiles or intercontinental ballistic missiles, it is convenient to use sin-
gular perturbation analysis. Since all detailed information on missiles is classi-
fied, we will use a simple example which suffers from flexibility to show the im-
portance of our study. 

Consider a magnetic tape control system [8] given by 

1 1

2 2

1 1

2 2

0 0.4 0 0 0
0 0 0.345 0 0
0 0.524 0.465 0.262 0
0 0 0 1 1

x x
x x

u
z z
z z

ε
ε

      
      
      = +
      − −
      

−      









         (21) 

1

2

1

2

1 0 0 0
0 0 1 0

x
x

y
z
z

 
    =     
 
 

                     (22) 

This can be put in standard singularly perturbed form as, 

11 12 1x A x A z B u= + +  

12 22 2z A x A z B uε = + +  

where  

11

0 0.4
0 0

A  
=  
 

, 12

0 0
0.345 0

A  
=  
 

,  

12

0 0.524
0 0

A
− 

=  
 

, 22

0.465 0.262
0 1

A
− 

=  − 
 

1

0
0

B  
=  
 

, 2

0
1

B  
=  
 

 and 0.1ε =  

The first 2 × 2 transformation matrix L has to satisfy, 

( ) 21 22 11 12 0R L A A L LA LA Lε ε= − + − =               (23) 
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This gives us the value of L as,  

0 1.2412
0 0

L  
=  
 

                       (24) 

The second 2 × 2 transformation matrix M has to satisfy 

( ) ( ) ( )11 12 22 12 12 0S M A A L M M A LA Aε ε= − − + + =          (25) 

Similarly this gives us the value of M as, 
0.0862 0.0325
0.9094 0.2489

M  
=  − − 

                   (26) 

The slow subsystem is given by,  

s s s s sx A x B u= +  

where 11 12

0 0.4
0 0.4282sA A A L  

= − =  − 
 and 

0.0325
0.2489sB
− 

=  
 

 

The fast subsystem can be described by, 

f f f f fx A x B u= +                       (27) 

where 
0.4222 0.262

0 1fA
− 

=  − 
 and 

0
1fB  

=  
 

 

We notice that the eigenvalues of the reduced system are the same as the ei-
genvalues of the full order model. We design two sliding mode controllers based 
on the slow and fast subsystems. For the slow subsystem the control law will be, 

[ ] ( )0 0.4442 4.839sgns s su x S= −                (28) 

For the fast subsystem the control law is, 

[ ] ( )1.2665 0.214 2sgns f fu x S= − − −              (29) 

The control law for the full order model will be the composite of the slow and 
fast controls as follows: 

( ) ( )s s f fu u x u x= +                       (30) 

Figure 1 illustrates the closed loop time response of the full order system. It is 
observed that the absolute value of the error between the desired response and 
zeroth model response is larger than the absolute error between the desired re-
sponse and the proposed model response based on diagonalization. The differ-
ence in the error can be four times larger.  

Since the fast subsystem is stable then based on the decoupled reduced order 
system we will design a sliding mode controller for the slow subsystem. The fast 
subsystem will be considered as unmodeled high frequency dynamics. Choosing 
the surface parameter as, 

[ ]2 1sC =  

the control law will have the form, 

[ ] ( )0 2.0217 5.4337sgns s su x S= −               (31) 

Figure 2 illustrates the closed loop time response of the full order system using 
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(a) 

 
(b) 

 
(c) 

Desired response
Quasi S. S. response
Diagonalization response
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(d) 

Figure 1. (a) Full order closed loop response for two sliding mode controller (Slow state); 
(b) Full order closed loop response for two sliding mode controller (Slow state); (c) Full 
order closed loop response for two sliding mode controller (Fast state); (d) Full order 
closed loop response for two sliding mode controller (Fast state).  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 2. (a) Full order closed loop response for single sliding mode controller (Slow 
state); (b) Full order closed loop response for single sliding mode controller (Slow state); 
(c) Full order closed loop response for single sliding mode controller (Fast state); (d) Full 
order closed loop response for single sliding mode controller (Fast state); (e) Full order 
closed loop response for Two and single sliding mode controller (Control Signal). 

Two SMC
Single SMC
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a single sliding mode controller. It is shown that it is possible to use one sliding 
mode controller to control the full order model for singularly perturbed system 
given that the fast subsystem is stable and we choose the right surface parame-
ters that do not cause excitation of the fast subsystem.  

6. Conclusion 

Two sliding mode controller designs for singularly perturbed systems have been 
proposed. The designs are based on a block diagonal transformation of the sys-
tem into fast and slow subsystems. The first design method proposes using two 
separate sliding mode controllers, one for the slow subsystem and a second for 
the fast subsystem. Simulation results indicate improved performance in com-
parison to previously published design methods since the errors which are pro-
duced during the decoupled process have been avoided. In the second proposed 
design method a single sliding mode controller is designed only for the slow 
subsystem and the fast subsystem is considered as high frequency unmodeled 
dynamics. These allow us to avoid measuring fast state, which is usually difficult 
to measure. Simulation results indicate good performance where the proposed 
controllers have less control effort compare to dual controller used before. 
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