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Abstract 
Using a model anharmonic oscillator with asymptotically decreasing effective 
mass to study the effect of compositional grading on the quantum mechanical 
properties of a semiconductor heterostructure, we determine the exact bound 
states and spectral values of the system. Furthermore, we show that ordering 
ambiguity only brings about a spectral shift on the quantum anharmonic os-
cillator with spatially varying effective mass. A study of thermodynamic 
properties of the system reveals a resonance condition dependent on the 
magnitude of the anharmonicity parameter. This resonance condition is seen 
to set a critical value on the said parameter beyond which a complex valued 
entropy which is discussed, emerges. 
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1. Introduction 

In material science, the electron effective mass *m  is the mass, it appears to 
have when probed in the periodic potential of a crystal lattice. The quantum 
mechanical description of this phenomenon is furnished by the effective mass 
approximation which is the Schrödinger equation given by:  
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2 cU x x E E r x
m

φ φ
 
− ∇ + = −    
 

             (1) 

wherein ( )cE x  is the variable conduction band edge energy, ( )rφ  is the 
envelope function and ( )U r  some potential energy function which might be 
due for instance, to an impurity in the crystal. Describing impurities in crystals 
was the initial purpose of the Effective Mass Theory at its birth in the 1940s [1]. 
These days, one resorts to it especially in the study of electronic properties of 
semiconductors [2] [3], quantum wells [4] and quantum dots [5]. In composi-
tionally graded crystals and heterostructures such as AlδGa1-δ/GaAs/AlδGa1-δAs 
quantum well (δ  being the mole fraction of the Al constituent in the growth 
direction of the structure), the effective mass becomes position-dependent and 
the need to do the replacement ( )*m m x→  arises. However, the quantum ki-
netic energy operator cannot be expressed as ( )2 2p m x  since this structure is 
obviously non-Hermitian because of the non-vanishing commutator of the mo-
mentum and the effective mass operators. Notwithstanding the Hermiticity ne-
cessity, an all around characterized quantum kinetic energy operator is relied 
upon to satisfy various exigencies, for example, Be Galilee Invariant, not prompt 
infringement of Heisenberg uncertainty rule [6] and guarantee continuity of the 
envelope function at abrupt interfaces [7]. 

Ordering these two operators cannot be done in a unique way for a consistent 
quantum theory with variable mass, reason why one finds a good number of 
proposals in the literature. O von Roos [8] was the first to propose a generalized 
Hermitian form as  

1 ,
4

b bm pm pm m pm pmα γ γ α = + T                (2) 

with the parameters , ,bα γ  (referred to as ordering ambiguity parameters) 
constraint by the relation 1bα γ+ + = − . One can derive most of the operators 
proposed in the literature [9] [10] [11] [12] by setting the ambiguity parameters 
in the von Roos operator. 

With this plethora of kinetic energy operators in the literature, the conflict as 
to which one should be preferred is a long-standing and unresolved one. In an 
attempt to resolve this issue, Dutra and Almeida [13] used two exactly solved 
models to propose that exact solutions could be used as a guide towards re-
stricting the possible number of kinetic energy operators at hand. They iterated 
in a concluding note: “… we did observe that some orderings proposed in the li-
terature lead us to non physically acceptable energies, and could possibly be dis-
carded”. In this work, we show in Section 2 that the same methodological 
framework as used by Dutra and Almeida reveals that the ordering ambiguity 
parameters only introduce a spectral shift on the system and therefore grants 
that all possible orderings in the literature are admissible. 

The study of thermodynamic properties of physical systems permits for in-
stance to determine system parameters that allow minimum thermodynamic 
frequency instability such as in quartz resonators [14]. Thermodynamic reson-
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ance also finds applications in the detection and destruction of pathogens in 
human bodies [15] during a flow of high frequency pulsating direct current 
(PDC), positively polarized, under the condition of electric resonance. It has 
been shown that the anharmonic oscillator model more accurately predict the 
thermodynamic propeties of molecular vibrations [16]. These promising devel-
opments in anharmonic systems is the motivator behind section 3 in which we 
examine the thermodynamic properties of our model anharmonic oscillator and 
point out an intricate relationship between the anharmonicity parameter and the 
ordering ambiguity parameters. Section 3.1 is devoted to discussion of condi-
tions that bring about thermodynamic resonance in the system and concluding 
remarks are presented in 3. 

2. Exactly Solved Model with Position-Dependent Effective  
Mass  

It is note worthy that not all kinetic energy operators seen in the literature are 
derivable from the von Roos operator. In [13] the authors defined a four term 
operator that incorporates the the Weyl ordring and the von Roos operator as: 

( )
2 21 1 1 12 .

4 1
b ba p p p p m pm pm m pm pm

a m m m
α γ γ α  = + + + +  +   

T    (3) 

Here, the parameter { }0,1a∈  and the ambiguity parameters are mutually 
exclusive. Considering the particle in an arbitrary potential ( )V x , one can con-
struct the Hamiltonian ( )V x= +H T  which can be cast in the form: 

( ) ( )

( ) ( )

2
2

2 2

2

3

1
2 2 4 1

2 ,

i m mp p a
m am m

ma V x
m

α γ

αγ α γ

′ ′′= + − + −+ 

′
+ − − − +



 H

             (4) 

where the primes represent differentiation with respect to x. The time-independent 
Schrödinger equation resulting from the effective Hamiltonian H  expressed as 

( ) ( )x E xΨ = ΨH  can be re-written with the substitution ( ) ( )1 2x m xψΨ =  as 

( ) ( ) ( )

( ){ } ( )

2 2 2 2

2 2 3

d 31 2
2 4 1 4d

0.

m a mx
m ax m m

V x E x

ψ α γ αγ α γ

ψ

 ′′ ′− − − + + + − − − +  +   
+ − =

 

 (5) 

Equation (5) can be simplified further to 

( ) ( ) ( )
2 2 2

1 22 2 3

d 0,
2 d

m mx V x E x
m x m m

ψ η η ψ
  ′′ ′ − + − + − =  
   

  

( ) ( ) ( )
1 1

2 2

2 2

2 2

d 0,
2 d

m mx V x E x
m x m m

η η

η ηψ ψ
−

−

  ′ ′ − + + − =  
   

          (6) 

where we have used  
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( ) ( )

( )

2
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2

2

1 ,
4 1

3 .
2 1 4

a

a
a

η α γ

η αγ α γ

= − + +
+

− = − − − + +  





                (7) 

Now, for a particle with asymptotically decreasing effective mass  

( ) 0 ,
1

m
m x

xλ
=

+
                        (8) 

in a parabolic confinement potential  

( ) 2
0 ,V x V x=                          (9) 

Equation (6) takes the form  

( ) ( ) ( )222 2
2

0
0 0 0

16 4 0.
2n

x xa bx E V x
m m m

λ ψλ λψ
′′+ 

− − + − = 
 



      (10) 

With the transformation  

( )0 0
2

2
1 ,

m V
y xλ

λ
→ +



 

( ) ( )
( )

( )
0 00 0 22

22 1
1 e ,

m Vm V xnx x y
λ

λλψ λ ξ
− +−→ + 

             (11) 

Equation (1) can be transformed to the familiar form  

( )
2

2

d d1 2 0,
dd

y n y n
yy

ξ ξ ξ+ − − + =                 (12) 

after setting  

( ) ( ) ( )0 0 0 2
2

2 2 2 1
1 0.nm E m V n

n n
ρ

λ
− +

− + − + =


         (13) 

Comparing Equation 13 with the confluent hypergeometric differential equa-
tion  

( ) 0,zY p z Y qY′′ + − + =                     (14) 

that has the confluent hypergeometric functions of the first kind as solutions, i.e.  

( ) ( )1 1 , , , , ,Y A F q p z BU q p z= +                   (15) 

it follows that the solutions to Equation (12) are  

( ) ( ) ( )1 1 2 ,1 , 2 ,1 , ,z A F n n y BU n n yξ = − − + − −             (16) 

in the domain 0 y≤ < ∞  corresponding to 1 x
λ

− ≤ < ∞ , where A and B are 

integral constants. For 0A = , the solution reduces to  

( ) ( )
( )

( )

0 00 0 22

22 1

0 0
2

1 e

2
2 ,1 , 1 ,

m Vm V xn
n nx B x

m V
U n n x

λ
λλψ λ

λ
λ

− +−= +

 
× − − + 

  







              (17) 
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hence  

( ) ( )
( )

( )

0 00 0 22

22 1 1
2

0

0 0
2

1 e

2
2 ,1 , 1 .

m Vm V xnn
n

B
x x

m

m V
U n n x

λ
λλλ

λ
λ

− +− +Ψ = +

 
× − − + 

  







              (18) 

The energy spectrum is obtained from Equation (13) as  

( ) ( ) 2
0 02 ,nE e e n nρ δ δ= + + − −                   (19) 

where  

( )
2 2 2

0
1 2 0

0 0 0

2
6 4 ; ; .

2
V

e
m m m
λ λρ η η δ= − = =



            (20) 

Figure 1 shows a plot of the solutions Equation (18) and Equation (19). The 

effective potential of the system is a parabola that is sectioned at 1x
λ

= − . The 

hard wall at this location accounts for the nonlinearity of the spectrum in n. 
For this exactly solved model, the spectral values are real for all possible values 

of the ambiguity parameters. Therefore one cannot rely on the admissibility test 
in [13] (in current use [17] [18] [19]) to discard some orderings from the litera-
ture. 

3. Thermodynamic Properties of the System  

To get an appraisal of the thermodynamic properties of the system, the obvious 
starting point is the partition function. In the present case, it is given by  

( )

( ) ( )( )

( ) ( ) ( )
0 0

0

2
0 0

0

2
2

0 0

exp

exp 2

e e .
!

n
n

n
i

e n e

i n

Z E

e n n e

n

i
β ρ β βδ

β

β ρ β δ βδ β

βδ

∞

=

∞

=

∞ ∞
− + − −

= =

= −

= − + + + −

=

∑

∑

∑∑

         (21) 

In the last line of Equation (21), we have converted the exponential with ar-
gument linear in n to a sum with summation index i. Here BK Tβ =  where 

BK  is the Boltzmann constant and T the absolute temperature of the system. To 
evaluate the sum with respect to n, we apply the formula  

( ) ( )2

0

e , 2 ,0
e ,

! !

g d g
dm

m

cm m c

g g

−
∞

−

=

Φ −
=∑                 (22) 

where ( )Φ  is the Lerch transcendent function [20]. This gives  

( ) ( ) ( )( )0

0

2

0

e , 2 ,0
e .

!

i e

e

i

v i
Z

i

β δ

β ρ
β −

∞
− +

=

Φ −
= ∑               (23) 

For small δ , we neglect terms in 2δ  and higher to obtain  
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Figure 1. Plot of the potential energy, the first two eigen states and corresponding 
energy levels. Parameter values used are: 0 0 1Bm V K= = = = . 

 
( )

( )

( ) ( ) ( )( )
( )( )

0 0 0
0

0 0

2 2 2

32 2

e e ee .
1 e 1 e

e e ee

e e
Z

β ρ β δ β δβ ρ

β δ β δ

βδ − + − −
− +

− −

+
= +

− −
         (24) 

It can be seen from Equation (24) that with the substitution of 0λ = , which 
translates to 0ρ δ= = , the partition function reduces to that of the linear har-
monic oscillator, i.e.  

( )
0

00 02

e 1 csch .
21 e

e

eZ e
β

λ β β
−

= −= =
−

                 (25) 

The Free energy of the system is given by 

( ) ( ) ( )( )
( )( )

( )

( )

0 0 0
0

00

2 2 2

3 22

log

e e e elog ,
1 e1 e

B

e e e e

B ee

F K T Z

K T
β ρ β δ β δ β ρ

β δβ δ

βδ − + − −
− +

−−

= −

 + = − + − − 

   (26) 

its entropy reads  

( )
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00 0 0
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2 2 22 2
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6 2 ed
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ee e e
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B e
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B B
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K T
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K T e e K T e e

T K

δ

δ

δδ δ

δ

δ δ

δ

δ

δ δ δ δ

δ

−− −
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−
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−
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−
        − + +           +  

   −     

− + + − +
+

−( ) ( )
0 022

,

e e eB B B

e e
K T K T TK
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δ δ
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+ 
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 
 

(27) 

and has the shape shown in Figure 2. 
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Figure 2. Plot of entropy against system temperature for three values of the 
nonlinearity parameter. Parameter values used are: 0 0 1Bm V K= = = = . 

 
It is easily verified that the entropy reduces to that of the linear harmonic os-

cillator  

0 0 01coth log csch ,
2B

B B

e e e
S K

T K T TK
    

= +     
     

           (28) 

when 0λ = . 

Thermodynamic Resonance  

From the result Equation (27), we observe a resonance condition given by  

02 ,eδ =                           (29) 

from where a critical value for the anharmonicity parameter can be defined as  

0 02
,c

m e
λ =



                       (30) 

for which the entropy reads  

[ ]0 log .B B
e

S K K
T

= + ∞ −                    (31) 

For 02eδ < , it is observed that the entropy remains real and tends to increase 
more rapidly with increase in strength of the anharmonicity as shown in Figure 
2. 

Above the critical value, i.e. 02eδ > , we observe that the argument of the lo-
garithm in the expression of the entropy becomes negative. The logarithm 
therefore becomes complex valued. We can separate the real and imaginary parts 
of the logarithm as follows:  

( ) [ ] ( )0log 2 log ,B B BK i K e Kθ δ − +π… = …             (32) 

where θ  is the Heaviside theta function. As such, this leads the entropy to be 
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expressible as ( ) ( )S S i S= ℜ + ℑ  where  

( ) [ ]02 .BS K eθ δℑ −π=                     (33) 

Complex entropy can arise as an extension of the Shannon entropy to classical 
and nonclassical components of generalized entropy/information descriptors of 
molecular states in which the real and imaginary parts are provided by the sys-
tem complex electronic wave-function (quantum probability amplitude) [21]. 
Complex entropy has been applied in engineering deterministic prediction of 
outcomes of thermodynamic experiments [22]. In information theory, complex 
valued information entropy proves useful in the description of directed networks 
[23]. It also serves a good purpose in explicating energy flows in complex sys-
tems [24]. In the present model, complex entropy arises as a consequence of sys-
tem setting. The result Equation (27) shows that for 0δ > , ( )0S = ∞ . The en-
tropy of the anharmonic oscillator is infinitely large at 0T = . Figure 3 shows a 
plot of the entropy for 02eδ > . While the imaginary part remains constant for 
all T, the real part exhibits a singularity at 0T =  and a minimum which de-
creases with increasing anharmonicity strength.  

4. Discussion of Results  

Equation (19) portrays an intricate relationship between the ordering ambiguity 
and anharmonicity introduced by the position dependence of the effective mass. 
In fact setting the deformation parameter λ  to zero automatically eliminates 
ordering ambiguity terms from the energy spectrum, reducing the spectrum to 
the harmonic oscillator spectrum. On the other hand, using the most unambi-
guous form for the kinetic energy operator in which 1 4, 1 2bα γ= = − = −  
which returns 1 2 0η η= = , the spectrum reduces to that of the harmonic oscil-
lator shifted by an infinite square well like term 2 2 2

02n mλ . Here it is appar-
ent that anharmonicity persists in the absence of ordering ambiguity. 

We have shown that the effect of position dependence in the effective mass in 
this oscillator model is the induction of a sort of thermodynamic resonance 
during which the entropy of the system becomes infinitely large. The resonance 
condition establishes a threshold on the anharmonicity strength cδ  below 
which regular evolution of entropy is observed and above which one observes 
the onset of complex valued entropy. In the latter case, the imaginary part of the 
entropy has been given the interpretation of the entropy transfered from the 
system to the environment. This entropy transferred turns out to be a constant 

BKπ . 
Our model exhibits a singularity in the entropy at 0T = . This temperature is 

of course not physically attainable. If instead of T, one looks at the results in 
terms of 1 BK Tβ =  where heat always flows from a small β  (albeit negative) 
to a bigger one, it turns out that in such an anharmonic oscillator, the system 
becomes an efficient emitter of heat once the critical anharmonicity cλ  is ex-
ceeded.  
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Figure 3. Plot of entropy agaist temperature for 02eδ > . 
Parameter values used are: 0 0 1Bm V K= = = = . 

5. Conclusion  

Starting with the most general form of the kinetic energy operator for quantum 
systems with position dependent effective masses, we have shown that the gen-
eration of a real spectrum cannot be used to discard some kinetic energy opera-
tors from the literature. Using an exactly solved model, of an asymptotically de-
creasing effective mass system in a parabolic confinement potential, we have 
shown that the prevalence of ordering ambiguity simply introduces a constant 
shift in the spectral values of the system. Our results show that anharmonicity 
introduces a thermodynamic resonance condition in the system, with the onset 
of a critical value for the anharmonicity parameter beyond which the emitting 
nature of the system is enhanced. This observation gives a valuable insight for 
designing semiconductor materials with desired thermodynamic properties 
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