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Abstract 
The Lanzhou index of a graph G is defined as the sum of the product between 

ud  and square of ud  over all vertices u of G, where ud  and ud  are 
respectively the degree of u in G and the degree of u in the complement graph 
G  of G. ( )R G  is obtained from G by adding a new vertex corresponding 
to each edge of G, then joining each new vertex to the end vertices of the 
corresponding edge. Lanzhou index is an important topological index. It is 
closely related to the forgotten index and first Zagreb index of graphs. In this 
note, we characterize the bound of Lanzhou index of ( )R T  of a tree T. And 
the corresponding extremal graphs are also determined. 
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1. Introduction 

We use G to denote a simple graph with vertex set ( ) { }1 2, , , nV G v v v=   and 
edge set ( ) { }1 2, , , mE G e e e=  . The degree of a vertex ( )v V G∈  is denoted by 

vd . The complement graph G  of G has the same vertex set ( )V G , and two 
vertices are adjacent in G  if and only if they are not adjacent in G. 

Let G be a graph and let ( )v V G∈ . The first Zagreb index ( )1M G  and for-
gotten index ( )F G  of G are defined respectively as  

( )
( )

( )
( )

2 3
1 and .v v

v V G v V G
M G d F G d

∈ ∈

= =∑ ∑                (1) 

and their theories were well elaborated [1] [2] [3], respectively. 
In 2018, Vukičević et al. [4] introduced a new topological index named Lanz-

hou index, i.e.,  
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( )
( )

2 ,v v
v V G

Lz G d d
∈

= ∑                         (2) 

where vd  denotes the degree of v in G . And they pointed out a relation 
among Lanzhou index, forgotten index and first Zagreb index of G, i.e.,  

( ) ( ) ( ) ( )11 .Lz G n M G F G= − −                   (3) 

Furthermore, they determined extremal values of Lanzhou index of trees. For 
the background of Lanzhou index and related topics, we refer the reader to [4] 
and the references therein. 

Let ( )R G  be a graph obtained from G by adding a new vertex *v  corres-
ponding to each edge e uv=  and by joining each new vertex *v  to the end 
vertices u and v of the edge e uv=  corresponding to it [5]. 

Let ( )1 2nT +  be a tree with ( )1 2n +  vertices. In this work, we focus on 
properties of Lanzhou index of ( )( )1 2nR T + . We will give the sharp upper bound 
of Lanzhou index of ( )( )1 2nR T + . And the extremal graph attained the bound is 
determined. 

2. Main Results  

For convenience, we use the same definitions and symbols in [4]. The star on n 
vertices is denoted by nS . A double star ,k lS  is a tree obtained from 2K  by 
attaching 1k −  leaves to one of its vertices and 1l −  leaves to the other one. 
Hence, ,k lS  has one vertex of degree k, one of degree l, and 2k l+ −  vertices 
of degree one. A double star on n vertices is balanced if the difference between k 
and l is the smallest possible. Depending on parity of n, this difference will be 
either zero for an even n or one for an odd n. Hence, a balanced double star on n 
vertices is either 2, 2n nS  or ( ) ( )1 2, 1 2n nS − + . We denote the balanced double star 
on n vertices by ( )BS n . 

By the definition of Lanzhou index of a graph, we direct yields two results as 
follows.  

Lemma 1. Let ( )( )1 2nR S +  be a graph with n vertices. Then  

( )( )( ) ( )( )1 2 4 3 1nLz R S n n+ = − − .  
Lemma 2. Let ( )( )1 2nR BS +  be a graph with n vertices. Then  

( )( )( )
( ) ( )

( ) ( )

3 2

1 2
3 2

1 15 85 93 if 1 2 is even,
4
1 15 89 73 if 1 2 is odd.
4

n

n n n n
Lz R BS

n n n n
+

 + − + += 
 + − + +


    (4) 

Theorem 1. Let ( )( )1 2nR T +  a graph with ( )27n ≥  vertices. Then  

( )( )( ) ( )( )( ) ( )( )( )1 2 1 2 1 2 .n n nLz R S Lz R T Lz R BS+ + +≤ ≤           (5) 

Proof. Set that ( )( )( )1 2nV V R T +=  is the vertex set of ( )( )1 2nR T + . Checking 
the structure of ( )( )1 2nR T + , we know that ( )( )( )1 2nV R T n+ = , and n is odd. Let 
L denote the set of vertices of degree 2 in ( )( )1 2nR T + . Then V can be decom-
posed into L and Y, where set Y V L= − . Let l L=  and y Y=  be the set 
number of L and Y, respectively. By the Euler formula, we have  
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2 3 3,u
u Y

d l n
∈

+ = −∑  

and rewriting it as  

( ) ( )3 3 2 3 3.u
u Y

d n l l n
∈

− + − + = −∑  

Thus,  

( )3 3.u
u Y

d l
∈

− = −∑                        (6) 

Now, we define the Lanzhou index of the vertex x as ( )c x , and generally case, 
( ) ( )2 1c x x n x= − − . Especially, ( ) ( )2 4 3 4 12c n n= − = − . Therefore, we can 

get  

( )( )( ) ( ) ( ) ( ) ( ) ( )1 2 3 2 3 2 .u un
u V u Y

Lz R T c d c d l c c+
∈ ∈

= = + − +∑ ∑       (7) 

Substituting Equation (6), we can obtain that  

( )( )( ) ( ) ( ) ( ) ( )1 2 3 2 3 2 .u un
u Y

Lz R T c d d c c+
∈

 = + − + ∑          (8) 

The following we will prove the right of (8) attained the maximum value. By 
calculating, we have  

( ) ( )3 1 2 3 3.u u
u Y u Y

d d l r n
∈ ∈

− + = − = − + = −∑ ∑             (9) 

Timing 
2
2

u

u

d
d

−
−

 on the right-hand side of Equation (8), we get  

( )( )( ) ( ) ( ) ( ) ( ) ( )1 2

3 2
2 3 2 .

2
u u

un
u Y u

c d d c
Lz R T d c

d+
∈

+ −
= − +

−∑       (10) 

We define a function ( )xλ  as follows.  

( ) ( ) ( ) ( ) ( ) ( )( )23 2 1 4 3 3
.

2 2
c x x c x n x x n

x
x x

λ
+ − − − + − −

= =
− −

      (11) 

λ+  and λ−  are its maximum and minimum, respectively.  

( ) ( )max , min .
uu

u udd
d dλ λ λ λ+ −= =                (12) 

Obviously,  

( ) ( ) ( )( )( ) ( ) ( )1 22 3 2 2 3 2 .u un
u Y u Y

d c Lz R T d cλ λ− +
+

∈ ∈

− + ≤ ≤ − +∑ ∑     (13) 

Substituting Equation (3), we obtain that  

( ) ( ) ( )( )( ) ( ) ( )1 23 3 2 3 3 2 .nn c Lz R T n cλ λ− +
+− + ≤ ≤ − +        (14) 

In fact, ( )xλ  is a quadratic polynomial with a negative leading coefficient. 
2x =  is the root of its numerator, so we can also write ( )xλ  as  

( ) ( ) ( )2 3 6 3 .x x n x nλ = − + − + −                (15) 

By checking its values at 2x =  and 1x n= − , we have  
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( ) ( ) ( )( ) ( ) ( )21 1 3 1 6 3 4 4 .n n n n n nλ λ− = − = − − + − − + − = −       (16) 

So,  

( )( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( )( )( )
1 2

1 2

3 3 2 4 4 3 12 3

4 3 1 .

n

n

Lz R T n c n n n

n n Lz R S

λ−
+

+

≥ − + = − − + −

= − − =
     (17) 

Hence, the Lanzhou index is minimized for ( )( )1 2nR S +  and only for 

( )( )1 2nR S + . 
Now discuss the maximum value of Lanzhou index of ( )1 2nT + . First, n must  

be odd. When ( )xλ  reaches its maximum value, 3
2

nx −
= , the maximum  

value is ( )21 18 63
4

n n+ − . In particular,  

( )21 5 1 18 67
2 2 4

n n n nλ λ− −   = = + −   
   

,  

( )21 7 1 18 79
2 2 4

n n n nλ λ+ −   = = + −   
   

, So, 3
2

nλ λ+ − =  
 

, it has an upper  

bound  

( )( )( ) ( ) ( )

( )

2

1 2

3 2

9 63 3 12 3
4 2 4

1 15 69 45 .
4

n
n nLz R T n n

n n n

+

 
≤ + − − + − 
 

= + − +

          (18) 

Obviously, the value of this upper bound is larger than the value of 

( ) ( )( )( )1 4, 1 4n nLz R BS + + . And the difference is equal to 4 12n − . In order to 
demonstrate the conclusion, we must prove that no other nT  has the Lanzhou 
index closer to this upper bound than the ( )( )1 2nR BS + . 

Then, we use contradiction method. Suppose that ( )( )1 2nR BS +  is not an ex-
tremal graph. 

There exists an extremal graph ( )eR T  with a maximum of two vertices of 
high degree (the high degree here means that the degree of these two vertices is  

1
2

n + , 1
2

n −  or 3
2

n − , and the degree of these two vertices can only be even).  

Because ( )eR T  is not ( )( )1 2nR BS + , then at least the degree of these two vertices  

is smaller than 1
2

n + . According to Lemma 2.2 and formula (4), ( )( )eLz R T   

not exceed ( )( )( )1 2nLz R BS + . So there are the following cases. 

Case 1. When 1
2

n +  is even. And 1
2

n −  is odd. 

Suppose that ( )eR T  contains that the degree of one vertex is 1
2

n + , and the 

another vertex is 1
2

n − , the two vertices must be in Y. In this situation, the  

corresponding graph cannot be drawn, because the degree of the two vertices 
must be even, so a contradiction. 

https://doi.org/10.4236/am.2021.122007


X. L. Zeng, T. Z. Wu 
 

 

DOI: 10.4236/am.2021.122007 89 Applied Mathematics 
 

Case 2. When 1
2

n +  is even. And 3
2

n −  is odd. 

Suppose that ( )eR T  contains that the degree of one vertex is 1
2

n + , and the 

another vertex is 3
2

n − , there must be the degree of a vertex is 4 in ( )eR T ,  

( )( ) ( )

( )

( ) ( )( )( )

2
22

2
2

3 2
1 2

1 12 3 1
2 2

3 31 4 1 4
2 2

1 13 33 173 ,
4

e

n

n nLz R T n n

n nn n

n n n Lz R BS +

+ +   = − + − −   
   

− −   + − − + − −   
   

= + − − <

      (19) 

a contradiction. 

Case 3. When 1
2

n −  is even. And 3
2

n −  is odd. 

Assume that ( )eR T  contains that the degree of one vertex is 1
2

n − , and the 

another vertex is 3
2

n − , the two vertices must be in Y. In this situation, the  

corresponding graph cannot be drawn, because the degree of the two vertices 
must be even, so a contradiction. 

Case 4. When 1
2

n −  is even. 

Suppose that ( )eR T  contains that the degree of two vertices are 1
2

n − , there  

must be the degree of a vertex is 4 in ( )eR T ,  

( )( ) ( ) ( )

( ) ( )( )( )

2
22 2

3 2
1 2

1 12 3 2 1 4 1 4
2 2

1 13 29 177 .
4

e

n

n nLz R T n n n

n n n Lz R BS +

− −   = − + − − + − −   
   

= + − − <

    (20) 

So, a contradiction. 

Case 5. When 1
2

n −  is even. And 5
2

n −  is even. 

Suppose that ( )eR T  contains that the degree of one vertex is 1
2

n −  and the 

another vertex is 5
2

n − , there must be the degree of two vertices are 4 in  

( )eR T ,  

( )( ) ( )( )

( ) ( )( )( )

2
2

2

3 2
1 2

1 12 3 4 1
2 2

5 51
2 2

1 11 15 411 .
4

e

n

n nLz R T n n n

n nn

n n n Lz R BS +

− −   = − − + − −   
   

− −   + − −   
   

= + + − <

      (21) 
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So, a contradiction.                                               □ 
Remark 1. If 27n < , then the result in Theorem 2.3 is not true.  

3. Conclusion 

The Lanzhou index is an important chemical index. In this note, we determine 
sharp upper bound of Lanzhou index of ( )R T  when 27n ≥ . In the future, we 
will discuss a bound of Lanzhou index of ( )R G  of general graph G. 
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