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Abstract 
 
Geoelectrical soundings using the Schlumberger array were carried out in the vicinity of 23 pumping test 
sites to determine aquifer parameters, central Jordan. On the basis of aquifer geometry, the area has been di-
vided into two hydraulic units: the northern flood plain and the flood plain to its south. Field resistivity data 
are interpreted in terms of the true resistivity and thickness of subsurface layers. These parameters are then 
correlated with the available pumping test data. Significant correlations between the transmissivity and 
modified transverse resistance as well as between the hydraulic conductivity and formation factor were ob-
tained for the two hydraulic units, in central Jordan are presented here. 
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1. Introduction 
 
The development of groundwater resources and the re-
gime of its activity largely depend on the porosity and 
permeability of water bearing formations. The porosity 
of rock is a measure of the amount of interstitial space 
that is capable of holding fluids and the permeability 
(hydraulic conductivity) of a rock is a quantitative meas-
ure of the case with which it will permit the passage of 
fluids through it under a hydraulic gradient. The deter-
mination of aquifer characteristics such as hydraulic 
conductivity and transmissivity is best made on the basis 
of data obtained from test pumping wells. These proper-
ties are important in determining the natural flow of wa-
ter through an aquifer and its response to fluid extraction. 
This paper examines the influence of aquifer anisotropy 
on the relationship between hydraulic and geoelectrical 
parameters of aquifers that are needed to develop a hy-
drogeophysical model for an anisotropic aquifer in parts 
of central Jordan. 

An alternative approach for estimating aquifer charac-
teristics is the use of surface geoelectrical methods. 
Many investigators have studied the relationship between 
electric and hydraulic parameters of aquifers. Jones and 
Buford [1] measured the formation factor and intrinsic 
permeability of sand samples and found that as the grain 
size increase, the formation factor and intrinsic perme-
ability also increases. A relation between the aquifer in-
trinsic permeability and formation factor was developed 

for a given porosity range [2]. The resistivity and the 
formation factor of an aquifer have been correlated with 
the permeability [3]. Empirical and semi-empirical rela-
tions between different aquifer parameters and the pa-
rameters obtained by geoelectrical soundings under dif-
ferent geological conditions have also been studied by 
others [4–13]. The analytical relations between aquifer 
transmissivity and Dar-Zarrouk parameters have been 
developed and various data sets tested [14,15]. An in-
verse relationship between porosity and hydraulic con-
ductivity were used to explain the direct correlations 
between formation factor and hydraulic conductivity 
[16,17]. Here we present the Schlumberger sounding 
results in the area of central Jordan to define the aquifer 
geometry of the study area. 
 
2. Geology and Hydrogeology 
 
2.1. Geological Setting 
 
Physiographically, the study area lies between latitude 
31 29.54 N to 31 45.03 N and 35 59.58 E to 36 
14.56 E, central Jordan (Figure 1). Jaser [18] has given 
the detailed geology of the area. Bedrock in the investi-
gated area is of sedimentary origin and of Upper Creta-
ceous to recent age (Figure 1). The oldest outcrops in the 
area are the Amman Silicified Limestone (ASL) Forma-
tion (of Campanian age) of the Balqa Group. In the 
mapped area (Figure 1), the rock formation consists of  
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Figure 1. Geology map of the area (after Jaser [18]) and positions of geoelectrical soundings and wells. 
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Table 1. Stratigraphic column for the geology of northern Jordan (after Rimawi et al. [19]). 

Period Epoch Formation Symbol Group Aquifer 

Oligocene Basalt (BS) BS Jordan Valley 

Eocene 
Wadi Shallala (WS) 

(Limestone and Chalky Limestone) 
B5 

T
er

ti
ar

y 

Paleocene Umm Rijam Chert-Limestone (URC) B4 S
ha

ll
ow

 A
qu

if
er

 
C

om
pl

ex
 

Maastrichtian Muwaqqar Chalk-Marl (MCM) B3 
B3 

Aquitard 

Campanian Amman Silicified Limestone (ASL) B2 

Santonian 
Wadi Umm Ghudran (WG) 
Marl and Marly Limestone 

B1 

Balqa 

Turonian Wadi Es-Sir Limestone (WSL) A7 

Shua’yb (Echinoidal limestone) A5/6 

Hummar (Echinoidal Limestone) A4 

Fuheis (Nodular Limestone) A3 

U
pp

er
 C

re
ta

ce
ou
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Cenomanian 

Na’ur (Nodular Limestone) A1/2 

Ajlun 

U
pp
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 C
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ex
 

Albian Subeihi (Vary Colored Sandstone) K2 
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ow
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 C

re
-
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ce
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Aptian-Neocomian Arda’a (White Sandstone) K1 
Kurnub Sandstone 

D
ee

p 
S

an
d-

st
on

e 
A

qu
i-

fe
r 

C
om

pl
ex

 

 
Table 2. Summary of results from computer modeling for all sounding stations. 

Resistivity of layers (m) Thickness of layers (m) 
VES no. 

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 h1 h2 h3 H4 h5 

1 22 14 32 60 80 - 1.9 2.5 141 66 - 

02 25 3 9 35 65 - 0.9 3.9 141 74 - 

02 17 11 18 27 72 - 1.4 2.0 173 64 - 

04 29 14 19 31 54 - 1.3 5.7 165 44 - 

05 18 12 19 34 112 - 1.8 8.7 133 68 - 

06 37 18 38 81 190 - 1.1 3.9 133 56 - 

07 26 17 27 78 133 - 1.1 6.4 181 42 - 

08 33 19 51 68 90 - 1.3 4.7 105 52 - 

19 31 16 64 93 168 - 1.5 13 140 56 - 

10 30 5 21 36 90 - 1.7 3.9 116 69 - 

11 9 15 23 60 - - 1.1 30 200 - - 

12 28 5 27 68 23 180 1.9 2.5 64 74 40 

13 19 13 26 40 108 - 1.5 5.6 142 71 - 

14 24 16 32 42 64 - 1.0 10 179 40 - 

15 34 23 35 47 76 - 1.7 3.5 169 67 - 

16 13 4 18 51 - - 0.5 151 68 - - 

17 35 9 46 80 - - 0.4 146 72 - - 

18 62 11 31 69 34 152 1.7 2.3 71 83 48 

19 54 6 36 48 - - 0.4 136 54 - - 

20 24 12 39 103 - - 0.5 163 37 - - 

21 30 20 59 156 - - 0.9 159 60 - - 

22 48 32 48 57 73 - 0.9 3.1 38 150 - 

23 37 19 84 112 - - 1.0 154 65 - -  
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limestone, chalk and chalky limestone. The overlying 
Al-Hisa Phosphorite (AHP) Formation, which belongs to 
the Balqa Group (Maestrichtian-Campanian in age) con-
sists of limestone and phosphate with chalk and chalky 
marl units. These are overlain by sediments consisting of 
marl, chalk and chalky marl of the Muwaqqar Chalk-Marl 
(MCM) Formation belonging to the Balqa Group of 
Maestrichtian to Paleocene age. The overlying chalky 
limestone and chert of the Umm Rijam Chert-Limestone 
(URC) Formation (Eocene in age) belongs to Balqa Group. 
Surficial deposits are: marl, clay, sand and gravels of Ho- 
locene to Recent age. 
 
2.2. Hydrogeology 
 
Generally, the groundwater aquifers of Jordan are di-
vided into three hydraulic complexes: Deep Sandstone 
Aquifer Complex, Upper Cretaceous Aquifer Complex, 
and Shallow Aquifer Complex (Table 1). Although this 
study is concentrated on the Upper Cretaceous Aquifers 
(namely B2/A7 aquifer), it is important to indicate the 
significant role of the Deep Sandstone Aquifer Complex 
where they occur in the adjacent highlands. They may 
contribute to the recharge of the Upper Cretaceous aqui-
fers as upward leakage [19]. 

Based on the lithology log data of 23 wells from the 
study area, we divide the area into two distinct hydraulic 
units: Hydraulic unit-1 towards the northern and central 
parts comprised of almost sorted material (mainly lime-
stone) with low uniformity coefficient and another unit 
comprising of unsorted materials (limestone and chert) 
with relatively high uniformity coefficient occurring to-
wards the southern parts (Hydraulic unit-2) (Figure 1). 
 
3. Field Studies 
 
Surface resistivity methods have been used in ground-
water research for many years. Earth resistivities are re-
lated to important geologic parameters of the subsurface 
including types of rocks and soils, porosity, and degree 
of saturation. The detailed description of this method is 
available in [20]. In general, the resistivity method in-
volves measuring the electrical resistivity of earth mate-
rials by introducing an electrical current into the ground 
and monitoring the potential field developed by the cur-
rent. The most commonly used electrode configuration 
for geoelectrical soundings, and the one used in this field 
survey, is the Schlumberger array. Four electrodes (two 
current A and B and two potential M and N) are placed 
along a straight line on the land surface such that the 
outside (current) electrode distance (AB) is equal to or 
greater than five times the inside (potential) electrode 
distance (MN). Vertical sounding, in Schlumberger array, 
were performed by keeping the electrode array centered 
over a field station while increasing the spacing between 

the current electrodes, thus increasing the depth of inves-
tigation.  

The potential difference (V) and the electrical cur-
rent (I) are measured for each electrode spacing and the 
apparent resistivity (a) is calculated by the equation: 

 m-ohm
Ι

ΔV
Κρa            (1) 

where 

MN

AN.AM
πΚ              (2) 

is the geometrical factor that depends on the electrode 
arrangement for the Schlumberger array. 

An integrated approach of hydrogeological and geoelec-
trical soundings surveys has been used to study the rela-
tionship between the geoelectric and hydraulic parameters 
in the central part of Jordan. Data from 23 deep wells are 
available, on which pumping tests have been conducted. 
The pumping test data were analyzed and the aquifer hy-
draulic parameters (hydraulic conductivity, transmissivity 
and water resistivity) have been evaluated by Water Au-
thority of Jordan in 2006. The geophysical field work in 
this study included recording of 23 vertical electrical 
soundings (VES) carried out in the fall of 2006. The VES 
were recorded up to a maximum electrode separation of 
2000 m. The VES soundings were conducted with the help 
of Iris Syscal R2 resistivity instrument in the close vicinity 
of deep wells as shown in Figure 1. 

A preliminary interpretation of the sounding curves us-
ing partial curve matching [21] provides the initial esti-
mates of the resistivities and thickness (layer parameters) 
of the various geoelectric layers. The layer parameters 
derived from the graphical curve matching were then used 
to interpret the sounding data in terms of the final layer 
parameters through a 1-D inversion technique (RESIX-IP, 
Interpex Limited, Golden, Co., USA). Inversion analyses 
of the sounding curves have been made with an average 
fitting error of about 5%. Quantitative interpretation of 
geoelectrical sounding curves is complicated due to the 
well known principle of equivalence [22]. Data from the 
two boreholes (CD1245 and CD1232, Figure 1) was used 
to minimize the choice of equivalent models, by fixing 
thicknesses and depths to certain levels and allowing the 
adjustment of resistivity. Correlation between VES inter-
pretation at stations 8 and 19 and borehole lithology de-
termines the electrical characteristics of the rock units with 
depth (Figure 2). Table 2 presents the results of interpreta-
tion of the VES stations. 

Figure 3 is a typical sounding data plot and best-fit 
four-layer model for one selected sounding data. On the 
left, Figure 2 shows the Schlumberger apparent resistiv-
ity curve with data (points) superimposed on the best 
match 1-D inversion (solid line). On the right the figures 
shows the interpreted results in terms of resistivity and  
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Figure 3. Typical electrical resistivity sounding data and 
best-fit four layer model interpretation for VES11. 
 
depth together with the allowable range of equivalence 
(dashed lines). The result of the 1-D inversion of Figure 
2 (right) shows a thin topsoil layer about 1 m thick, be-
low which is a 30 m band of chalk and marl representing 
the upper of the MCM formation with a resistivity value 
of about 15 m. The third unit has higher resistivity 
values (23 m) and considerably thick (about 200 m). 
This layer represents the lower of the MCM formation. 
The fourth unit has resistivity values of 60 m, repre-
senting the saturated zone. 
 
4. Hydraulic Parameters Versus Geoelectric 
 
Figure 4 shows an analogy between the electrical current 

flow and groundwater flow in layered media. If the flow 
of electric current is parallel to the geological layering 
and hydraulic flow [20], the average horizontal hydraulic 
conductivity (Kh) is given as (3): 





 n

i i

n

i ii

h
h

hK
k                (3) 

And average longitudinal resistivity (ρl) is given as (4): 






n

i
i

i

n

i i

l h

h



                (4) 

where ρi and hi are resistivity and thicknesses of ith layer, 
respectively. The transverse resistivity (ρt) of the aquifer 
is determined from the layer parameters as (5): 




 n

i i

n

i ii

t
h

hρ
ρ 1               (5) 

The use of electrical parameters obtained by multiply-
ing the transverse resistance with the modification factor 
(ratio of average aquifer water resistivity and resistivity 
of water at a particular site) has been suggested by 
[14,15]. This approach has been used for the 23 sites 
using the value of aquifer water resistivity (measured 
from collected groundwater samples), an average aquifer 
water resistivity (6.28 ohm-m) and modified transverse 
resistance (R') have been calculated. Figure 5 shows a 
scatter plot of transmissivity (T) and modified transverse 
resistance (R'). The following linear relationships are 
obtained (6): 

56.41000960  R'.T         (6) 

However, when the values are sorted on the basis of 
hydraulic units 1 and 2, the plot (Figure 5) shows two 
lines with lesser scatter. The linear relationship for hy-
draulic unit-1 takes the form of (7): 

58.21'0027.0  RT         (7) 

And for hydraulic unit-2, the relationship is (8): 

38.46'0003.0  RT         (8) 
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Figure 4. Layered model showing transverse and longitudinal 
current flow. 
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formation factor (F) and hydraulic conductivity (K) has 
been proposed [4] as (9): 

mFAK                 (9) 

The plot of empirical relationship (Equation 9) is shown 
in Figure 6 for the actual field data. The values of the co-
efficient (A) and the exponent (m) in Equation (9) are 
found to be 0.04 and 0.75, respectively. Substituting the 
values of A and m, Equation (9) can be written as (10): 

75.004.0 FK              (10) 

The values of field data are sorted on the basis of hy-
draulic units 1 and 2, the plot (Figure 6) shows two lines 
with lesser scatter. The empirical relationship for hy-
draulic unit-1 takes the form of (11): 

Figure 5. Transmissivity plotted with modified transverse re-
sistance for different hydraulic units. Solid line represents the 
linear relationship when both hydraulic units are combined to 
one unit. Dashed lines represent the linear relationships for 
hydraulic unit-1 and unit-2. 

99.002.0 FK             (11) 

And for hydraulic unit-2, the relationship is (12): 
 

Equations (6)-(8) are used to compute transmissivity 
and the same are compared with the observed data in Ta-
ble 3. It is observed that the values computed from Equa-
tions (7) and (8) are generally closer to measured values in 
comparison to those computed from Equation (6). 

09.024.0 FK             (12) 

Equations (10)-(12) are used to compute hydraulic 
conductivity and the calculated values were compared 
with the observed data in Table 4. It is observed that the 
values computed from Equations (11) and (12) are gen-
erally closer to measured values in comparison to those 
computed from Equation (10). 

The influence of aquifer anisotropy caused by layering 
on relations between aquifer hydraulic and electrical 
properties has been examined. The relationship between  

 
Table 3. Observed and computed transmissivity values using modified transverse resistance in different equations for all 
twenty three sites. 

Hydraulic 
unit 

Calculated transmis-
sivity 

Eq. (8) (m2/day) 

46.38
'

O.OOO3RT 
 

Calculated transmis-
sivity: 

Eq. (7) (m2/day) 

21.58
'

0.0027RT 
 

Calculated transmis-
sivity 

Eq. (6) (m2/day) 

41.56
'

0.00096RT   

Observed trans-
missivity 
(m2/day) 

Modified 
transverse 
resistance 
(ohm-m) 

VES 
no. 

1 - 53.82 53.02 51 11939 01 
1 - 45.07 49.91 42 8699 02 
1 - 65.27 57.09 57 16180 03 
1 - 39.04 47.77 39 6466 04 
1 - 57.39 54.29 59 13262 05 
1 - 76.21 60.78 77 20234 06 
1 - 74.47 60.37 75 19590 07 
1 - 61.32 55.69 66 14718 08 
1 - 104.85 71.17 100 30841 09 
1 - 59.12 54.91 65 13904 10 
1 - 67.27 57.81 77 16922 12 
1 - 54.23 53.17 48 12092 13 
1 - 51.54 52.21 49 11097 14 
1 - 62.68 56.17 60 15221 18 
2 55.33 - 70.19 55 29824 11 
2 51.92 - 59.27 52 18453 15 
2 50.56 - 54.93 51 13929 16 
2 52.08 - 59.80 51 18997 17 
2 49.48 - 51.49 50 10348 19 
2 53.28 - 63.64 52 22999 20 
2 56.91 - 75.27 58 35111 21 
2 51.38 - 57.57 52 16679 22 
2 52.76 - 61.98 53 21274 23  
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Table 4. Hydraulic conductivity from pumping test data, formation factor derived from interpreted resistivity models, along 
with computed hydraulic conductivity values in different equations for all twenty three sites. 

Hydraulic Unit

Calculated Hydraulic 
Conductivity 

Eq. (12) (m/day) 
0.09

0.24FK 
 

Calculated Hydraulic 
Conductivity 

Eq. (11) (m/day) 
0.99

0.02FK 
 

Calculated Hydraulic 
Conductivity 

Eq. (10) (m/day) 
0.75

0.04FK 
 

Formation Fac-
tor 

Hydraulic Conduc-
tivity 

(m/day) 
VES no. 

1 - 0.21 0.23 10.48 0.28 01 

1 - 0.16 0.19 8.19 0.13 02 

1 - 0.18 0.22 9.55 0.12 03 

1 - 0.14 0.18 7.21 0.13 04 

1 - 0.29 0.30 14.91 0.42 05 

1 - 0.50 0.45 25.57 0.61 06 

1 - 0.42 0.41 22.09 0.35 07 

1 - 0.31 0.32 15.85 0.24 08 

1 - 0.55 0.50 28.67 0.46 09 

1 - 0.31 0.32 16.04 0.47 10 

1 - 0.31 0.32 15.75 0.45 12 

1 - 0.26 0.28 13.17 0.26 13 

1 - 0.22 0.25 11.41 0.19 14 

1 - 0.74 0.62 38.58 0.56 18 

2 0.32 - 0.47 26.77 0.34 11 

2 0.31 - 0.31 15.61 0.32 15 

2 0.31 - 0.27 12.81 0.35 16 

2 0.31 - 0.35 17.86 0.30 17 

2 0.29 - 0.23 9.62 0.29 19 

2 0.31 - 0.39 20.89 0.28 20 

2 0.33 - 0.53 31.52 0.34 21 

2 0.30 - 0.29 14.20 0.27 22 

2 0.31 - 0.35 18.30 0.29 23 
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Figure 6. Empirical relation between hydraulic conductivity 
and formation factor. Solid line represents the relationship 
when both hydraulic units are combined to one unit. 
Dashed lines represent the relationships for hydraulic 
unit-1 and unit-2. 
 
5. Conclusions 
 
Geoelectrical surveys, using the Schlumberger array 
configuration, were carried out in the vicinity of 23 
pumping test sites, central Jordan, with an aim to relate 
geoelectric properties to hydraulic parameters. The pre-
sent study suggests that aquifer transmissivity and hy-

draulic conductivity can be estimated more accurately if 
the values are sorted by hydraulic units. It can be inferred 
from the study that the geoelectrical sounding method 
can be successively used not only for exploration of 
groundwater but also for estimating the hydraulic pa-
rameters of the groundwater aquifer. 
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