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Abstract 
Introduction: The inflammatory mechanisms of COVID-19 suggest that cor-
ticosteroids may be beneficial, but their benefits must outweigh their poten-
tial risks. The RECOVERY trial results suggest that dexamethasone 6 mg/day 
(but not other steroids) may confer mortality benefits on ventilated COVID-19 
patients. Methods: This is a narrative review of the literature about the use of 
ciclesonide and dexamethasone for COVID-19 patients. Literature is being 
created rapidly and this review is offered as a state-of-the-science narration. 
Results: The SARS-CoV-2 virus is an RNA virus whose RNA is transcribed 
via open reading frames, making its elimination difficult. Coronaviruses have 
evolved multiple strategies for proteolytic activation of the spike; viral repli-
cation occurs entirely in the cytoplasm. In this connection, the RNA-cleaving 
endoribonuclease (NSP-15 also known as EndoU) may play a key role by faci-
litating viral double-stranded RNA recognition by the host’s macrophages. 
Furthermore, the virus is able to undergo RNA recombination rapidly, enabling 
it to evade host immunity and develop drug resistance. Ciclesonide is an in-
haled corticosteroid that reduces lung inflammation and blocks the activity of 
specific kinases which may explain its anti-inflammatory effect. Dexametha-
sone is known to reduce mortality in ventilated COVID-19 patients. Discus-
sion: Systemic corticosteroids were used in previous coronavirus epidemics 
(SARS and MERS) and pulmonary histology of these patients is similar to 
those in COVID-19 patients. Acute respiratory distress syndrome is the main 
cause of death in most COVID-19 infections and steroids may be effective in 
addressing that condition, brought on by cytokine storm. However, it should 
be noted that inhaled steroids likely have a narrower window for effect than 
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systemic regimens. Conclusion: Dexamethasone has been proven to confer 
mortality benefits on ventilated COVID-19 patients and may be used with 
inhaled ciclesonide, which has few side effects and can be locally metabolized. 
Further study is needed. 
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1. What Is Known and Objective 

The current pandemic due to the coronavirus disease 2019 (COVID-19) has 
spurred an effort to deploy the rational use or repurpose of approved registered 
pharmacological agents with potential efficacy. The inflammatory mechanisms 
of severe COVID-19 infection [1] [2] suggest that corticosteroids may be useful. 
However, there is evidence that argues against the routine systemic use of dif-
ferent types of corticosteroids, as the drug-associated side effects may often out-
weigh their potential benefits [3]. This is in line with previous recommendations 
from the World Health Organization (WHO) on the management of severe 
acute respiratory distress syndrome (ARDS) due to COVID-19, which advises 
against the use of steroids unless indicated for another reason [4]. Recent results 
from the UK-based RECOVERY trial emphasize the need to reevaluate this ge-
neralization, because it has been shown that dexamethasone treatment 6 mg/day 
significantly reduced 28-day mortality in patients with COVID-19 on ventilator 
support [5]. Notably, treatment arms with other steroids such as prednisolone, 
hydrocortisone, or methylprednisolone sodium succinate in the same study did 
not reduce mortality [5]. Nevertheless, there is much to be elucidated about the 
use of corticosteroids for COVID-19 patients in terms of specific agents, risks 
versus benefits, routes of administration, and mechanisms of action. Therefore, 
the purpose of this narrative review was to investigate the current knowledge 
with regard to mechanism and potential clinical rationale for further studies on 
inhaled versus oral steroids, especially with ciclesonide and dexamethasone. 

2. Methods  

A search in MEDLINE (English) using the terms “COVID-19”, “inhalation ste-
roids”, “ciclesonide”, and “dexamethasone” was conducted. Because the existing 
body of literature on the current pandemic is rapidly evolving, the authors also 
searched for relevant sources using Google Scholar, including preprints, until 16 
July 2020 [6] [7]. The authors also implemented a broad dynamic approach and 
included information on aspects such as virology, molecular biology, immunol-
ogy, genetics, biochemistry, pharmacology, pathophysiology, and clinical appli-
cation to current date with special attention on ciclesonide and the latest clinical 
results using dexamethasone. 
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3. Results 
3.1. About SARS-CoV-2  

Like polio, measles, Ebola, and flu viruses, the currently pandemic virus known 
as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA 
virus. Human strains of various coronaviruses are associated with approximately 
15 percent of cases of the common cold [8]. In the 1970s and early 1980s, coro-
navirus virion proteins and nested-set arrangements of mRNAs were identified 
and the discontinuous nature of coronavirus transcription was initially demon-
strated [9]. The first published sequence of a coronavirus gene appeared in 1983, 
starting an era of whole genome sequencing of four coronaviruses [10]. 

Coronaviruses have the largest RNA of all known RNA viruses. Its RNA is 
transcribed via open reading frames. This peculiarity increases the efficacy of 
viral replication and mutagenesis and makes it more difficult for the human 
immune system to eliminate [11]. The SARS-CoV-2 genome encodes 27 pro-
teins needed by the virus to infect humans and to replicate [12]. These proteins 
include: the notorious spike protein, which recognizes angiotensin-converting en-
zyme 2 (ACE2) receptor in the initial stage of infection to gain intracellular 
access; two proteases, which cleave viral and human proteins; and the RNA po-
lymerase (RdRp), which synthesizes viral RNA. The genome also contains a 
large replicase gene, encompassing nonstructural proteins (NSPs), followed by 
structural and accessory genes [13]. The S glycoprotein of coronaviruses, the 
main determinant of host cell attachment and viral entry, is not well conserved. 
Most human coronaviruses use different host cell receptors for viral entry and 
may also require different host cell proteases that allow fusion of viral and cellu-
lar membranes [14]. 

Coronaviruses have evolved multiple strategies for proteolytic activation of 
the spike, and a large number of host proteases have been shown to proteolyti-
cally process the spike protein. These include, but are not limited to, endosomal 
cathepsins, cell surface transmembrane protease/serine proteases, furin, and 
trypsin [15]. The most conserved proteins among coronaviruses are NSPs in-
volved in essential functions of the viral lifecycle [16]. Coronavirus replication 
takes place entirely in the cytoplasm, and it is believed that nuclear functions are 
not required for RNA synthesis [17]. Thus, viral RNA transcription does not in-
volve the conventional RNA splicing machinery present in the nucleus.  

The structural proteins that make up the virion are less conserved than NSPs, 
and accessory proteins are only functionally conserved among very closely re-
lated viruses [18]. While several functions of NSPs have been linked to RNA rep-
lication and processing of RNA, the roles of other proteins are poorly unders-
tood or remain unknown [19]. The NSPs perform essential functions in immune 
antagonism through formation of the viral replication complex and double 
membrane vesicles, which shield the viral RNA, viral RNA proofreading, bind-
ing of nucleic acid, helicase activity, and so on [20]. Another essential element of 
the virus lifecycle is proteolytic processing of viral polyproteins into functional 
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NSPs by two viral proteases, 3CLpro and PLpro. Specifically, 3CLpro, also 
known as NSP5, is first automatically cleaved from polyproteins to produce ma-
ture enzymes, and then further cleaves downstream NSPs at 11 sites to release 
NSP14-NSP16. The 3CLpro directly mediates the maturation of NSPs, which is 
essential in the life cycle of the virus [21].  

In addition to polymerase and protease functions, other essential functions 
performed by the NSPs of the coronavirus include immune antagonism, double 
membrane vesicle organization, scaffolding for replication complex formation, 
nucleic acid binding, helicase activity, and viral RNA proofreading, which may 
be future targets of coronavirus specific antiviral drug discovery [22].  

3.2. NSP-15 and Its Role in Coronavirus Biology 

Of particular interest in this context is one NSP in particular, the RNA-cleaving 
endoribonuclease (NSP15). The NSP15-associated endoribonuclease (EndoU) 
domain is one of the most conserved proteins among corona- and related virus-
es. NSP15 is also referred to as coronavirus EndoU in the scientific literature. 
However, the role of NSP15 in coronavirus replication was enigmatic, as EndoU- 
deficient coronaviruses were viable and replicated to near wild-type virus levels in 
fibroblast cells. Nevertheless, NSP15 is essential in coronavirus biology [23]-[28]. A 
breakthrough in the understanding of the role of EndoU was demonstrated in recent 
studies, which showed that EndoU mediates the evasion of viral double-stranded 
RNA (dsRNA) recognition by host sensors in macrophages [29]. There are also 
suggestions that NSP15 degrades viral RNA to hide it from the host defenses. 
The loss of NSP15 activity also resulted in greatly attenuated disease in mice and 
stimulated a protective immune response. Taken together, these findings dem-
onstrate that coronavirus NSPs are critical for the evasion of host dsRNA sensors 
in macrophages [30].  

3.3. SARS-Cov-2 Mutations 

RNA viruses are characterized by a high mutation rate, up to a million times 
higher than that of their hosts, and SARS-CoV-2 is no exception [31]. It is also 
important to recognize whether the presence of some mutations might correlate 
with different SARS-CoV-2 mortality rates. Viral mutagenic capability depends 
upon several factors, including the fidelity of viral enzymes that replicate nucleic 
acids, such as SARS-CoV-2 RNA dependent RdRP [32]. Thus, recombination is 
a well-characterized feature of coronavirus biology. It can potentially provide a 
genetic mechanism by which coronaviruses maintain their sequence integrity. In 
light of the large size of the coronavirus RNA, it is predictable that most of the 
viral RNA molecules would contain one or more mutations, due to the high er-
ror frequencies of RNA polymerases; homologous recombination repair may 
provide a mechanism for the virus to stabilize their genome and increase fidelity 
across generations.  

One unique genetic feature of coronaviruses is their ability to undergo RNA 
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recombination at a very high frequency [33]. Mutation rate drives viral evolution 
and genome variability, thereby enabling viruses to escape host immunity and to 
develop drug resistance [34] [35]. Based on genomic sampling over time, the 
substitution rate is estimated to be 0.00084 per site per year as of 16 May 2020, 
two- to six-fold lower than the substitution rate for influenza (0.004 - 0.005 
subst/site/yr for influenza A and for influenza B [36]. Across its ≈ 30,000 base-
pair genome, the SARS-CoV-2 thus undergoes roughly one genetic change every 
other week. To date, over 14,000 mutations have been identified [37].  

These findings suggest that the SARS-Cov-2 virus is evolving, and that unique 
European, North American, and Asian strains might coexist, each with a differ-
ent mutation pattern. A SARS-CoV-2 variant carrying the spike protein amino 
acid change D614G has become the most prevalent form in the global pandemic. 
Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 
increase at multiple geographic levels: national, regional, and municipal. The 
shift occurred even in local epidemics where the original D614 form was well es-
tablished prior to the introduction of the G614 variant. The consistency of this 
pattern suggests that the G614 variant may have a fitness advantage [38].  

Since RNA viruses need their RdRP for replication, this means that, in theory, 
the COVID-19 pandemic could be treated effectively by a series of RdRP inhibi-
tors. However, adenosintriphosphate (ATP) antagonists in general could poten-
tially inhibit many other host enzymes, such as ATPases, protein kinases, and 
chaperones, and could therefore cause a number of side effects, in the same 
many as chemotherapeutic agents [39]. Indeed, the RECOVERY-trail treatment 
arms for ATP-antagonists, such as remdesivir, showed no significant reduction 
of mortality [40]. For treating COVID-19 in humans, it would be necessary to 
find far more selective pharmacological agents, namely one which targets a spe-
cific host enzyme that is essential for viral infection but not crucial to normal 
physiology of the host. In human cells, PAK1 RAC/CDC42-activated kinase is 
the major pathogenic kinase, the abnormal activation of which has been asso-
ciated with everything from cancer, malaria, and pandemic viral infections to in-
flammation, immunosuppression, and accelerated aging symptoms [41].  

3.4. Ciclesonide and Its Mechanism of Action  

Ciclesonide was patented and approved in 2008 in the United States for the 
treatment of inflammatory lung disease, such as asthma. It is an inhaled corti-
costeroid that reduces lung inflammation and has been approved for the treat-
ment of asthma and respiratory symptoms. Because of its use in reducing pulmonary 
inflammation, ciclesonide is of special interest in the context of COVID-19. In order 
to understand the postulated ciclesonide inhibitory action on COVID-19 in infected 
human cells, mammalian family kinases called PAKs (RAC/CDC42-activated ki-
nases) which were originally cloned more than 25 years ago were recently further 
studied [42] [43].  

Caffeic acid and its ester, caffeic phenethyl ester occur in propolis (a natural 
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substance produced by honeybees), the first natural ingredient shown to inhibit 
RAC and act as a PAK1-blocker [44]. But there are other anti-viral effects in 
other drugs. The anti-viral effect of remdesivir (IC50 around 1 μM of each) was 
recently confirmed in vitro [45]. Furthermore, the expression of LLC2 depends 
on the coronavirus ACE2-induced CK2/RAS-PAK1-RAF-AP1 signaling pathways. 
Taken altogether, these observations clearly indicate the PAK1-dependency of 
coronaviral pathogenesis, and strongly suggest, if not proven clinically as yet, 
that PAK1-blockers in general might be useful for the treatment of COVID-19. 
Ciclesonide most probably exerts its anti-inflammatory effect by blocking PAK1 
[46].  

In order to elucidate the mechanism of action of ciclesonide, glucocorticoids 
and their recent and current use in clinical practice were reviewed. Glucocorti-
coids are synthesized in the adrenal cortex and secreted into the blood, where 
the levels of glucocorticoids fluctuate in a circadian mode [47]. In humans, the 
naturally occurring glucocorticoid is hydrocortisone (cortisol), which is synthe-
sized from its precursor cortisone. The beneficial effects of glucocorticoids in 
asthma were first described in 1950. Treatment with glucocorticoids has been 
consistently shown not only to relieve asthma symptoms, but also enhance 
bronchial hyperresponsiveness [48]. Corticosteroids (methylprednisolone) were 
given as treatment during the SARS and Middle East Respiratory Syndrome 
(MERS) epidemics due to their immunomodulatory effects, which suppress in-
flammatory responses, but the result of their use showed no perceived benefit 
and possible deleterious effects [49] [50]. These effects may be mediated in part 
by modulation of epithelial cell functions, since many in vitro and in vivo stu-
dies, have shown that glucocorticoids are able to modulate the inflammatory 
functions of bronchial epithelial cells.  

Glucocorticoids inhibit the expression of a large number of inflamma-
tion-associated molecules, including cytokines, chemokines, arachidonic acid 
metabolites, and adhesion molecules [51]. These effects predominantly are me-
diated via the inhibition of NF-κB activity. In contrast, anti-inflammatory me-
diators, such as NEP and IL-1 receptor antagonists, often are up-regulated by 
glucocorticoids. The beneficial effects of glucocorticoid in asthma have been 
demonstrated by in vivo studies showing that treatment of asthmatic patients 
with inhaled glucocorticoids inhibits the airway inflammation and simulta-
neously improves lung function [52]. Favorable modulation of the immune re-
sponse is considered one of the possible mechanisms by which corticosteroids 
might be beneficial or lead to improved clinical outcomes in the treatment of 
severe acute respiratory coronavirus infections, including COVID-19, SARS, and 
MERS.  

Common to severe cases of coronavirus infections is the presence of hypercy-
tokinemia (also called cytokine storm) and development of acute lung injury or 
ARDS. Pathologically, diffuse alveolar damage has been found on autopsy [53]. 
A growing volume of clinical trial data from patients with severe communi-
ty-acquired pneumonia, ARDS, or septic shock suggest benefit from low-to 
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moderate dose corticosteroids with respect to mortality and length of stay [54] 
[55] [56]. A systematic review of (mainly low-dose) corticosteroid trials in severe 
sepsis and septic shock did not identify any increased risk of gastroduodenal 
bleeding, superinfection, or neuromuscular weakness; however, an association 
with an increased risk of hyperglycemia and hypernatremia was noted [57] 
[58].  

Ciclesonide is a parent compound that is converted locally in airways by este-
rases to produce the active metabolite, desisobutyryl-ciclesonide (des-CIC) [59]. 
The active metabolite, des-CIC, has a 100-fold greater relative glucocorticoid re-
ceptor binding affinity than ciclesonide itself (relative glucocorticoid receptor 
binding affinities are 1200 and 12, respectively; dexamethasone reference is 100) 
[60]. If any ciclesonide enters the circulation, it is highly protein bound (99%) 
and extensively metabolized by liver oxidases, resulting in very low systemic ex-
posure [61]. Ciclesonide is delivered in solution form via a hydrofluoroalkane 
metered-dose inhaler with a once-daily dosing schedule, which facilitates patient 
compliance. Clinical studies demonstrate that ciclesonide is as effective as exist-
ing gold standard inhaled corticosteroids for the control of asthma and has a 
good safety profile [62]. At its target sites, the lungs, ciclesonide is converted to 
the active metabolite des-CIC, in a process that is called on-site activation. 
Pharmacokinetically, high lipophilicity and the formation of a local depot pro-
long the pulmonary duration of action for des-CIC, explaining the once-daily 
administration of ciclesonide in clinical practice [63].  

Ciclesonide exerts its anti-inflammatory effect most probably by blocking 
PAK1. Ciclesonide has been shown to block PAK1-dependent replication and 
pathogenesis in vitro [64] Ciclesonide blocks SARS-CoV-2 RNA replication in 
vitro and inhibits cytopathic activity. Ciclesonide demonstrates low cytotoxicity 
and potent suppression of MERS viral growth. The most commonly used orally 
administered steroids, cortisone, prednisolone, and dexamethasone do not sup-
press viral growth, nor did the commonly used inhaled steroid fluticasone. The 
effective concentration of ciclesonide to block SARS-CoV-2 replication (EC90) 
was 6.3 μM; ciclesonide 10 mg/kg/day exerts strong suppression of PAK1-de- 
pendent growth of lung cancer (A541 cell line) [65]. In addition to its known an-
ti-inflammatory properties, ciclesonide seems to be able to block coronavirus 
RNA replication [66]. Ciclesonide is used to treat inflammatory diseases, such as 
asthma and allergic rhinitis [67] [68]. 

4. Discussion 

Systemic corticosteroids were widely used during previous coronavirus out-
breaks (SARS and MERS); however, a systematic review of published literature 
on their use in SARS did not conclude that treatment was beneficial and found 
some evidence of possible harm [69] [70] [71] [72]. At present, there is no evi-
dence as to whether pre-morbid use or continued administration of inhaled cor-
ticosteroids is a factor for adverse or beneficial outcomes in acute respiratory in-
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fections due to coronavirus [73] [74] [75]. Schaller et al. performed post mortem 
examinations on 10 patients with verified COVID-19 and found that in 9 pa-
tients, infiltrations with ground-glass opacity predominantly in the middle and 
lower lung fields were detected by chest X-ray, and organized diffuse alveolar 
damage and SARS-CoV-2 persistence in the respiratory tract were the predomi-
nant histopathologic findings and constituted the leading cause of death in pa-
tients with and without invasive ventilation [76]. The pulmonary histologic cha-
racteristics of COVID-19 resembled those observed in diseases caused by other 
beta-coronavirus infections such as SARS and MERS [77].  

Further data and studies are urgently needed. As a start, it is essential that ep-
idemiological studies of COVID-19 include detailed information on patients’ 
comorbidities and prior medications in order to allow analyses of possible bene-
fits or harms of inhaled corticoid steroids or other therapies [78]. In a recent 
study, Gralinsky et al. [79] demonstrated that complement activation is related 
to more severe respiratory consequences in SARS coronavirus infections, anoth-
er hint of the importance of understanding the cascade of events that enhance 
damage to the host in infections with novel coronaviruses. Most evidence to date 
show that ARDS is the main cause of death in COVID-19 and that ARDS is the 
common immunopathological event for SARS-CoV-2 infections, and its prede-
cessors, SARS-CoV and MERS-CoV infections [80] [81]. One of the main me-
chanisms for ARDS is the cytokine storm, the deadly uncontrolled systemic in-
flammatory response resulting from the release of large amounts of different 
pro-inflammatory cytokines; interferons, interleukins, tumor necrosis factor-α, 
transforming growth factor-β and chemokines [82] [83] [84] [85]. The sugges-
tion by Mehta to consider active immunosuppression as a strategic tool leads to 
the question as to the appropriate deployment of ciclesonide, for example, 
whether inhaled ciclesonide should be used early in the disease (and at what 
dose) and replaced by oral steroids later. However, the window in which oral 
steroids might be beneficial to patients with COVID-19 is likely narrow com-
pared to that of inhalation steroids, which have documented effect in vitro stu-
dies.  

5. What Is New and Objective 

Secondary complications of COVID-19, such as bacterial pneumonia, may re-
quire antibiotics [86]. Patients treated with inhalation steroids are at increased 
risk for bacterial pneumonia [87]. In COVID-19, patient stratification by risk of 
disease severity has eluded us with the result that hospitals emphasize treatment 
of the critically ill, while it may be more beneficial in this disease to intervene 
early. The liberal use of a two-week course of prescribed inhalation ciclesonide 
as a prophylactic for outpatients with COVID-19 symptoms should be consi-
dered. Of course, there is still a risk that some of these outpatients may develop 
severe respiratory symptoms [88]. But this approach is the gold standard for pa-
tients with respiratory syncytial virus infections [89], COPD, and asthma ex-
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acerbation [90]. There is also an urgent need to assess the benefits of inhaled 
corticosteroids for treating COVID-19 patient with and without underlying 
chronic respiratory disease. Further studies on inhaled steroids would be benefi-
cial and are ongoing [82] [83] [84]. 

Many of the treatments used in SARS or MERS patients in outbreak situations 
were not based on clear in vitro and in vivo model evidence of efficacy, and me-
ta-analyses of treatments failed to show effective therapeutic regimens. In clini-
cal praxis it is routine to treat severe asthma with increased doses of steroids and 
these recommendations remain unchanged during the pandemic. There have 
been observations of increased mortality in exacerbations of chronic pulmonary 
obstructive disease (COPD) in these groups when analyzing COVID-19 mortal-
ity data, indicating that the inhalation steroids contribute to increased mortality, 
according to some authors [69]. Surprisingly, the prevalence of COPD among 
patients with SARS and COVID-19 appears to be lower than among the general 
population [70].  

The co-occurrence of asthma with obesity, another predictor of poor outcome 
in COVID-19 patients, places obese patients with asthma at markedly higher risk 
for worse outcomes [71]. Inhaled corticosteroids use undoubtedly reduces the 
rate of exacerbations in both asthma and COPD. If people with stable asthma 
stop or reduce their inhaled corticosteroids inappropriately in response to con-
cerns about immunosuppression and worries about developing COVID-19, they 
may be at significant risk of having an exacerbation [72]. Approximately 40% - 
60% of COPD and up to 80% of asthma exacerbations occur due to viral infec-
tions, including common coronaviruses [73]. Approximately 25% of patients 
admitted to the hospital developed ARDS a median of 10.5 days after symptom 
onset [86]. Sadly, patients with underlying lung disease hospitalized with COVID-19 
have worse outcomes [87] [88] [89]. In people with COPD, inhaled corticoste-
roid use is associated with a higher prevalence of pneumonia and a change in 
the lung microbiome, although not a change in respiratory virus detection 
[90].  

6. Conclusion  

Dexamethasone reduces mortality in severe COVID-19 patients requiring venti-
lator treatment. Less is known about steroid treatment in milder forms of 
COVID-19. Ciclesonide is a safe and effective inhaled steroid with few side ef-
fects. As ciclesonide is inhaled, it is metabolized locally in the most affected crit-
ical organ of infected patients. Its metabolites have far higher receptor affinity 
than that of dexamethasone, so it is reasonable to assume a greater clinical effect. 
Therefore, randomized controlled trials are welcome to elucidate the role of in-
haled corticosteroids in COVID-19 in addition to their use in patients with 
preexisting conditions. 
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