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Abstract 
This paper deals with a class of n-degree polynomial differential equations. By 
the fixed point theorem and mathematical analysis techniques, the existence 
of one (n is an odd number) or two (n is an even number) periodic solutions 
of the equation is obtained. These conclusions have certain application value 
for judging the existence of periodic solutions of polynomial differential equ-
ations with only one higher-order term. 
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1. Introduction 

Consider the following one element n-degree polynomial differential equation: 

( ) ( )
0

d ,
d

n
i

i
i

x a t x n N
t

+

=

= ∈∑                    (1.1) 

here, ( )( )0,1,2, ,ia t i n=   are ω-periodic continuous real functions on R. 
When 1n = , Equation (1.1) is a linear periodic differential equation, if 

( )10
d 0a t t

ω
≠∫ , then Equation (1.1) has a unique ω-periodic continuous solution 

(see [1]). 
When 2n = , Equation (1.1) is Riccati’s equation, Riccati’s equation plays an 

important role in fluid mechanics and the theory of elastic vibration, there are 
many studies on this equation [2]-[7]. In [2], the author considered the nonli-
near Riccati type first-order differential equation as follows: 

( ) ( )2d ,
d
x a t x b t
t
= +                      (1.2) 
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by the fixed point theory, the existence of two periodic continuous solutions of 
Riccati type Equation (1.2) was obtained, and the ranges of the size of the two 
periodic continuous solutions of Equation (1.2) were also given. One is positive, 
another is negative, they are symmetrical about 0x = , we can see below for de-
tails: 

Proposition 1.1 (see [2]) Consider Equation (1.2), ( ) ( ),a t b t  are ω-periodic 
continuous functions on R, suppose that the following condition holds: 

(H1) ( ) ( ) [ ]0, 0,a t b t t ω< ∀ ∈  

then Equation (1.2) has exactly two ω-periodic continuous solutions ( )1 tγ , 
( )2 tγ , and 

[ ]

( )
( ) ( )

[ ]

( )
( )1 0,0,

sup inf ,
tt

b t b t
t

a t a tωω
γ

∈∈
− ≤ ≤ −  

[ ]

( )
( ) ( )

[ ]

( )
( )20, 0,

inf sup .
t t

b t b t
t

a t a tω ω
γ

∈ ∈
− − ≤ ≤ − −  

When 3n = , there are also many studies on the existence of periodic solu-
tions of Equation (1.1) (see [8] [9] [10] [11] [12]). 

So we wonder if there is a similar conclusion when n is a large positive integer? 
In this paper, we are devoted to generalize Equation (1.2) to the n-th power of 

x and find the sufficient conditions for the existence of periodic solutions of the 
new equation, that is, we consider a special kind of polynomial differential Equ-
ation (1.1) as follows: 

( ) ( ) ( )d ,
d

nx a t x b t n N
t

+= + ∈                  (1.3) 

Equation (1.3) contains only an n-th power of x and a term unrelated to x, we 
get some similar results as Proposition 1.1 about the existence of the periodic 
solutions of Equation (1.3), these conclusions generalize the relevant conclusions 
of paper [1] and paper [2]. 

The rest of the paper is arranged as follows: In Section 2, some lemmas and 
abbreviations are introduced to be used later; In Section 3 and Section 4, the ex-
istence of periodic solutions on Equation (1.3) is obtained; In Section 5, we ex-
tend the results of Section 3 and Section 4; we end this paper with a short con-
clusion. 

2. Preliminaries 

In this section, we give some definitions, lemmas and abbreviations which will 
be used later. 

Definition 2.1 (see [13]) Suppose ( )f t  is an ω-periodic continuous func-
tion on R, then 

( ) ( )
0

, e d ,i ta f f t t
ω λλ −= ∫                    (2.1) 

must exist, ( ),a f λ  is called the Fourier coefficient of ( )f t , the λ such that 
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( ), 0a f λ ≠  is called the Fourier index of ( )f t ; there is a countable set fΛ , 
when fλ ∈Λ , ( ), 0a f λ ≠ , as long as fλ ∉Λ , there must be ( ), 0a f λ = , 

fΛ  is called the exponential set of ( )f t . 
Definition 2.2 (see [13]) A set of real numbers composed of linear combina-

tions of integer coefficients of elements in fΛ  is called a module or a frequency 
module of ( )f t , which is denoted as ( )mod f , that is 

( )
1

mod | , , , 1, .
N

j j j j f
j

f n n N Z Nµ µ λ λ+

=

 
= = ∈ ≥ ∈Λ 
 

∑         (2.2) 

Lemma 2.1 (see [1]) Consider the following equation: 

( ) ( )d ,
d
x a t x b t
t
= +                       (2.3) 

where ( ) ( ),a t b t  are ω-periodic continuous functions on R, if ( )
0

d 0a t t
ω

≠∫ , 
then Equation (2.3) has a unique ω-periodic continuous solution ( )tη ,  

( ) ( ) ( )( )mod mod ,a t b tη ⊆ , and ( )tη  can be written as follows: 

( )
( ) ( ) ( )

( ) ( ) ( )

d

0

d

0

e d , d 0

e d , d 0

t
s

t
s

t a

a

t

b s s a t t
t

b s s a t t

ωτ τ

ωτ τ
η −∞

+∞

∫

∫

 <= 
− >

∫ ∫

∫ ∫
             (2.4) 

Lemma 2.2 (see [13]) Suppose that an ω-periodic sequence ( ){ }nf t  is con-
vergent uniformly on any compact set of R, ( )f t  is an ω-periodic function, 
and ( ) ( )( )mod mod 1,2,nf f n⊆ =  , then ( ){ }nf t  is convergent uniformly 
on R. 

Lemma 2.3 (see [14]) Suppose V is a metric space, C is a convex closed set of 
V, its boundary is C∂ , if :T V V→  is a continuous compact mapping, such 
that ( )T C C∂ ⊆ , then T has a fixed point on C. 

For the sake of convenience, suppose that ( )f t  is an ω-periodic continuous 
function on R, denote 

[ ]
( )

[ ]
( )

0,0,
sup , inf .M L tt

f f t f f t
ωω ∈∈

= =                 (2.5) 

3. A Unique Periodic Solution 

If n is an odd number and ( ) ( ) ( )0 0 , 0a t b t> < ≡ , it is easy to know that Equa-
tion (1.3) has a unique periodic continuous solution ( ) 0x t = ; Following we 
discuss the case ( ) 0b t ≡/ , and get two results about the existence of the periodic 
solution of Equation (1.3). 

Theorem 3.1 Consider Equation (1.3), n is an odd number, ( ) ( ),a t b t  are 
ω-periodic continuous functions on R, suppose that the following conditions 
hold: 

(H1) ( ) 0,a t >  

(H2) ( ) 0,b t ≡/  

then Equation (1.3) has a unique ω-periodic continuous solution ( )tγ , and 
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( ) .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

 

Proof (1) By (H1), (H2) and n is an odd number, according to the factorization 
of polynomials, we can get 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

1 2 3

3 2 1

2

d
d

.

n n n nn n

n n n

n n n

b t b t b tx a t x x x x
t a t a t a t

b t b t b t
x x

a t a t a t

− − −

− − −

    = + − +       
      − + − +                 



      (3.1) 

Suppose 

( ) ( ) ( ) ( ){ }, | .S t C R R t tϕ ϕ ω ϕ= ∈ + =              (3.2) 

Given any ( ) ( ),t t Sϕ ψ ∈ , the distance is defined as follows: 

( )
[ ]

( ) ( )
0,

, sup ,
t

t t
ω

ρ ϕ ψ ϕ ψ
∈

= −                 (3.3) 

thus ( ),S ρ  is a complete metric space. Take a convex closed set B of S as fol-
lows: 

( ) ( ) ( ) ( )| ,mod mod , .n n

L M

b bB t S t a b
a a

ϕ ϕ ϕ
     = ∈ − ≤ ≤ − ⊆            

  (3.4) 

Given any ( )t Bϕ ∈ , consider the following equation: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( )
( )

2

1 2 3

3 2 1

2

d
d

.

n n n nn n

n n n

n n n

b t b t b tx a t x t t t
t a t a t a t

b t b t b t
t t

a t a t a t

ϕ ϕ ϕ

ϕ ϕ

− − −

− − −

    = + − +       
      − + − +                 



  (3.5) 

Let 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )
( )
( )

2

1 2 3

3 2 1

2 ,

n n n nn

n n n

n n n

b t b t
f t a t t t t

a t a t

b t b t b t
t t

a t a t a t

ϕ ϕ ϕ

ϕ ϕ

− − −

− − −

  = − +     
      − + − +                 



   (3.6) 

then (3.5) becomes 

( ) ( )
( ) ( ) ( ) ( )

( )
d .
d

n n
b t b tx f t x f t x f t

t a t a t

 
 = + = +
 
 

            (3.7) 

By (3.4) and (3.6), we have 

( ) ( )mod mod , .f a b⊆                      (3.8) 
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By (H1), (H2), (3.4) and (3.6), we get that 

( )
1 1

0 < ,
n n

n n
L M

L M

b bna f t na
a a

− −         ≤ ≤            
           (3.9) 

thus we have 

( )
0

d 0.f t t
ω

>∫                         (3.10) 

Since ( )a t , ( )b t , ( )tϕ  are ω-periodic continuous functions on R, ( )f t , 

( ) ( )
( )

n
b t

f t
a t

−  are ω-periodic continuous functions on R, by (3.10), according to 

Lemma 2.1, Equation (3.7) has a unique ω-periodic continuous solution as fol-
lows: 

( ) ( ) ( ) ( )
( )

de d ,
t
s f

n
t

b s
t f s s

a s
τ τη

+∞ ∫= −∫                (3.11) 

and 

( ) ( ) ( ) ( )
( )

mod mod , .n
b t

f t f t
a t

η
 
 ⊆ −
 
 

             (3.12) 

By (3.8) and (3.12), it follows 

( ) ( )mod mod , .a bη ⊆                    (3.13) 

By (H1), (H2), (3.9) and (3.11), we get 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

e 1 ,

t t
s s

t t
s s

t

f fnn
t t

M

tf fn n
t s tM M

fn n n

M M L

b s bt f s s f s s
a s a

b bf
a a

b b bt
a a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

+∞

+∞ +∞

+∞
+∞

∫ ∫

∫ ∫

∫

 
= − ≥ −  

 

     = =            

      = − −∞ < < +∞ = − = −                 

∫ ∫

∫ ∫  

and 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

e 1 ,

t t
s s

t t
s s

t

f fnn
t t

L

tf fn n
t s tL L

fn n n

L L M

b s bt f s s f s s
a s a

b bf
a a

b b bt
a a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

+∞

+∞ +∞

+∞
+∞

∫ ∫

∫ ∫

∫

 
= − ≤ −  

 

     = =            

      = − −∞ < < +∞ = − = −                 

∫ ∫

∫ ∫  

hence, ( )t Bη ∈ . 
Define a mapping as follows: 

( )( ) ( ) ( ) ( )
( )

de d ,
t
s f

n
t

b s
T t f s s

a s
τ τϕ

+∞ ∫= −∫              (3.14) 

thus if given any ( )t Bϕ ∈ , then ( )( )T t Bϕ ∈ , hence :T B B→ . 
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Now, we prove that the mapping T is a compact mapping. 
Consider any sequence ( ){ } ( )1, 2,k t B kϕ ⊆ =  , then it follows 

( ) ( ) ( ) ( ),mod mod , , 1, 2,n n
k k

L M

b bt a b k
a a

ϕ ϕ
   

− ≤ ≤ − ⊆ =      
   

    (3.15) 

On the other hand, ( )( ) ( )
kkT t x tϕϕ =  satisfies 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )
( )
( )

2

1 2 3

3 2 1

2

d
d

,

k
k

n n n nn nk k k

n n n

n n n
k k

x t b t b t b t
a t x t t t t

t a t a t a t

b t b t b t
t t

a t a t a t

ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ

− − −

− − −

    = + − +       
      − + − +                 



  

(3.16) 
thus we have 

( ) ( )
( )

( )
( )

1d
2 ,

d
k

n

nnM

M M

x t b t b t
na

t a t a t
ϕ

−  
  ≤        

           (3.17) 

( )( ) ( )mod mod , ,
k

x t a bϕ ⊆                   (3.18) 

hence 
( )d

d
k

x t
t

ϕ  
 
  

 is uniformly bounded, therefore, ( ){ }k
x tϕ  is uniformly  

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence ( ){ }k

x t Bϕ ⊆ , there exists a subsequence (also denoted by ( ){ }k
x tϕ ) 

such that ( ){ }k
x tϕ  is convergent uniformly on any compact set of R. By (3.18), 

combined with Lemma 2.2, ( ){ }k
x tϕ  is convergent uniformly on R, that is to 

say, T is relatively compact on B. 
Next, we prove that T is a continuous mapping. 
Suppose ( ){ } ( ),k t B t Bϕ ϕ⊆ ∈ , and 

( ) ( ) ( ),k t t kϕ ϕ→ →∞                    (3.19) 

Let 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )
( )
( )

2

1 2 3

3 2 1

2 ,

n n n nnk k k k

n n n

n n n
k k

b t b t
f t a t t t t

a t a t

b t b t b t
t t

a t a t a t

ϕ ϕ ϕ

ϕ ϕ

− − −

− − −

  = − +     
      − + − +                 



  (3.20) 

then it follows 

( ) ( ) ( ),kf t f t k→ →∞                    (3.21) 

and 

( )
1 1

0 .
n n

n n
L k M

L M

b bna f t na
a a

− −         < ≤ ≤            
        (3.22) 
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By (3.14), we have 

( )( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

d d

d d

d

e d e d

e e d

e d

t t
ks s

t t
ks s

t
ks

k

f f
n nkt t

f f
n

t

f
nkt

T t T t

b s b s
f s s f s s

a s a s

b s
f s s

a s

b s
f s f s s

a s

τ τ τ τ

τ τ τ τ

τ τ

ϕ ϕ

+∞ +∞

+∞

+∞

∫ ∫

∫ ∫

∫

−

= −

= −

+ −

∫ ∫

∫

∫

 

( ) ( )( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

d

d

e d d

e d

e d d e d , ,

t
ks

t
ks

t
nkt s

f
nkt

t f
n n kt s t

b s
f f f s s

a s

b s
f s f s s

a s

b s b s
f s s s f f

a s a s

ξ

τ τ

τ τξ

τ τ τ

τ ρ

+∞

+∞

+∞ +∞

∫

∫

= −

+ −

 
 ≤ +
 
 

∫ ∫

∫

∫ ∫ ∫

 

here, ξ  is between ( )dt
ks

f τ τ∫  and ( )dt

s
f τ τ∫ , thus ξ  is between  

( )
1n

n
M

M

bna t s
a

−    −    
 and ( )

1n

n
L

L

bna t s
a

−    −    
, hence we have 

( )( ) ( )( )

( )

( ) ( )
( )

( ) ( )
( ) ( )

1

1

e d d

e d ,

n
nL

L

n
nL

L

k

bna t s
a t

n
t s

bna t s
a

n kt

T t T t

b s
f s s

a s

b s
s f f

a s

ϕ ϕ

τ

ρ

−

−

 
   −    +∞  

 
   −    +∞  

−




≤ 






+ 



∫ ∫

∫

 

( )

( ) ( ) ( )
( )

( ) ( )
( ) ( )

1

1

1

2 11

e d

e d ,

n
nL

L

n
nL

L

bna t s
a

n
t

bna t s
a

n kt

n

n n nM

MM M

nn
nn LL

LL

b s
s t f s s

a s

b s
s f f

a s

b b ba
a a a

bb nan a aa

ρ

−

−

 
   −    +∞  

 
   −    +∞  

−

−−

= −

+

                      ≤ +
                       

∫

∫

( ), ,kf fρ
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thus we can get 

( ) ( )

1

2 11

, , .

n

n n nM

MM M
k knn

nn LL
LL

b b ba
a a a

T T f f
bb nan a aa

ρ ϕ ϕ ρ

−

−−

                         ≤ +                          

 (3.23) 

By (3.21) and (3.23), it follows 

( )( ) ( )( ) ( ),kT t T t kϕ ϕ→ →∞                   (3.24) 

therefore, T is continuous. By (3.14), easy to see, ( )T B B∂ ⊆ . According to 
Lemma 2.3, T has at least a fixed point on B, the fixed point is the ω-periodic 
continuous solution ( )tγ  of Equation (1.3), and 

( ) .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                  (3.25) 

(3) We prove that Equation (1.3) has a unique periodic solution. 
Let us discuss the possible range of ( )x t  of Equation (1.3), we divide the ini-

tial value ( )0 0x t x=  into the following parts: 

0 , , , , , .n n n n

L L M M

b b b bx
a a a a

            
   ∈ −∞ − − − − +∞                               

     (3.26) 

Let 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

1 2 3

3 2 1

2

,

.

n

n n n nn n

n n n

n n n

g t x a t x b t

b t b t b t
a t x x x x

a t a t a t

b t b t b t
x x

a t a t a t

− − −

− − −

= +

    = + − +       
      − + − +                 



     (3.27) 

Then we have 

( ) ( ) 1, .n
xg t x na t x −′ =                     (3.28) 

(I) If 0 , n

L

bx
a

  
 ∈ −∞ −     

. 

Consider Equation (1.3), we have 
( )

( )
0 0

0 0
,

d , 0
d t x

x g t x
t

= < , thus ( )x t  may 

stay at , n

L

b
a

  
 −∞ −     

, then ( )d , 0
d
x g t x
t
= < , thus ( )x t  cannot be a periodic 

solution of Equation (1.3). 

(II) If 0 ,n n

L M

b bx
a a

    
∈ − −            

, then Equation (1.3) has an ω-periodic con-
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tinuous solution ( ) ( )x t tγ=  with initial value ( ) ( )0 0x t tγ= . 

By (3.28), we have 

( )
( )

, 0.nx

b t
g t

a t

 
′  − >
 
 

 

Since 

( ) ,n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                 (3.29) 

by (3.28) and (3.29), it follows 

( )( ), 0.xg t tγ′ >                       (3.30) 

Now, we suppose that there is another ω-periodic continuous solution ( )tΨ  
of Equation (1.3) which satisfies 

( ) .n n

L M

b bt
a a

   
− ≤ Ψ ≤ −      

   
                (3.31) 

Because ( ),g t x  is a polynomial function with continuous partial derivatives 
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial 
value problems of differential equations, thus 

( ) ( ) ( )0 .t t t Rγ< −Ψ < +∞ ∀ ∈                (3.32) 

By (3.28) and (3.31), it follows 

( )( ), 0.xg t t′ Ψ >                      (3.33) 

Consider the following equation: 

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

d
, ,

d
, , 0 1x

t t
g t t g t t

t
g t t t t t t

γ
γ

θ γ γ θ

−Ψ   = − Ψ

 ′= Ψ + −Ψ −Ψ < < 

     (3.34) 

thus we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 , d0 0 e .
t

xg s s s s st t θ γγ γ  ′ Ψ + −Ψ ∫−Ψ = −Ψ         (3.35) 

By (3.29) and (3.31), it follows 

( ) ( ) ( )( ) .n n

L M

b bt t t
a a

θ γ
   

− ≤ Ψ + −Ψ ≤ −      
   

         (3.36) 

By (3.28) and (3.36), it follows 

( ) ( ) ( )( ), 0.xg t t t tθ γ ′ Ψ + −Ψ >                (3.37) 

By (3.35) and (3.37), it follows 

( ) ( ) ( ),t t tγΨ − → +∞ → +∞                (3.38) 

By (3.32) and (3.38), this is a contradiction, thus ( )tΨ  cannot be a periodic 
solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique 
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ω-periodic continuous solution ( )tγ  which satisfies 

( ) .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                (3.39) 

(III) If 0 ,n

M

bx
a

  
 ∈ − +∞     

. 

Consider Equation (1.3), we have 
( )

( )
0 0

0 0
,

d , 0
d t x

x g t x
t

= > , thus ( )x t  may stay 

at ,n

M

b
a

  
− +∞      

 or ( ) ( )x t t→ +∞ → +∞ , if ( )x t  stays at ,n

M

b
a

  
− +∞      

, 

we have ( )d , 0
d
x g t x
t
= > , then ( )x t  cannot be a periodic solution of Equation 

(1.3), if ( ) ( )x t t→ +∞ → +∞ , then ( )x t  can also not be a periodic solution of 
Equation (1.3). 

To sum up, Equation (1.3) has a unique ω-periodic continuous solution ( )tγ  
which satisfies 

( ) .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                   (3.40) 

This is the end of the proof of Theorem 3.1. 
Similarly, we can get 
Theorem 3.2 Consider Equation (1.3), n is an odd number, ( ) ( ),a t b t  are 

ω-periodic continuous functions on R, suppose that the following conditions 
hold: 

(H1) ( ) 0,a t <  

(H2) ( ) 0,b t ≡/  

then Equation (1.3) has a unique ω-periodic continuous solution ( )tγ , and 

( ) .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

 

4. Two Periodic Solutions 

In this section, when ( )2n n ≥  is an even number, we discuss the number of 
periodic solutions of Equation (1.3). Since the factorization of polynomial 

n nx y−  varies with n when n is an even number, here we only prove the case 
when 2 ,mn m N += ∈ ; When n is any other even number, the results are the 
same as those of the following Theorem 4.1 and Theorem 4.2, the proofs are also 
similar as those of Theorem 4.1 and Theorem 4.2, so we omit them here, in this 
section, we get two results. 

Theorem 4.1 Consider Equation (1.3), ( )2 ,mn n m N += ∈  is an even num-
ber, ( ) ( ),a t b t  are ω-periodic continuous functions on R, suppose that the fol-
lowing conditions hold: 
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(H1) ( ) 0,a t >  

(H2) ( ) 0,b t <  

then Equation (1.3) has exactly two ω-periodic continuous solutions ( )1 tγ  and 
( )2 tγ , and 

( )1 ,n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

 

( )2 .n n

M L

b bt
a a

γ
   

− − ≤ ≤ − −      
   

 

Proof (1) By (H1) and (H2), Equation (1.3) can be written as follows: 

( ) ( ) ( )
( ) ( ) ( )

( )

( )
( )

( )
( )

2 4 4
d
d

.

n n

n n

b t b tx a t x t x t
t a t a t

b t b t
x x

a t a t

  
  = + − + −
  
  

  
  ⋅ + − − −
  
  



         (4.1) 

Suppose 

( ) ( ) ( ) ( ){ }, | .S t C R R t tϕ ϕ ω ϕ= ∈ + =              (4.2) 

Given any ( ) ( ),t t Sϕ ψ ∈ , the distance is defined as follows: 

( )
[ ]

( ) ( )
0,

, sup ,
t

t t
ω

ρ ϕ ψ ϕ ψ
∈

= −                  (4.3) 

thus ( ),S ρ  is a complete metric space. Take a convex closed set 1B  of S as 
follows: 

( ) ( ) ( ) ( )1 | ,mod mod , .n n

M L

b bB t S t a b
a a

ϕ ϕ ϕ
     = ∈ − − ≤ ≤ − − ⊆            

 (4.4) 

Given any ( ) 1t Bϕ ∈ , consider the following equation: 

( ) ( ) ( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

2 4 4
d
d

.

n n

n n

b t b tx a t t t
t a t a t

b t b t
x t

a t a t

ϕ ϕ

ϕ

  
  = + − + −
  
  

  
  ⋅ + − − −
  
  



          (4.5) 

Let 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 4 4 ,
n n

n
b t b t b t

f t a t t t t
a t a t a t

ϕ ϕ ϕ
    
    = + − + − − −
    
    

   (4.6) 

then (4.5) becomes 

( ) ( )
( ) ( ) ( ) ( )

( )
d .
d

n n
b t b tx f t x f t x f t

t a t a t

 
 = + − = + −
 
 

          (4.7) 

By (4.4) and (4.6), we have 
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( ) ( )mod mod , .f a b⊆                     (4.8) 

By (H1), (H2), (4.4) and (4.6), we get that 

( )

2

2

log 4

log 4

2

2 0,

n

n

n
M

M M M

n
L

L L L

b b ba
a a a

b b bf t a
a a a

     
− − − −          

     

     
≤ ≤ − − − − <          

     





         (4.9) 

thus we have 

( )
0

d 0.f t t
ω

<∫                       (4.10) 

Since ( )a t , ( )b t , ( )tϕ  are ω-periodic continuous functions on R, ( )f t , 

( ) ( )
( )

n
b t

f t
a t

−  are ω-periodic continuous functions on R, by (4.10), according to 

Lemma 2.1, Equation (4.7) has a unique ω-periodic continuous solution as fol-
lows: 

( ) ( ) ( ) ( )
( )

de d ,
t
s

t f
n

b s
t f s s

a s
τ τη

−∞

∫= −∫               (4.11) 

and 

( ) ( ) ( ) ( )
( )

mod mod , .n
b t

f t f t
a t

η
 
 ⊆ −
 
 

            (4.12) 

By (4.4), (4.6) and (4.12), it follows 

( ) ( )mod mod , .a bη ⊆                   (4.13) 

By (H1), (H2), (4.9) and (4.11), we get 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

1 e ,

t t
s s

t t
s s

t

t tf fnn

M

tt tf fn n
s

M M

fn n

M M

b s bt f s s f s s
a s a

b bf
a a

b bt
a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

−∞

−∞ −∞

−∞
−∞

∫ ∫

∫ ∫

∫

 
= − ≥ −  

 

     = − − = − −            

    = − − − −∞ < < +∞ = − −           

∫ ∫

∫ ∫  

and 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

1 e 1 ,

t t
s s

t t
s s

t

t tf fnn

L

tt tf fn n
s

L L

fn n

L L

b s bt f s s f s s
a s a

b bf
a a

b bt
a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

−∞

−∞ −∞

−∞
−∞

∫ ∫

∫ ∫

∫

 
= − ≤ −  

 

     = − − = − −            

    = − − − − −∞ < < +∞ = − −           

∫ ∫

∫ ∫  

hence, ( ) 1t Bη ∈ . 
Define a mapping as follows: 
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( )( ) ( ) ( ) ( )
( )

de d ,
t
s

t f
n

b s
T t f s s

a s
τ τϕ

−∞

∫= −∫              (4.14) 

thus if given any ( ) 1t Bϕ ∈ , then ( )( ) 1T t Bϕ ∈ , hence 1 1:T B B→ . 
Now, we prove that the mapping T is a compact mapping. 
Consider any sequence ( ){ } ( )1 1, 2,k t B kϕ ⊆ =  , then it follows 

( ) ( ) ( ) ( ),mod mod , , 1, 2,n n
k k

M L

b bt a b k
a a

ϕ ϕ
   

− − ≤ ≤ − − ⊆ =      
   

  (4.15) 

On the other hand, ( )( ) ( )
kkT t x tϕϕ =  satisfies 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )

2 4 4
d

d

,

k

k

n n

k k

n nk

x t b t b t
a t t t

t a t a t

b t b t
x t t

a t a t

ϕ

ϕ

ϕ ϕ

ϕ

  
  = + − + −
  
  

  
  ⋅ + − − −
  
  



      (4.16) 

thus we have 

( )
2

2

log 1 4
d

2 ,
d

nk n
M

M M M

x t b b ba
t a a a

ϕ +      
≤ − − −          

     
  

( )( ) ( )mod mod , ,
k

x t a bϕ ⊆                  (4.17) 

hence 
( )d

d
k

x t
t

ϕ  
 
  

 is uniformly bounded, therefore, ( ){ }k
x tϕ  is uniformly  

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence ( ){ } 1k

x t Bϕ ⊆ , there exists a subsequence (also denoted by ( ){ }k
x tϕ ) 

such that ( ){ }k
x tϕ  is convergent uniformly on any compact set of R. By (4.17), 

combined with Lemma 2.2, ( ){ }k
x tϕ  is convergent uniformly on R, that is to 

say, T is relatively compact on 1B . 
Next, we prove that T is a continuous mapping. 
Suppose ( ){ } ( )1 1,k t B t Bϕ ϕ⊆ ∈ , and 

( ) ( ) ( ),k t t kϕ ϕ→ →∞                    (4.18) 

Denote 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 4 4 ,
n n

nk k k k

b t b t b t
f t a t t t t

a t a t a t
ϕ ϕ ϕ
    
    = + − + − − −
    
    

  (4.19) 

then it follows 

( ) ( ) ( ),kf t f t k→ →∞                    (4.20) 

and 

( )

4
2

4
2

2 log

2log 0.

n n
M

M M M

n n
k L

L L L

b b ba
a a a

b b bf t a
a a a

     
− − − −          

     

     
≤ ≤ − − − − <          

     





 

By (4.14), we have 
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( )( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

d d

d d d

e d e d

e e d e d

t t
ks s

t t t
k ks s s

k

t tf f
n nk

t tf f f
n nk

T t T t

b s b s
f s s f s s

a s a s

b s b s
f s s f s f s s

a s a s

τ τ τ τ

τ τ τ τ τ τ

ϕ ϕ

−∞ −∞

−∞ −∞

∫ ∫

∫ ∫ ∫

−

= − − −

= − − + − −

∫ ∫

∫ ∫

 

( ) ( )( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

d

d

e d d

e d

e d d e d , ,

t
ks

t
ks

t t
nks

t f
nk

t t t f
n n ks

b s
f f f s s

a s

b s
f s f s s

a s

b s b s
f s s s f f

a s a s

ξ

τ τ

τ τξ

τ τ τ

τ ρ

−∞

−∞

−∞ −∞

∫

∫

= − −

+ − −

≤ − + −

∫ ∫

∫

∫ ∫ ∫

 

here, ξ  is between ( )dt
ks

f τ τ∫  and ( )dt

s
f τ τ∫ , thus ξ  is between 

( )4
22 logn n

M
M M M

b b ba t s
a a a

     
− − − − −          

     
  

and 

( )4
22 log ,n n

L
L L L

b b ba t s
a a a

     
− − − − −          

     
  

hence we have 

( )( ) ( )( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

42

42

2log

2log

e d d

e d ,

n nL
L L L

n nL
L L L

k

b b ba t st ta a a
n

s

b b ba t st a a a
n k

T t T t

b s
f s s

a s

b s
s f f

a s

ϕ ϕ

τ

ρ

     
− − − − −          

     
−∞

     
− − − − −          

     
−∞

−

≤ −

+ −

∫ ∫

∫





 

( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

42

42

2log

2log

4

2

e d

e d ,

2 log

n nL
L L L

n nL
L L L

b b ba t st a a a
n

b b ba t st a a a
n k

n n
M

M M M M

b s
t s f s s

a s

b s
s f f

a s

b b b ba
a a a a

ρ

     
− − − − −          

     
−∞

     
− − − − −          

     
−∞

= − −

+ −

       
− − − −              

       ≤

∫

∫







( )

2

4

4
2

, ,
2 log

n n
L

L L L

n

M
k

n n
L

L L L

b b ba
a a a

b
a

f f
b b ba
a a a

ρ





       
 − − −                   

 
−     +       − − −                 
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thus we can get 

( )

( )

2

4

2

4
2

4
2

,

2 log

, .
2 log

n
M

M M M
k

n n
L

L L L

n

M
k

n n
L

L L L

b b ba
a a a

T T
b b ba
a a a

b
a

f f
b b ba
a a a

ρ ϕ ϕ

ρ

       − − −                ≤
       
 − − −                   

 
−     +       − − −                 







 

By (4.20) and the above inequality, it follows 

( )( ) ( )( ) ( ),kT t T t kϕ ϕ→ →∞                 (4.21) 

therefore, T is continuous. By (4.14), easy to see, ( )1 1T B B∂ ⊆ . According to 
Lemma 2.3, T has at least a fixed point on 1B , the fixed point is the ω-periodic 
continuous solution ( )1 tγ  of Equation (1.3), and 

( )1 .n n

M L

b bt
a a

γ
   

− − ≤ ≤ − −      
   

               (4.22) 

(2) Suppose 
( ) ( ) ( ) ( ){ }, | .S t C R R t tϕ ϕ ω ϕ= ∈ + =             (4.23) 

Given any ( ) ( ),t t Sϕ ψ ∈ , the distance is defined as follows: 

( )
[ ]

( ) ( )
0,

, sup ,
t

t t
ω

ρ ϕ ψ ϕ ψ
∈

= −                 (4.24) 

thus ( ),S ρ  is a complete metric space. Take a convex closed set B2 of S as fol-
lows: 

( ) ( ) ( ) ( )2 | ,mod mod , .n n

L M

b bB t S t a b
a a

ϕ ϕ ϕ
     = ∈ − ≤ ≤ − ⊆            

 (4.25) 

Given any ( ) 2t Bϕ ∈ , consider the following equation: 

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( )

( )
( )

2 4 4
d
d

.

n n

n n

b t b tx a t t t
t a t a t

b t b t
t x

a t a t

ϕ ϕ

ϕ

  
  = + − + −
  
  

  
  ⋅ + − − −
  
  



        (4.26) 

Let 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 4 4 ,
n n

n
b t b t b t

g t a t t t t
a t a t a t

ϕ ϕ ϕ
    
    = + − + − + −
    
    

  (4.27) 

then (4.26) becomes 

( ) ( )
( ) ( ) ( ) ( )

( )
d .
d

n n
b t b tx g t x g t x g t

t a t a t

 
 = − − = − −
 
 

         (4.28) 
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By (4.25) and (4.27), we have 

( ) ( )mod mod , .g a b⊆                    (4.29) 

By (H1), (H2), (4.25) and (4.27), we get that 

( )

2

2

log 4

log 4

0 2

2 ,

n

n

n
L

L L L

n
M

M M M

b b ba
a a a

b b bg t a
a a a

     
< − − −          

     

     
≤ ≤ − − −          

     





        (4.30) 

thus we have 

( )
0

d 0.g t t
ω

>∫                       (4.31) 

Since ( )a t , ( )b t , ( )tϕ  are ω-periodic continuous functions on R, ( )g t , 

( ) ( )
( )

n
b t

g t
a t

− −  are ω-periodic continuous functions on R, by (4.31), according 

to Lemma 2.1, Equation (4.28) has a unique ω-periodic continuous solution as 
follows: 

( ) ( ) ( ) ( )
( )

de d ,
t
s g

n
t

b s
t g s s

a s
τ τη

+∞ ∫= −∫                (4.32) 

and 

( ) ( ) ( ) ( )
( )

mod mod , .n
b t

g t g t
a t

η
 
 ⊆ −
 
 

             (4.33) 

By (4.29) and (4.33), it follows 

( ) ( )mod mod , .a bη ⊆                    (4.34) 

By (H1), (H2), (4.30) and (4.32), we get 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

e 1 ,

t t
s s

t t
s s

t

g gnn
t t

L

tg gn n
t s tL L

gn n

L L

b s bt g s s g s s
a s a

b bg
a a

b bt
a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

+∞

+∞ +∞

+∞
+∞

∫ ∫

∫ ∫

∫

 
= − ≥ −  

 

     = − − = − −            

    = − − − −∞ < < +∞ = −           

∫ ∫

∫ ∫  

and 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

d d

d d

d

e d e d

e d d e

e 1 ,

t t
s s

t t
s s

t

g gnn
t t

M

tg gn n
t s tM M

gn n

M M

b s bt g s s g s s
a s a

b bg
a a

b bt
a a

τ τ τ τ

τ τ τ τ

τ τ

η

τ τ

+∞

+∞ +∞

+∞
+∞

∫ ∫

∫ ∫

∫

 
= − ≤ −  

 

     = − − = − −            

    = − − − −∞ < < +∞ = −           

∫ ∫

∫ ∫  

hence, ( ) 2 .t Bη ∈  
Define a mapping as follows: 
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( )( ) ( ) ( ) ( )
( )

de d ,
t
s g

n
t

b s
T t g s s

a s
τ τϕ

+∞ ∫= −∫               (4.35) 

thus if given any ( ) 2t Bϕ ∈ , then ( )( ) 2T t Bϕ ∈ , hence 2 2:T B B→ . 
Now, we prove that the mapping T is a compact mapping. 
Consider any sequence ( ){ } ( )2 1, 2,k t B kϕ ⊆ =  , then it follows 

( ) ( ) ( ) ( ),mod mod , , 1, 2,n n
k k

L M

b bt a b k
a a

ϕ ϕ
   

− ≤ ≤ − ⊆ =      
   

    (4.36) 

On the other hand, ( )( ) ( )
kkT t x tϕϕ =  satisfies 

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )

2 4 4
d

d

.

k

k

n n

k k

n nk

x t b t b t
a t t t

t a t a t

b t b t
t x t

a t a t

ϕ

ϕ

ϕ ϕ

ϕ

  
  = + − + −
  
  

  
  ⋅ + − − −
  
  



      (4.37) 

thus we have 

( )
2

2

log 1 4
d

2 ,
d

nk n
M

M M M

x t b b ba
t a a a

ϕ +      
≤ − − −          

     
  

( )( ) ( )mod mod , ,
k

x t a bϕ ⊆                  (4.38) 

hence 
( )d

d
k

x t
t

ϕ  
 
  

 is uniformly bounded, therefore, ( ){ }k
x tϕ  is uniformly  

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence ( ){ } 2k

x t Bϕ ⊆ , there exists a subsequence (also denoted by ( ){ }k
x tϕ ) 

such that ( ){ }k
x tϕ  is convergent uniformly on any compact set of R. By (4.38), 

combined with Lemma 2.2, ( ){ }k
x tϕ  is convergent uniformly on R, that is to 

say, T is relatively compact on 2B . 
Next, we prove that T is a continuous mapping. 
Suppose ( ){ } ( )2 2,k t B t Bϕ ϕ⊆ ∈ , and 

( ) ( ) ( ),k t t kϕ ϕ→ →∞                    (4.39) 

Denote 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 4 4 ,
n n

nk k k k

b t b t b t
g t a t t t t

a t a t a t
ϕ ϕ ϕ
    
    = + − + − + −
    
    

  (4.40) 

then it follows 
( ) ( ) ( ),kg t g t k→ →∞                   (4.41) 

and 

( )

2

2

log 4

log 4

0 2

2 .

n

n

n
L

L L L

n
k M

M M M

b b ba
a a a

b b bg t a
a a a

     
< − − −          

     

     
≤ ≤ − − −          

     





 

By (4.35), we have 
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( )( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

d d

d d d

e d e d

e e d e d

t t
ks s

t t t
k ks s s

k

g g
n nkt t

g g g
n nkt t

T t T t

b s b s
g s s g s s

a s a s

b s b s
g s s g s g s s

a s a s

τ τ τ τ

τ τ τ τ τ τ

ϕ ϕ

+∞ +∞

+∞ +∞

∫ ∫

∫ ∫ ∫

−

= − − −

= − − + − −

∫ ∫

∫ ∫

 

( ) ( )( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

d

d

e d d

e d

e d d e d , ,

t
ks

t
ks

t
nkt s

g
nkt

t g
n n kt s t

b s
g g g s s

a s

b s
g s g s s

a s

b s b s
g s s s g g

a s a s

ξ

τ τ

τ τξ

τ τ τ

τ ρ

+∞

+∞

+∞ +∞

∫

∫

= − −

+ − −

≤ − + −

∫ ∫

∫

∫ ∫ ∫

 

here, ξ  is between ( )dt
ks

g τ τ∫  and ( )dt

s
g τ τ∫ , thus ξ  is between 

( )2log 42
n

n
M

M M M

b b ba t s
a a a

     
− − − −          

     
  

and 

( )2log 42 ,
n

n
L

L L L

b b ba t s
a a a

     
− − − −          

     
  

hence we have 

( )( ) ( )( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

log2 4

log2 4

2

2

e d d

e d ,

n
nL

L L L

n
nL

L L L

k

b b ba t s ta a a
n

t s

b b ba t s
a a a

n kt

T t T t

b s
g s s

a s

b s
s g g

a s

ϕ ϕ

τ

ρ

     
− − − −          +∞      

     
− − − −          +∞      

−

≤ −

+ −

∫ ∫

∫





 

( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

log2 4

log2 4

2

2

2

4

log

e d

e d ,

2

n
nL

L L L

n
nL

L L L

n

b b ba t s
a a a

n
t

b b ba t s
a a a

n kt

n n
M

M M M M

b s
s t g s s

a s

b s
s g g

a s

b b b ba
a a a a

a

ρ

     
− − − −          +∞      

     
− − − −          +∞      

= − −

+ −

       
− − − −              

       ≤

∫

∫







( )
2

2

4

log 4

, ,
2

n

n
L

L L L

n

M
k

n
L

L L L

b b b
a a a

b
a

g g
b b ba
a a a

ρ





       
 − − −                   

 
−     +       − − −                 
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thus we can get 

( )

( )

2

2

2

4

2

log 4

log 4

,

2

, .
2

n

n

n
M

M M M
k

n
L

L L L

n

M
k

n
L

L L L

b b ba
a a a

T T
b b ba
a a a

b
a

g g
b b ba
a a a

ρ ϕ ϕ

ρ

       − − −                ≤
       
 − − −                   

 
−     +       − − −                 







   (4.42) 

By (4.41) and (4.42), it follows 

( )( ) ( )( ) ( ),kT t T t kϕ ϕ→ →∞                  (4.43) 

therefore, T is continuous. By (4.35), easy to see, ( )2 2T B B∂ ⊆ . According to 
Lemma 2.3, T has at least a fixed point on B2, the fixed point is the ω-periodic 
continuous solution ( )2 tγ  of Equation (1.3), and 

( )2 .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                (4.44) 

(3) We prove that Equation (1.3) has exactly two periodic solutions. 
Let us discuss the possible range of ( )x t  of Equation (1.3), we divide the ini-

tial value ( )0 0x t x=  into the following parts: 

0 , , , , , ,

, , , .

n n n n n

L L M M L

n n n

L M M

b b b b bx
a a a a a

b b b
a a a

              
   ∈ −∞ − − − − − − − − −                                     
        

 − − − +∞                     

 

Let 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 4 4

, n

n n

n n

h t x a t x b t

b t b t b t b t
a t x x x x

a t a t a t a t

= +

     
     = + − + − + − − −
     
     



 (4.45) 

Then we have 

( ) ( ) 1, .n
xh t x na t x −′ =                     (4.46) 

(I) If 0 , n

L

bx
a

  
 ∈ −∞ − −     

. 

Consider Equation (1.3), we have 
( )

( )
0 0

0 0
,

d , 0
d t x

x h t x
t

= > , thus ( )x t  may stay 

at , n

L

b
a

  
 −∞ − −     

 or enter into ,n n

L M

b b
a a

    
− − − −            

 at some time t, if 
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( )x t  stays at , n

L

b
a

  
−∞ − −      

, then ( )d , 0
d
x h t x
t
= > , thus ( )x t  can not be a 

periodic solution of Equation (1.3), if ( )x t  enters into ,n n

L M

b b
a a

    
− − − −            

 

at some time t, then there is not a ( )1 1 0t t t>  such that ( ) ( )1 0 0x t x t x= = , thus 

( )x t  can also not be a periodic solution of Equation (1.3). 

(II) If 0 ,n n

L M

b bx
a a

    
∈ − − − −            

, then Equation (1.3) has an ω-periodic 

continuous solution ( ) ( )1x t tγ=  with initial value ( ) ( )0 1 0x t tγ= . 

Since 
( )
( )

( )
( )

, , 0n n
b t b t

h t h t
a t a t

   
   − − = − =
   
   

, by differential mean value theo-

rem, it follows 

( )( ) ( )
( ) ( ) ( )

( )
, 0, .n nx

b t b t
h t t t

a t a t
ξ ξ

 
′  = − − < < −

 
 

 

By (4.46), we have 

( )
( )

, 0,nx

b t
h t

a t

 
′  − − <
 
 

                    (4.47) 

( )
( )

, 0.nx

b t
h t

a t

 
′  − >
 
 

                    (4.48) 

Since 

( )1 ,n n

L M

b bt
a a

γ
   
− − ≤ ≤ − −      
   

               (4.49) 

by (4.46) and (4.49), it follows 

( )( )1, 0.xh t tγ′ <                      (4.50) 

Now, we suppose that there is another ω-periodic continuous solution ( )1 tΨ  
of Equation (1.3) which satisfies 

( )1 .n n

L M

b bt
a a

   
− − ≤ Ψ ≤ − −      
   

               (4.51) 

Because ( ),h t x  is a polynomial function with continuous partial derivatives 
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial 
value problems of differential equations, thus 

( ) ( ) ( )1 1 0 .t t t Rγ −Ψ > ∀ ∈                  (4.52) 

By (4.46) and (4.51), it follows 

( )( )1, 0.xh t t′ Ψ <                       (4.53) 

Consider the following equation: 
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( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1
1 1

1 1 1 1 1 1 1

d
, ,

d
, , 0 1x

t t
h t t h t t

t
h t t t t t t

γ
γ

θ γ γ θ

−Ψ   = − Ψ

 ′= Ψ + −Ψ −Ψ < < 

    (4.54) 

thus we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 10 , d
1 1 1 10 0 e .

t
xh s s s s st t θ γγ γ  ′ Ψ + −Ψ ∫−Ψ = −Ψ       (4.55) 

By (4.49) and (4.51), it follows 

( ) ( ) ( )( )1 1 1 1 .n n

L M

b bt t t
a a

θ γ
   
− − ≤ Ψ + −Ψ ≤ − −      
   

       (4.56) 

By (4.46) and (4.56), it follows 

( ) ( ) ( )( )1 1 1 1, 0.xh t t t tθ γ ′ Ψ + −Ψ <                (4.57) 

By (4.55) and (4.57), it follows 

( ) ( ) ( )1 1 0,t t tγ −Ψ → → +∞                  (4.58) 

By (4.52) and (4.58), this is a contradiction, thus ( )1 tΨ  cannot be a periodic 
solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique 
ω-periodic continuous solution ( )1 tγ  which satisfies 

( )1 .n n

L M

b bt
a a

γ
   
− − ≤ ≤ − −      
   

               (4.59) 

(III) If 0 ,n n

M L

b bx
a a

    
 ∈ − − −           

. 

Consider Equation (1.3), we have 
( )

( )
0 0

0 0
,

d , 0
d t x

x h t x
t

= < , thus ( )x t  may 

stay at ,n n

M L

b b
a a

    
− − −            

 or enter into ,n n

L M

b b
a a

    
− − − −            

 at some 

time t, if ( )x t  stays at ,n n

M L

b b
a a

    
 − − −           

, we have ( )d , 0
d
x h t x
t
= < , then 

( )x t  can not be a periodic solution of Equation (1.3), if ( )x t  enters into 

,n n

L M

b b
a a

    
− − − −            

 at some time t, then there is not a ( )1 1 0t t t>  such 

that ( ) ( )1 0 0x t x t x= = , thus ( )x t  can also not be a periodic solution of Equa-
tion (1.3). 

(IV) if 0 ,n n

L M

b bx
a a

    
∈ − − − −            

, then Equation (1.3) has an ω-periodic 

continuous solution ( ) ( )2x t tγ=  with initial value ( ) ( )0 2 0x t tγ= . 

Since 

( )2 ,n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                 (4.60) 
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by (4.46) and (4.60), it follows 

( )( )2, 0.xh t tγ′ >                        (4.61) 

Now, we suppose that there is another ω-periodic continuous solution 
( )2 tΨ  of Equation (1.3) which satisfies 

( )2 .n n

L M

b bt
a a

   
− ≤ Ψ ≤ −      

   
                (4.62) 

Because ( ),h t x  is a polynomial function with continuous partial derivatives 
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial 
value problems of differential equations, thus 

( ) ( ) ( )2 20 .t t t Rγ< −Ψ < +∞ ∀ ∈                (4.63) 

By (4.46) and (4.62), it follows 

( )( )2, 0.xh t t′ Ψ >                      (4.64) 

Consider the following equation: 

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

2 2
2 2

2 2 2 2 2 2 2

d
, ,

d
, , 0 1x

t t
h t t h t t

t
h t t t t t t

γ
γ

θ γ γ θ

−Ψ   = − Ψ

 ′= Ψ + −Ψ −Ψ < < 

    (4.65) 

thus we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 20 , d
2 2 2 2= 0 0 e .

t
xh s s s s st t θ γγ γ  ′ Ψ + −Ψ ∫−Ψ −Ψ      (4.66) 

By (4.60) and (4.62), it follows 

( ) ( ) ( )( )2 2 2 2 .n n

L M

b bt t t
a a

θ γ
   

− ≤ Ψ + −Ψ ≤ −      
   

        (4.67) 

By (4.46) and (4.67), it follows 

( ) ( ) ( )( )2 2 2 2, 0.xh t t t tθ γ ′ Ψ + −Ψ >                (4.68) 

By (4.66) and (4.68), it follows 

( ) ( ) ( )2 2 ,t t tγ −Ψ → +∞ → +∞                 (4.69) 

By (4.63) and (4.69), this is a contradiction, thus ( )2 tΨ  cannot be a periodic 
solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique 
ω-periodic continuous solution ( )2 tγ  which satisfies 

( )2 .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                 (4.70) 

(V) If 0 ,n

M

bx
a

  
 ∈ +∞     

. 

Consider Equation (1.5), we have 
( )

( )
0 0

0 0
,

d , 0
d t x

x h t x
t

= > , thus ( )x t  may stay 
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at ,n

M

b
a

  
− +∞      

 or ( ) ( ),x t t→ +∞ → +∞ , if ( )x t  stays at ,n

M

b
a

  
− +∞      

, 

we have ( )d , 0
d
x h t x
t
= > , then ( )x t  cannot be a periodic solution of Equation 

(1.3), if ( ) ( ),x t t→ +∞ → +∞ , then ( )x t  can also not be a periodic solution of 
Equation (1.3). 

To sum up, Equation (1.3) has exactly two ω-periodic continuous solutions 
( )1 tγ  and ( )2 tγ  which satify 

( )1 ,n n

L M

b bt
a a

γ
   
− − ≤ ≤ − −      
   

               (4.71) 

( )2 .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                (4.72) 

This is the end of the proof of Theorem 4.1. 
Theorem 4.2 Consider Equation (1.3), ( )2n n ≥  is an even number, ( )a t , 
( )b t  are ω-periodic continuous functions on R, suppose that the following 

conditions hold: 

(H1) ( ) 0,a t <  

(H2) ( ) 0,b t >  

then Equation (1.3) has exactly two ω-periodic continuous solutions ( )1 tγ  and 
( )2 tγ , and 

( )1 ,n n

M L

b bt
a a

γ
   

− − ≤ ≤ − −      
   

 

( )2 .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

 

Proof Let 

,x u= −                          (4.73) 

then Equation (1.3) can be turned into the following equation 

( ) ( )d .
d

nu a t x b t
t
= − −                     (4.74) 

By (H1) and (H2), it follows that Equation (4.74) satisfies all the conditions of 
Theorem 4.1, according to Theorem 4.1, Equation (4.74) has exactly two 
ω-periodic continuous solutions ( )1u t  and ( )2u t , and 

( )1 ,n n

L M

b bu t
a a

   
− ≤ ≤ −      

   
                (4.75) 

( )2 .n n

M L

b bu t
a a

   
− − ≤ ≤ − −      
   

               (4.76) 

By (4.73), it follows that Equation (1.3) has exactly two ω-periodic continuous 
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solutions ( )1 tγ  and ( )2 tγ , and 

( )1 ,n n

M L

b bt
a a

γ
   

− − ≤ ≤ − −      
   

               (4.77) 

( )2 .n n

L M

b bt
a a

γ
   

− ≤ ≤ −      
   

                (4.78) 

This is the end of the proof of Theorem 4.2. 

5. Some Corollaries 

Consider the following equation: 

( ) ( )( ) ( )d ,
d

nx a t x t b t
t

γ= + +                   (5.1) 

where ( ) ( ),a t tγ  and ( )b t  are ω-periodic continuous functions on R, and 
( )tγ  is derivable on R. 
Let 

( ) ,u x tγ= +                         (5.2) 

then Equation (5.1) becomes 

( ) ( )d d .
d d

nu a t u b t
t t

γ
= + +                    (5.3) 

According to Theorem 3.1 and Theorem 3.2 of section 3, Theorem 4.1 and 
Theorem 4.2 of section 4, we can get: 

Corollary 5.1 Consider Equation (5.1), n is an odd number, ( ) ( ) ( ), ,a t t b tγ  
are ω-periodic continuous functions on R, and ( )tγ  is derivable on R, suppose 
that the following condition holds: 

(H1) ( ) ( )0,a t t R≠ ∀ ∈  

then Equation (5.1) has a unique ω-periodic continuous solution. 

Remark 5.1 If ( ) d 0
d

b t
t
γ

+ ≡ , then Equation (5.1) has also a unique periodic 

solution ( ) 0x t = . 

Corollary 5.2 Consider Equation (5.1), n is an even number, ( )a t , ( )tγ , 
( )b t  are ω-periodic continuous functions on R, and ( )tγ  is derivable on R, 

suppose that the following condition holds: 

(H1) ( ) ( ) d 0,
d

a t b t
t
γ + < 

 
 

then Equation (5.1) has exactly two ω-periodic continuous solutions. 
Consider the following equation: 

( ) ( )( )d ,
d

nx a t x t
t

γ= +                     (5.4) 

where ( )a t  and ( )tγ  are ω-periodic continuous functions on R, and ( )tγ  is 
derivable on R. 
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Let 

( ) ,u x tγ= +                        (5.5) 

then Equation (5.5) becomes 

( )d d .
d d

nu a t u
t t

γ
= +                      (5.6) 

According to Theorem 3.1 and Theorem 3.2 of section 3, we can get 
Corollary 5.3 Consider Equation (5.4), n is an odd number, ( )a t , ( )tγ  are 

ω-periodic continuous functions on R, and ( )tγ  is derivable on R, suppose that 
the following condition holds: 

(H1) ( ) 0,a t ≠  

then Equation (5.4) has a unique ω-periodic continuous solution. 
Corollary 5.4 Consider Equation (5.4), n is an even number, ( )a t , ( )tγ  

are ω-periodic continuous functions on R, and ( )tγ  is derivable on R, suppose 
that the following condition holds: 

(H1) ( ) 0,a t ≠  

then Equation (5.4) has a unique ω-periodic continuous solution if and only if 
( )t Cγ ≡  holds. 

6. Conclusions 

In this paper, we get three results: 
1) when n is an odd number, if ( ) 0a t ≠ , then Equation (1.3) has a unique 

ω-periodic continuous solution, and the range of the size of the periodic conti-
nuous solution of Eq.(1.3) is also given. 

2) when n is an even number, if ( ) ( ) 0a t b t < , then Equation (1.3) has exactly 
two ω-periodic continuous solutions, and the ranges of the size of the two periodic 
continuous solutions of Equation (1.3) are also given, one is positive, another is 
negative, they are symmetrical about 0x = . 

3) We extend conclusions 1) and 2) to Equation (5.1) and Equation (5.4). 
These conclusions have certain application value for judging the existence 

of periodic solutions of polynomial differential equations with only one high-
er-order term. 
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